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Abstract: Cloud computing has transformed the way businesses and 

consumers think about their data and businesses. As a result, cloud 

computing is described as the on-demand availability of all computer system 

resources via the Internet as a paid service. Enhancing security is a major 

problem in cloud computing, which is also a major research topic because 

data is stored and processed in remote locations held by third parties. Another 

key research subject is the allocation of virtual machines to incoming 

workloads to decrease the cost of consumers' workload execution in cloud 

environments. Both of the aforementioned difficulties are addressed in this 

study. Deadline-constrained workflows are submitted to the application 

server, which goes through a pre-processing step, that identifies the presence 
of anomalies in the workflow tasks and disqualifies those tasks with 

anomalies, and schedules the adjusted workloads into heterogeneous Virtual 

machines using a modified-PCP algorithm. Our approach is compared to the 

IC-LOSS and IC-PCP algorithms that are already in use. In comparison to 

the existing IC-PCP and IC-LOSS algorithms, experimental results suggest 

that using the modified-PCP algorithm for deadline constrained workflows 

after deleting those anomalous tasks produces better results. 

  

Keywords: Anomaly, Cloud Computing, Deadline, Partial Critical Path, 

Scientific Application Workflows, Scheduling 

 

Introduction 

Cloud computing enables pervasive computing which 

provides on-demand access to the programmable class of 

computing resources. Cloud computing has also gained 

notoriety as a result of its ability to provide processing, 

storage, and software-based services over the Internet. 

Security, on the other hand, remains a major worry and a 

significant roadblock to the adoption of the cloud model 

(Mehraj and Banday, 2021). One of the most significant 

ideas in data analysis is anomaly detection. If an 

information object deviates dramatically from usual data 

behavior in some sphere, it is classified as an anomaly. In 

general, it denotes that an object is distinct from the rest 

in a data array. It’s crucial to detect these objects so that 

you can look at them from a different perspective and apply 

alternative detection methods (Hu et al., 2017). 

Anomaly detection is founded on the premise that 

common behavior is more likely to be correct and that 

uncommon deviation from the norm (so-called anomalies) 

are more likely to be incorrect (Körber et al., 2021). In a 

Distributed Cloud Environment, most cloud apps, 

whether elastic or non-elastic in nature, execute their 

duties utilizing Virtual Machines (VM). When compared 

to non-elastic apps, most elastic applications are 

intended to run for long periods and fully utilize their 

resources. Intercommunicating VMs and/or non-

intercommunicating VMs can make up elastic 

application requests (Sridharan and Domnic, 2021). 

Modern computational and data-intensive science is 
increasingly reliant on scientific procedures. Scientific 

workflows have evolved as a versatile way to express 

large programs with data and control dependencies 

declaratively. Networked clouds are an appealing 

platform for deploying and executing research workflows 

due to the intrinsic flexibility of scientific processes, i.e., 

growing resource needs as they execute. Advanced 

virtualization technologies now allow research workflows 
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to be packaged in such a way that they are highly portable, 

predictable, high-performance, and performance isolated 

(Gaikwad et al., 2016). 

Although modern scientific experiments are 

conducted on complex, largescale, distributed                

high-performance systems that are designed with 

reliability in mind (Snir et al., 2014), they can experience 

anomalies ranging from minor (e.g., network performance 

degradation) to major (e.g., file system integrity errors) 

(Ewa et al., 2017), affecting the performance of the 

applications that leverage their resources and increasing 

the chances of failure. When a Scientific application 

workflow is scheduled to the cloud and some of the 

activities in the workflow exhibit anomalous behavior, the 

expensive cloud resources are squandered, raising the 

customer's cloud usage costs. 
For a scenario in which a cloud client submits his or 

her scientific workflow application to be executed and 

controlled by a workflow execution service with a 

turnaround time (deadline) to be met, we explore a 

scheduler modeled as an Integer Linear Programme (ILP) 

(van Zelst et al., 2018). 

Software-as-a-Service (SaaS) and platform-as-a-

service are two examples of workflow execution service 

owners (PaaS). Aside from being responsible for creating 

a plan that meets the workflow’s deadline, the scheduler’s 

goal is to reduce the monetary costs of workflow execution, 
allowing the SaaS/PaaS to maximize profit by lowering 

client expenses (Genez et al., 2020; Tiwari and                  

Garg, 2021). 

