

 © 2022 Anver Shahabdeen Rahumath, Santhosh Rajendran, Natarajan Mohanasundaram and Abdul Rahiman Malangai. This

open-access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Sciences

Original Research Paper

Cost-Efficient Deadline Constrained Scientific Workflow

Scheduling in Infrastructure-as-a-Service Clouds by

Disqualifying Tasks with Anomalies

1Anver Shahabdeen Rahumath, 1Santhosh Rajendran,
1Natarajan Mohanasundaram and 2Abdul Rahiman Malangai

1Department of Computer Science and Engineering, Karpagam Academy of Higher Education, India
2LBS Centre for Science and Technology, India

Article history
Received: 06-01-2022
Revised: 25-04-2022
Accepted: 27-04-2022

Corresponding Author:
Anver Shahabdeen Rahumath

Department of Computer
Science and Engineering,

Karpagam Academy of Higher
Education, India
Email: anversr@gmail.com

Abstract: Cloud computing has transformed the way businesses and

consumers think about their data and businesses. As a result, cloud

computing is described as the on-demand availability of all computer system

resources via the Internet as a paid service. Enhancing security is a major

problem in cloud computing, which is also a major research topic because

data is stored and processed in remote locations held by third parties. Another

key research subject is the allocation of virtual machines to incoming

workloads to decrease the cost of consumers' workload execution in cloud

environments. Both of the aforementioned difficulties are addressed in this

study. Deadline-constrained workflows are submitted to the application

server, which goes through a pre-processing step, that identifies the presence
of anomalies in the workflow tasks and disqualifies those tasks with

anomalies, and schedules the adjusted workloads into heterogeneous Virtual

machines using a modified-PCP algorithm. Our approach is compared to the

IC-LOSS and IC-PCP algorithms that are already in use. In comparison to

the existing IC-PCP and IC-LOSS algorithms, experimental results suggest

that using the modified-PCP algorithm for deadline constrained workflows

after deleting those anomalous tasks produces better results.

Keywords: Anomaly, Cloud Computing, Deadline, Partial Critical Path,

Scientific Application Workflows, Scheduling

Introduction

Cloud computing enables pervasive computing which

provides on-demand access to the programmable class of

computing resources. Cloud computing has also gained

notoriety as a result of its ability to provide processing,

storage, and software-based services over the Internet.

Security, on the other hand, remains a major worry and a

significant roadblock to the adoption of the cloud model

(Mehraj and Banday, 2021). One of the most significant

ideas in data analysis is anomaly detection. If an

information object deviates dramatically from usual data

behavior in some sphere, it is classified as an anomaly. In

general, it denotes that an object is distinct from the rest

in a data array. It’s crucial to detect these objects so that

you can look at them from a different perspective and apply

alternative detection methods (Hu et al., 2017).

Anomaly detection is founded on the premise that

common behavior is more likely to be correct and that

uncommon deviation from the norm (so-called anomalies)

are more likely to be incorrect (Körber et al., 2021). In a

Distributed Cloud Environment, most cloud apps,

whether elastic or non-elastic in nature, execute their

duties utilizing Virtual Machines (VM). When compared

to non-elastic apps, most elastic applications are

intended to run for long periods and fully utilize their

resources. Intercommunicating VMs and/or non-

intercommunicating VMs can make up elastic

application requests (Sridharan and Domnic, 2021).

Modern computational and data-intensive science is
increasingly reliant on scientific procedures. Scientific

workflows have evolved as a versatile way to express

large programs with data and control dependencies

declaratively. Networked clouds are an appealing

platform for deploying and executing research workflows

due to the intrinsic flexibility of scientific processes, i.e.,

growing resource needs as they execute. Advanced

virtualization technologies now allow research workflows

Anver Shahabdeen Rahumath et al. / Journal of Computer Science 2022, 18 (6): 555.566

DOI: 10.3844/jcssp.2022.555.566

556

to be packaged in such a way that they are highly portable,

predictable, high-performance, and performance isolated

(Gaikwad et al., 2016).