Mainstream cloud computing systems can be 

divided into three types based on provisioning 

strategies and architectural patterns: Infrastructure 

clouds (IaaS), Platform clouds (PaaS), and software 

clouds (SaaS). The IaaS concept allocates resources to 

Virtual Machines (VMs) that are built-in data centers 

or server nodes (Pan et al., 2020; Osypanka and 

Nawrocki, 2020; Anshu et al., 2020). 

Overprovisioning can be avoided by optimizing VM 
placement based on the VMs’ resource demands rather 

than their requests. Resource over commitment     

(Dabbagh et al., 2015) is a technique that allows multiple 

VMs to be placed (or consolidated) on the same PM by 

sharing hardware resources beyond their actual capacity. 

Despite these advantages, data center owners are wary of 

consolidating their facilities. One method involves 

allocating VMs based on their resource needs (i.e., CPU, 

memory, and disc) so that the total demand is less than the 

PMs' resource capacity. However, because IaaS clients 

tend to overestimate their VM resource requests to 
guarantee that their application requirements are met at all 

times, this suffers from over-provisioning. As a result, the 

consolidated data center has a poor utilization rate and 

PMs are underutilized. Unfortunately, overcommitting 

can harm application performance by clogging up limited 

PM resources and resulting in large Quality of Service 

(QoS) violations and penalties (Torre et al., 2020). When 

anomalies in tasks are discovered, the anomalous tasks are 
removed from workflows and the remaining workflows 

are scheduled to IaaS Clouds using a modified version of 

the PCP algorithm. The following are our major 

contributions to this project: 

 

 All the submitted workflows pass through a pre-

processing step which detects the anomalies in the 

workflows, if any, using the following steps 

 Uses a modified matrix profile to operate on data in 

real-time to detect the anomalies 

 Uses an adaptive training method to reduce the false 
alarm rates due to the presence of the same type of 

anomalies that occurred 

 The workflows after disqualifying the anomalous 

tasks are scheduled to IaaS clouds using a modified  

PCP algorithm 

 The results are compared with existing IC-PCP 

algorithm and IC-LOSS algorithms that schedule the 

workflows without disqualifying the anomalous tasks 

in the workflows 

 

Related Work 

Anomaly Detection in Scientific Workflows 

Rodriguez et al.  (2018 ) describe a framework for 

detecting anomalies in Scientific Workflows that employs 

Hierarchical Temporal Memory (HTM), an unsupervised 
model that learns incrementally, to detect anomalies in 

the flow of resource consumption time-series data. 

)Somani et al., 2017) and (Rodriguez and Buyya, 2018) 

propose a taxonomy of several Distributed Denial-of-

Service (DDoS) assaults for multi-tenant, Cloud-based 

infrastructures, which differ from traditional fixed on-

premise infrastructures. Rather than a single target server, 

numerous stakeholders are involved in DDoS attacks against 

Cloud Environments. DDoS attacks on Cloud Environment 

have an impact on many parameters other than those planned 

by the attackers. DDoS assaults also have an impact on other 

aspects such as the economy, business, and overall energy 
use. The report outlines measures to reduce the effects of the 

aforementioned variables. 

Chen et al. (2018) proposed a defense-in-depth 

protection framework for tenant VMs to meet the VM 

security requirements concerning the access control of 

communications, anomaly detection in networks, 

monitoring of memory, as well as antivirus in files in an 

IaaS platform, which used three layers to meet the 

mentioned security concerns of customer trade from 

exterior to the interior of VM. A tenant territory model 

was conceptualized and implemented at the initial layer, 

restoring the ability to manage the communication 
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approach for VM service and maintaining security 

confinement of distinct tenant trade networks using 

Software Defined Networking (SDN). Alguliyev et al. 

(2019) provide a semi-supervised classification strategy 

for identifying anomalies in cloud infrastructure 

performance metrics based on a combination of 

classifiers. The suggested approach for generating 

ensemble Naive Bayes uses the SMO, J48, IBK, 

multilayer perceptron as well as PART algorithms. Using 

public data from Yahoo and Google, the MATLAB, 

Weka, Python 2.7, and SDK Shell programs were utilized 

to discover odd behavior on performance indicators. As a 

result of this research, a conclusion was reached that the 

detection accuracy of the model is 90%. 