Although modern scientific experiments are

conducted on complex, largescale, distributed

high-performance systems that are designed with

reliability in mind (Snir et al., 2014), they can experience

anomalies ranging from minor (e.g., network performance

degradation) to major (e.g., file system integrity errors)

(Ewa et al., 2017), affecting the performance of the

applications that leverage their resources and increasing

the chances of failure. When a Scientific application

workflow is scheduled to the cloud and some of the

activities in the workflow exhibit anomalous behavior, the

expensive cloud resources are squandered, raising the

customer's cloud usage costs.
For a scenario in which a cloud client submits his or

her scientific workflow application to be executed and

controlled by a workflow execution service with a

turnaround time (deadline) to be met, we explore a

scheduler modeled as an Integer Linear Programme (ILP)

(van Zelst et al., 2018).

Software-as-a-Service (SaaS) and platform-as-a-

service are two examples of workflow execution service

owners (PaaS). Aside from being responsible for creating

a plan that meets the workflow’s deadline, the scheduler’s

goal is to reduce the monetary costs of workflow execution,
allowing the SaaS/PaaS to maximize profit by lowering

client expenses (Genez et al., 2020; Tiwari and

Garg, 2021).

Mainstream cloud computing systems can be

divided into three types based on provisioning

strategies and architectural patterns: Infrastructure

clouds (IaaS), Platform clouds (PaaS), and software

clouds (SaaS). The IaaS concept allocates resources to

Virtual Machines (VMs) that are built-in data centers

or server nodes (Pan et al., 2020; Osypanka and

Nawrocki, 2020; Anshu et al., 2020).

Overprovisioning can be avoided by optimizing VM
placement based on the VMs’ resource demands rather

than their requests. Resource over commitment

(Dabbagh et al., 2015) is a technique that allows multiple

VMs to be placed (or consolidated) on the same PM by

sharing hardware resources beyond their actual capacity.

Despite these advantages, data center owners are wary of

consolidating their facilities. One method involves

allocating VMs based on their resource needs (i.e., CPU,

memory, and disc) so that the total demand is less than the

PMs' resource capacity. However, because IaaS clients

tend to overestimate their VM resource requests to
guarantee that their application requirements are met at all

times, this suffers from over-provisioning. As a result, the

consolidated data center has a poor utilization rate and

PMs are underutilized. Unfortunately, overcommitting

can harm application performance by clogging up limited

PM resources and resulting in large Quality of Service

(QoS) violations and penalties (Torre et al., 2020). When

anomalies in tasks are discovered, the anomalous tasks are
removed from workflows and the remaining workflows

are scheduled to IaaS Clouds using a modified version of

the PCP algorithm. The following are our major

contributions to this project:

 All the submitted workflows pass through a pre-

processing step which detects the anomalies in the

workflows, if any, using the following steps

 Uses a modified matrix profile to operate on data in

real-time to detect the anomalies

 Uses an adaptive training method to reduce the false
alarm rates due to the presence of the same type of

anomalies that occurred

 The workflows after disqualifying the anomalous

tasks are scheduled to IaaS clouds using a modified

PCP algorithm

 The results are compared with existing IC-PCP

algorithm and IC-LOSS algorithms that schedule the

workflows without disqualifying the anomalous tasks

in the workflows

Related Work

Anomaly Detection in Scientific Workflows

Rodriguez et al. (2018) describe a framework for

detecting anomalies in Scientific Workflows that employs

Hierarchical Temporal Memory (HTM), an unsupervised
model that learns incrementally, to detect anomalies in

the flow of resource consumption time-series data.

)Somani et al., 2017) and (Rodriguez and Buyya, 2018)

propose a taxonomy of several Distributed Denial-of-

Service (DDoS) assaults for multi-tenant, Cloud-based

infrastructures, which differ from traditional fixed on-

premise infrastructures. Rather than a single target server,

numerous stakeholders are involved in DDoS attacks against

Cloud Environments. DDoS attacks on Cloud Environment

have an impact on many parameters other than those planned

by the attackers. DDoS assaults also have an impact on other

aspects such as the economy, business, and overall energy
use. The report outlines measures to reduce the effects of the

aforementioned variables.

Chen et al. (2018) proposed a defense-in-depth

protection framework for tenant VMs to meet the VM

security requirements concerning the access control of

communications, anomaly detection in networks,

monitoring of memory, as well as antivirus in files in an

IaaS platform, which used three layers to meet the

mentioned security concerns of customer trade from

exterior to the interior of VM. A tenant territory model

was conceptualized and implemented at the initial layer,

restoring the ability to manage the communication

Anver Shahabdeen Rahumath et al. / Journal of Computer Science 2022, 18 (6): 555.566

DOI: 10.3844/jcssp.2022.555.566

557

approach for VM service and maintaining security

confinement of distinct tenant trade networks using

Software Defined Networking (SDN). Alguliyev et al.

(2019) provide a semi-supervised classification strategy

for identifying anomalies in cloud infrastructure

performance metrics based on a combination of

classifiers. The suggested approach for generating

ensemble Naive Bayes uses the SMO, J48, IBK,

multilayer perceptron as well as PART algorithms. Using

public data from Yahoo and Google, the MATLAB,

Weka, Python 2.7, and SDK Shell programs were utilized

to discover odd behavior on performance indicators. As a

result of this research, a conclusion was reached that the

detection accuracy of the model is 90%.

Scheduling in Cloud

The term Scheduling refers to the method of binding a

task or a series of tasks to a collection of cloud virtual

machines to meet the requirements of the users. The two

terminologies related to cloud computation are task

scheduling and workflow scheduling and the only

difference between them is the range of data involved in

the computation. A task is a single job that includes

customer applications. A workflow, on the other hand,

denotes large business or scientific data patterns, which

consists of the number of interrelated tasks, usually

represented as a Directed Acyclic Graph (DAG). A

cybershake workflow Fig. 1 (WG) is an example of

workflow DAG, which is used by the Southern Calfornia

Earthquake Center to characterize earthquake hazards in

a region, which consists of many tasks categorized into

five broad categories. Scheduling in the cloud can

improve the utilization of bought cloud resources,

resulting in a better price-performance ratio. The majority

of cloud scheduling concerns Infrastructure as a Service

(IaaS) clouds.

The Scheduling Algorithm is one of the most

important factors to consider when scheduling apps in a

cloud environment (Varshney and Simmhan, 2020). The

mapping strategy and type of techniques utilized are used

to categorize the scheduling algorithms. Heuristics and
meta-heuristics techniques are the general techniques

used here. Greedy, brute-force, dynamic programming,

and divide and conquer are examples of heuristics

strategies. Meta-heuristics are high-level generic

processes for generating heuristics to tackle a specific

problem. Genetic algorithms, ant colony optimization,

particle swarm optimization, and other meta-heuristic

approaches are examples of meta-heuristic techniques.

When the mapping between the tasks and the resources

is generated is determined by the mapping approach.

Static and dynamic mapping are the two different
mapping procedures employed.

Fig. 1: A sample cyber shake workflow

Anver Shahabdeen Rahumath et al. / Journal of Computer Science 2022, 18 (6): 555.566

DOI: 10.3844/jcssp.2022.555.566

558

Fig. 2: Proposed system architecture

Static Scheduling

Santra and Mali (2015) introduced a circular approach

to the Round Robin concept, intending to clarify the load

balancing scenario of a cloud server during execution. It

aids in the creation of an effective communication

architecture between broker and Virtual Machine (VM) to

optimize time and reduce costs by providing an effective

and quick execution environment for tasks provided by

the user. They use cloud sim 3.0 and VM scheduling

(Space and Time sharing) policies to implement it. Round

Robin and FCFS scheduling policies are being

investigated for Virtual Machine and Cloudlet scheduling.

Joshi and Kumari (2016) suggested cloud computing as a

type of networked computing that improves its efficiency,

accessibility, and utility. From conception to

implementation, from consumption to maintenance, cloud

implementation is divided into several phases. The

efficient usage of cloud computing is dependent on

several factors, including security, speed, and privacy. By

altering the basic load balancing algorithms, they were

able to make better use of cloud resources and boost

access speed. The allocation of virtual computers to user

bases is also improved and cloud bus’ cloud sim toolset is

used for verification.