Scheduling in Cloud 

The term Scheduling refers to the method of binding a 

task or a series of tasks to a collection of cloud virtual 

machines to meet the requirements of the users. The two 

terminologies related to cloud computation are task 

scheduling and workflow scheduling and the only 

difference between them is the range of data involved in 

the computation. A task is a single job that includes 

customer applications. A workflow, on the other hand, 

denotes large business or scientific data patterns, which 

consists of the number of interrelated tasks, usually 

represented as a Directed Acyclic Graph (DAG). A 

cybershake workflow Fig. 1 (WG) is an example of 

workflow DAG, which is used by the Southern Calfornia 

Earthquake Center to characterize earthquake hazards in 

a region, which consists of many tasks categorized into 

five broad categories. Scheduling in the cloud can 

improve the utilization of bought cloud resources, 

resulting in a better price-performance ratio. The majority 

of cloud scheduling concerns Infrastructure as a Service 

(IaaS) clouds. 

The Scheduling Algorithm is one of the most 

important factors to consider when scheduling apps in a 

cloud environment (Varshney and Simmhan, 2020). The 

mapping strategy and type of techniques utilized are used 

to categorize the scheduling algorithms. Heuristics and 
meta-heuristics techniques are the general techniques 

used here. Greedy, brute-force, dynamic programming, 

and divide and conquer are examples of heuristics 

strategies. Meta-heuristics are high-level generic 

processes for generating heuristics to tackle a specific 

problem. Genetic algorithms, ant colony optimization, 

particle swarm optimization, and other meta-heuristic 

approaches are examples of meta-heuristic techniques. 

When the mapping between the tasks and the resources 

is generated is determined by the mapping approach. 

Static and dynamic mapping are the two different 
mapping procedures employed. 

 

 

 
Fig. 1: A sample cyber shake workflow 
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Fig. 2: Proposed system architecture 
 

Static Scheduling 

Santra and Mali (2015) introduced a circular approach 

to the Round Robin concept, intending to clarify the load 

balancing scenario of a cloud server during execution. It 

aids in the creation of an effective communication 

architecture between broker and Virtual Machine (VM) to 

optimize time and reduce costs by providing an effective 

and quick execution environment for tasks provided by 

the user. They use cloud sim 3.0 and VM scheduling 

(Space and Time sharing) policies to implement it. Round 

Robin and FCFS scheduling policies are being 

investigated for Virtual Machine and Cloudlet scheduling. 

Joshi and Kumari (2016) suggested cloud computing as a 

type of networked computing that improves its efficiency, 

accessibility, and utility. From conception to 

implementation, from consumption to maintenance, cloud 

implementation is divided into several phases. The 

efficient usage of cloud computing is dependent on 

several factors, including security, speed, and privacy. By 

altering the basic load balancing algorithms, they were 

able to make better use of cloud resources and boost 

access speed. The allocation of virtual computers to user 

bases is also improved and cloud bus’ cloud sim toolset is 

used for verification. 

Alam et al. (2016) predicted that the number of 

internet users would continue to rise and that             

Cluster-Based Web Servers (CBWS) would see a 

significant increase in online traffic. Because of its 

simplicity, the Load-Balancing method based on the 

round-robin Algorithm (RLBA) is most extensively 

utilized for dispersing loads among web servers. RLBA 

load distribution, on the other hand, is inefficient in the 

case of non-uniform web traffic. The proposed unique 

ways to optimize the RLBA using the essential procedures 

in this research. They suggest two types of RLBA: 

Adaptive RLBA (ARLBA) and predictive RLBA 

(PRLBA). They use simulation data to verify the 

effectiveness of algorithms. The performance measuring 

parameters are server load correlation and load variance. 

In every scenario, ARLBA and PRLBA exceed RLBA. In 

the case of ARLBA, it outperforms Modified Round 

Robin (MRR), while in the case of PRLBA, it                  

outperforms MRR. 

Dynamic Scheduling 

Banyal and Ojasvee (2016) presented a cloud 
computing system that uses resource management to 
deliver an elastic, scalable resource-sharing service. In 
the cloud computing context, resource automation and 
high-performance management are built on the 
foundation of resource monitoring as well as 
prediction. The paper labels the problem of resource 
watching as well as a prediction in a cloud-computing 
environment, outlines and executes a flexible resource 
watching structure in cloud computing, and also 
proposes one resource forecasting structure contingent 
on Vector-Auto-Regression (VAR) by the 
interrelationship among various resources. 
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Table 1: Scheduling algorithms using VM allocation and parameter-based evaluation 

  VM allocation 

Reference Scheduling algorithm static/dynamic Parameter used 

Santra and Mali (2015) Round-robin Static Running time as well as resources scheduling 

Joshi and Kumari (2016) Modified RR Static Resource allocation and utilization   

Alam et al. (2016) Adaptive and predictive round-robin Static Performance optimization  

Banyal and Ojasvee (2016) Resource prediction mechanism using VAR Dynamic Resource monitoring and prediction 

Mehta et al. (2017) Resources monitored using HMM Dynamic Execution time height 

 
Experimental evaluations verify the suggestion that 
resource monitoring structure successfully detects 

resource utilization in a cloud-computing situation and 

that the forecasting method dependent on vector-auto-

regression is more effective at predicting resource usage 

than alternative prediction mechanisms. 

Mehta et al. (2017) propose cloud computing as a 

concept that utilizes resource management to deliver 

elastic, scalable, and resource-sharing services. Resource 

watching and forecasting are the keys to attaining 

resource utilization with high-performance management 

in cloud computing. One of the most difficult aspects of 

cloud computing is resource scheduling; the scheduling 
strategy and algorithm have a direct impact on the cloud 

system's performance. Due to resource limits, cloud 

computing has recently introduced high-performance 

computing capacity, urging cloud providers to fully utilize 

resources. The purpose of this study is to employ a Hidden 

Markov Model to monitor the cloud resources available 

(HMM). The suggested model is utilized to track 

resource availability, after which the resource is 

classed as light, average, or heavily loaded, and the best 

scheduling strategy is chosen based on demand. The 

algorithm's efficiency has been tested using the 
workload scenarios in Table 1. 

Proposed Workflow Manager and Time Series Logs 

The Workflow Manager receives the input workflows 
and is in charge of recording information for each action 
and providing tools for reporting on each operation. To 
acquire time series logs, each activity in the workflows is 
evaluated and these log entries have been resolved in the 
direction of an instantaneous time sequence consisting of 
three features (three dimensions). The difference in time 
between adjacent log entries, which is determined with 
millisecond accuracy is the first dimension. The next 
dimension compares the differences in the tasks/processes 
completed by linking two logs. Since each task in the 
Scientific process is to be performed in a separate physical 
location, the difference in IP address between two 
consecutive log entries would be represented by the last 
dimension. Sub-sequences are designed and submitted to 
the anomaly detection module as log entries are resolved, 
which detects anomalies using a modified matrix profile.  

System Model 

An IaaS cloud model, an application server, and 
Customer applications for scheduling make up the proposed 

scheduling system concept Fig. 2. A client application is 
modeled as a directed acyclic graph G = (A, E), where A is 
the collection of n activities (tasks) t1, t2 ,..., tn, and E is the 
collection of dependencies. Every dependency ei,j = (ti, tj) 
represents a precedence constraint, indicating that activity ti 
must complete execution before activity tj can begin. A task 
with no parent is called the entrance task, whereas a task 
without children is called the exit task of the given task graph. 
We’ve added fake activities entry as well as texit as the first and 
last tasks in the given workflow, respectively because the 
suggested algorithm needs a unique arrival and leaving task. 
The computation times of newly added tasks are considered 
to be zero with zero weight dependency added to or from 
existing arrival and leaving tasks. 

The proposed concept is built on pay for a usage 

pricing model, analogous to what public Clouds offer. 

Cloud users are debited for the total amount of periods in 

which they have consumed the resources for complete 

intervals as well as for partial intervals. The cost of 

computing service si for a single time interval is assumed 

to be ci in this study. ET (ti,sj) is also the time it takes to 

complete task ti on computational service sj. All of the 

services (computational and storage) are meant to be in 
the same physical location, with nearly similar average 

bandwidth among the computational services. TT (eij), 

data transfer time for dependency ei,j, is determined solely 

by the size of data exchanged between tasks ti and tj and is 

unaffected by the services that perform them. When both 

tasks ti and tj are running on the same computational 

service, TT (eij) is equal to zero. Because the cost of data 

transfer in most real clouds is zero, we assume that the 

cost of data transfer in our model is similarly zero. In 

real clouds, clients are charged for storage services 

based on the size of the assigned storage volume and 
the quantity of input-output activities to/from the 

exterior of the cloud. We don’t include these 

parameters in our model because they have no bearing 

on our algorithm. 

Anomaly Detection 

A modified matrix profile model is used in the 
anomaly detection phase. The following are the primary 
changes made to the Matrix Profile utilized here: 

 

 Instead of computing the Euclidean distance 
concerning all the existing sub-sequences and 
determining the lowest distance for a sub-sequence, a 
semi-supervised model that uses M-m+1                    
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sub-sequences from the start as references to 
comparison with no anomalies 

 Rather than computing the absolute Euclidean 

distance, calculate the relative distance between 

sub-sequences 

 

The relative distance between two univariate sub-

sequences T1, m = [t1, t2, …., tm] and ' ' ' '

1, 1 2, ,....,m mT t t t   is 

computed as: 

 

( ) ( )

, ,1

( )

,1

[ ] [ ]

[ ]

m j j

k m i ml

m j

k ml

T l T l
relative distance rd

T l










 (1) 

 

where, k varies from 1 to M-m+1.  
During each pace, the Anomaly-Detection approach 

uses a sub-sequence of the input stream and the 

uncertainty function provided as input and produces betai, 

a comprehensive anomaly score that indicates whether or 

not the given sub-sequence is an abnormality. The 

comprehensive anomaly score produced by the module is 

a numeral value in the range of 0 to 1 and when it is close 
to 1, the sub-sequence is considered anomalous. There 

will be (M −m+1)d  viable combinations because there are 

M-m+1 sub-sequences and d dimensions and the 

algorithm retains a weight for those combinations using 

W stored in a hash table indexed by a key. By considering 

the adjacent sub-sequences and removing those tasks in 

overlapping anomalous sub-sequences. 

Anomaly-score (βi) collects the findings of various 

Matrix-Profile models operating on different features of a 

specific sub-sequence. The anomaly detection module can 

also provide information about the individual aspects that 
contribute to the anomaly. Our anomaly detection method 

employs a semi-supervised framework in which it 

determines the exact execution performance of workflows 

over a few workflow rounds and recognizes the cases that 

gradually diverge from this as possible abnormalities. 

Algorithm 1 describes the anomaly detection algorithm. 

Adaptive Training 

The system thinks that the anomaly flagged is a true 

positive with high certainty if the probabilistic value is 

near 1 and the converse is assumed if the probabilistic 

value is close to 0. The uncertainty function assumes that 

the chances of anomalies arising during the first few runs are 

modest and that the scenario evolves as the attacker Adaptive 

Training method is described in Algorithm 2. When the 

method is run, the weights are updated once the anomaly-

detection method detects an abnormality. Once an 

abnormality is identified, the weights are modified 

considering the uncertainty function and                   

anomaly-score βi. 

Algorithm1: Anomaly detection 

 /* The Anomaly Detection  

 algorithm is executed for each 

 time step i */ 

 Input: 

        i, the time step 

 
( )(1) (2)

, , , ,, ,...,
d

i m i m i m i mT T T T 
 

, the sequence of input time 

  m, the length of the sub-sequence 

 M, the window size 

       T, sample sub-sequence for comparison 

 R, H, the records to be updated for adaptive training 

 d, the number of dimensions 

 , the user-defined threshold 

  W, the weights 

 Output: 

 Anomaly detected, a boolean value 

 C, the contribution list 

  R, H, updated records for adaptive training 

1 min rd = 0; for each dimension i do 

2 Compute the relative distance using Eq. 1 

3 update min-rd if needed (if the current rd is less than 

minrd) 

4 Compute key, i and D min[i] 

5 save i into the contribution list Ci 

6 update R 

7 if key  W then 

8 update i as i * W[key] 

9 update H 

10 if i > then 

11 Anomaly-Detected = TRUE 

12 else 
13 Anomaly-Detected = FALSE 

14 return [Anomaly-Detected, Ci, R, H] 

15 

 

Algorithm 2: Adaptive training 

 /*The adaptive training 

 algorithm is executed for each 
 time step i */ 
 Input: 
 i, m, M, q, d, W, R and H, same as in Algorithm 1 
 Pi, the uncertainty value at time step i 
 ɑ, the training bias value 

 Output: 

 W, the weight 
 H, Upadated information for adaptive training. 
1 for each k, the weight value selected do 
2 update keys[k] 
3 if W does not contain keys[k] then 
4 update W [keys[k]] as 1 
5 if k = = m+1 then 
6 update i and H 

7 return [W, H] 
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Broker and Modified PCP Scheduling Algorithm 

The broker receives the anomaly information for each 

task in the workflow and modifies the workflow DAGs 

by removing the anomalous tasks from the workflows, 

as well as the dependencies associated with the 

anomalous tasks. 

The broker is also in charge of adding two zero-

execution-time dummy tasks, tentry and texit, which are 

linked to the actual entry and exit tasks with zero weight 

dependencies. The Scheduling algorithm receives the 

changed workflows from the Broker. In this case, we’re 

utilizing a modified version of the original PCP algorithm 

(Abrishami et al., 2013), as described in Algorithm 3. The 

services covered here are diverse and when launching 

a new service, the VM start-up time is taken into 

account. The Proposed scheduling module has two 

ideas for activity start times: The Earliest Start Time 

(EST), which is calculated before the workflow is 

scheduled, and the Actual Start Time (AST), which is 

derived later the tasks are scheduled. 

 

Algorithm 3: Modified PCP 

 /*Modified PCP algorithm is 

 executed for the scientific 

 workflow. */ 

Input: 

 The modified DAG G = (V, E) from the 

BROKER. 1 

 D, the deadline for executing the workflow. 

 Output: 

 Cost of executing the Workflow 

1 Compute the execution time of each task in each of 

 the available services 

2 Compute EST and EFT for all tasks in the DAG 

 for the fastest available service 

3 Compute LFT for all tasks in the DAG  

 for the fastest available service 

4 Compute the average Data Transfer time between 

 the tasks 

5 t = texit 

6 while t ≠ tentry do 

7 while t has an unassigned parent does 

8 find the Partial Critical Path (PCP) of t 

 with only unassigned parents 

9 set si, j as the cheapest instance j of available 

 service si, which is already allocated to the 

 workflow, which can finish all the tasks the 

 PCP before their LFT 

10 if (si, jis null) then 

11 launch a fresh instance of the least cost service that 

could finish all the tasks in the PCP(t) before their 

LFT-boot time (service) 

12 for (each task ti in PCP (t)) do 

13 Schedule ti on si, j 

14 set SS (ti) and AST (ti) 

15 set assigned (ti) = true 

 

Earliest-Start-Time (EST) 

EST (ti), the earliest start-time of an unscheduled task 

ti is defined as: 

 

  0 entryEST t     (2) 

 

     '

max

,( ) (
p i

i p p p it t s parents
EST t EST t MET t TT e


   
 

 (3) 

 

where, MET(ti) is the minimum time to execute a task ti, 

which is described as the time to execute task ti on a 
service sj ε S, and ET(ti,sj), which is the minimum among 

the available services. Notice that MET(entry), as well as 

MET(texit), are set to zero. TT(ep, i) is the time for data 

transfer over the dependency epi. 

Earliest-Finish-Time (EFT) 

For an unscheduled tasks ti, EFT (ti), is defined as: 

 

     i i iEFT t  EST t  MET t   (4) 

 

Latest Finish-Time (LFT) 

Latest Finish-Time of an unscheduled task ti, LFT(ti) 

is defined as the latest time where ti can finish its 

execution so that the entire workflow can complete its 

execution before the user-specified deadline, D. It is 

calculated as: 

 

 LFT texit  D  (5) 

 

' ,( ) ( ) ( ) ( )
i

min

i C C i ctc t schildren
LFT t LFT t MET t TT e


      (6) 

 

Selected Service (SS): The Selected Service of 

every scheduled task ti, SS(ti) = sj,k, is the service 

chosen for executing ti during scheduling, and sj,k is the 

kth instance of service sj . 

Actual Start Time (AST) 

The actual start time of any task ti, AST (ti), is termed 

as the time in which the task ti starts on the selected service 

and this is calculated only after scheduling. 

Assigned-Node 

An assigned node is the node that is already scheduled 

to service and indicates that the selected service of task        

is identified. 
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Critical Parent 

ti’s parent, which is not yet assigned to any resource 

and has the last data reaching time at ti. i.e., it’s ti‘s parent 

tp whose EFT(tp)+TT(ep,i) is maximum. 

Partial Critical-Path (PCP) 

For every node ti, (PCP) is the most important concept 

in the proposed scheduling algorithm, which is defined as: 

 

 PCP of ti is empty when ti do not possess          

unassigned parents 

 if ti has an unassigned parent tp, then PCP(ti) includes 

tp and PCP(tp) 

 

The Partial Critical Path (PCP) of a task t is computed 

as–consider all the unassigned parents of t and out these 

unassigned parents, the parent tp whose EST + MET + TT 

is maximum belongs to PCP(t) and continue adding 

parent tasks of tp to PCP(t) until there are no unassigned 

parents left, or we reach tentry. 

Once the PCP of a task is obtained, the scheduler 

checks, whether, there is an existing instance, which is 

cheaper and which can finish all the tasks in the PCP 

before its LFT. It is not available, it launches a new 

service instance and takes care of the boot-up time of 

the new service and schedules all the tasks in the PCP 

of t to the same service, and updates the Selected 

Service (SS) and Actual Start Time (AST) of every task 

ti in PCP (t). 

Performance Analysis 

The proposed scheduling algorithm is evaluated on 

two Scientific Workflow–Montage and Cyber shake. 

Developed a workflow generator, which creates 

workflows of an arbitrary size similar to the real-world 

Scientific Workflow. These workflows are available in 

DAX (Directed acyclic graph in XML) format on their 

website (PWMS), from which we choose three sizes for 

our experiments–small, large, and extra-large Table 2. 

The cloud computing Environment is simulated using 

CloudSim (Calheiros et al., 2011). 

The input workflows are first analyzed for anomalies. 

Experimental results show that an average of 15% of tasks 

in the workflows are anomalous tasks. The anomalous 

tasks are eliminated from the workflows and the resulted 

workflows are scheduled using a modified PCP algorithm. 

Our proposed algorithm is compared with the IC-LOSS 

(LOSS algorithm for IaaS clouds) algorithm, a modified 

version of the original LOSS algorithm used with Grids 

(Sakellariou et al., 2007) and ICPCP algorithm 

(Abrishami et al., 2013). For our experiments, we assume an 

IaaS Cloud environment with 7 different computational 

services (same as in Amazon EC 2) with varying prices and 

performances Table 3. 
The bandwidth between computational services is set to 

20 Mbps on average (same as in EC 2). Amazon charges 
users for the large time interval of an hour, but cloud sigma 
prefers a shorter time of 5 min. In our trials, we used two 
distinct time intervals of one hour and five min, 
respectively. Because we are evaluating a large number of 
workflows with various sorts of attributes in our studies, 
we have defined a parameter called Normalized cost 
(which is comparable to the Normalized Deadline (ND) 
used in Anwar and Deng, 2018): 

 

Total Scheduled Cost
Normalized Cost

CheapestCost
  (7) 

 

where, Cheapest Cost is defined as the total cost to execute 

the same workflow in the cheapest service available. 
To assign a deadline to the input workflows, we are 

defining the term Fastest Executing Time (FT ), as the 
time obtained when each task in the work is allocated 
to the fastest service available and considering the data 
transmission time as zero, which is a                          
theoretical measure. 

The deadline D is computed as: 

 

. TD F  (8) 

 

where, ɑ varies from 1.5 to 5 with a step value of 0.5. 

Figure 3 shows the workflow scheduling cost for the 

large workflows in IC-PCP, IC-LOSS and M-PCP for the 

time interval of 1 hour which are tabulated in Table 4 and 

Table 5 and Fig. 4 shows the workflow scheduling cost 

for the same workflows for the time interval of 5 min 

which are tabulated in Table 6 and 7. It is clear that all the 

methods successfully scheduled incoming workflows 

over their allotted deadlines, even for tight deadlines 

where D = 1.5* FT or D = 2* FT. 

 
Table 2: The applications used and their sizes 

Application Small Large Extra large 

Cyber shake 30 nodes 100 nodes 1000 nodes 
Montage 25 nodes 100 nodes 1000 nodes 

 
Table 3: VM types used 

VM Type vCPU Memory Price 

a 1. Medium 1 2 GB $ 0.0255 per h 
m 6 g. Medium 1 4 GB $ 0.0385 per h 
t 3. Small 2 2GB $ 0.0208 per h 
t 3. Medium 2 4 GB $ 0.0416 per h 
t 3. Large 2 8 GB $ 0.0832 per h 
t 3a. Large 4 16 GB $ 0.1504 per h 

t 2. 2  Large 8 32 GB $ 0.3712 per h 
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Fig. 3: The cost of scheduling workflows with the time interval   of 1 h 
 

 
 

Fig. 4: The workflow scheduling cost for the time interval of 5 min 
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Table 4: Performance of Cyber shake workflow for billing 
interval 1 h 

α M-PCP IC-PCP IC-LOSS 

1.5 119 125 140 
2.0 71 75 84 
2.5 43 48 62 
3.0 19 24 36 
3.5 19 24 36 
4.0 16 18 36 
4.5 16 18 36 
5.0 15 16 21 

 
Table 5: Performance of montage workflow for billing      

interval 1 h 

α M-PCP IC-PCP IC-LOSS 

1.5 278 280 288 
2.0 242 246 248 
2.5 148 154 180 
3.0 37 40 86 
3.5 36 40 74 
4.0 36 40 60 
4.5 36 40 50 
5.0 36 40 49 

 
Table 6: Performance of Cyber shake Workflow for billing 

interval 5 min 

α M-PCP IC-PCP IC-LOSS 

1.5 22.00 22.0 23.0 
2.0 12.00 12.5 16.0 
2.5 7.50 8.0 9.8 

3.0 4.25 4.5 5.0 
3.5 4.00 4.4 5.0 
4.0 2.30 2.8 4.6 
4.5 2.20 2.8 3.2 
5.0 2.00 2.1 2.1 

 
Table 7: Performance of Montage Workflow for billing           

interval 5 min 

α M-PCP IC-PCP IC-LOSS 

1.5 49.5 49 51 
2.0 28.0 28 41 
2.5 6.9 7 22 
3.0 6.8 7 17 
3.5 6.7 7 15 

4.0 6.7 7 12 
4.5 6.0 6 10 
5.0 6.0 6 10 

 

All the results show that M-PCP beats IC-PCP as 

well as IC-LOSS in nearly all situations, even if the 

boot-up time for the newly launched instances is 

considered. From the results, we can see that the 

Normalized Cost is very high when the Deadline factor 

α is 1.5, the reason for the high values is that, as the 

deadline becomes very tight, it is required to allocate a 

new instance to each new task to finish the workflow 

before its specified deadline and many of the tasks are 

using a small fraction of the allocated instances. The 

results in Fig. 3 and 4 show that we can produce cost 

savings in scheduling when the deadline factor α ≥2.5. 

When the time interval is short (5 min), we get high-

cost savings on all deadlines, and M-PCP outperforms. 

Conclusion 

From experiments, it is seen that some of the tasks in 

the workflows are anomalous tasks. If the anomalous 

tasks are also considered for scheduling in a cloud 

environment, it will increase the cost of cloud usage. In 

this study, we are considering scheduling of workflows as 

a two-step process-first step is a preprocessing step, which 

detects anomalous tasks in the workflows and the 

experiments show that an average of 15% of the tasks are 

anomalous tasks, and resulting workflows without 

anomalous tasks are scheduled in heterogeneous cloud 

environment using a modified PCP algorithm. Here the 

modification used is, that the cloud environment is 

more close to the real cloud environment, where the 

cloud boot-up time is also considered. The experiments 

are conducted on two scientific workflows-Cyber 

shake and Montage. The proposed algorithm is 

compared with IC-PCP and IC-LOSS algorithms for 

different deadlines and analyzed the cost of cloud usage 

and the results show that M-PCP outperforms IC-PCP 

and IC-LOSS algorithms. In the future, we will extend 

our work to identify the nature of anomalies in the 

workflow tasks, if the task is anomalous. 
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