Alam et al. (2016) predicted that the number of

internet users would continue to rise and that

Cluster-Based Web Servers (CBWS) would see a

significant increase in online traffic. Because of its

simplicity, the Load-Balancing method based on the

round-robin Algorithm (RLBA) is most extensively

utilized for dispersing loads among web servers. RLBA

load distribution, on the other hand, is inefficient in the

case of non-uniform web traffic. The proposed unique

ways to optimize the RLBA using the essential procedures

in this research. They suggest two types of RLBA:

Adaptive RLBA (ARLBA) and predictive RLBA

(PRLBA). They use simulation data to verify the

effectiveness of algorithms. The performance measuring

parameters are server load correlation and load variance.

In every scenario, ARLBA and PRLBA exceed RLBA. In

the case of ARLBA, it outperforms Modified Round

Robin (MRR), while in the case of PRLBA, it

outperforms MRR.

Dynamic Scheduling

Banyal and Ojasvee (2016) presented a cloud
computing system that uses resource management to
deliver an elastic, scalable resource-sharing service. In
the cloud computing context, resource automation and
high-performance management are built on the
foundation of resource monitoring as well as
prediction. The paper labels the problem of resource
watching as well as a prediction in a cloud-computing
environment, outlines and executes a flexible resource
watching structure in cloud computing, and also
proposes one resource forecasting structure contingent
on Vector-Auto-Regression (VAR) by the
interrelationship among various resources.

Anver Shahabdeen Rahumath et al. / Journal of Computer Science 2022, 18 (6): 555.566

DOI: 10.3844/jcssp.2022.555.566

559

Table 1: Scheduling algorithms using VM allocation and parameter-based evaluation

 VM allocation

Reference Scheduling algorithm static/dynamic Parameter used

Santra and Mali (2015) Round-robin Static Running time as well as resources scheduling

Joshi and Kumari (2016) Modified RR Static Resource allocation and utilization

Alam et al. (2016) Adaptive and predictive round-robin Static Performance optimization

Banyal and Ojasvee (2016) Resource prediction mechanism using VAR Dynamic Resource monitoring and prediction

Mehta et al. (2017) Resources monitored using HMM Dynamic Execution time height

Experimental evaluations verify the suggestion that
resource monitoring structure successfully detects

resource utilization in a cloud-computing situation and

that the forecasting method dependent on vector-auto-

regression is more effective at predicting resource usage

than alternative prediction mechanisms.

Mehta et al. (2017) propose cloud computing as a

concept that utilizes resource management to deliver

elastic, scalable, and resource-sharing services. Resource

watching and forecasting are the keys to attaining

resource utilization with high-performance management

in cloud computing. One of the most difficult aspects of

cloud computing is resource scheduling; the scheduling
strategy and algorithm have a direct impact on the cloud

system's performance. Due to resource limits, cloud

computing has recently introduced high-performance

computing capacity, urging cloud providers to fully utilize

resources. The purpose of this study is to employ a Hidden

Markov Model to monitor the cloud resources available

(HMM). The suggested model is utilized to track

resource availability, after which the resource is

classed as light, average, or heavily loaded, and the best

scheduling strategy is chosen based on demand. The

algorithm's efficiency has been tested using the
workload scenarios in Table 1.

Proposed Workflow Manager and Time Series Logs

The Workflow Manager receives the input workflows
and is in charge of recording information for each action
and providing tools for reporting on each operation. To
acquire time series logs, each activity in the workflows is
evaluated and these log entries have been resolved in the
direction of an instantaneous time sequence consisting of
three features (three dimensions). The difference in time
between adjacent log entries, which is determined with
millisecond accuracy is the first dimension. The next
dimension compares the differences in the tasks/processes
completed by linking two logs. Since each task in the
Scientific process is to be performed in a separate physical
location, the difference in IP address between two
consecutive log entries would be represented by the last
dimension. Sub-sequences are designed and submitted to
the anomaly detection module as log entries are resolved,
which detects anomalies using a modified matrix profile.

System Model

An IaaS cloud model, an application server, and
Customer applications for scheduling make up the proposed

scheduling system concept Fig. 2. A client application is
modeled as a directed acyclic graph G = (A, E), where A is
the collection of n activities (tasks) t1, t2 ,..., tn, and E is the
collection of dependencies. Every dependency ei,j = (ti, tj)
represents a precedence constraint, indicating that activity ti
must complete execution before activity tj can begin. A task
with no parent is called the entrance task, whereas a task
without children is called the exit task of the given task graph.
We’ve added fake activities entry as well as texit as the first and
last tasks in the given workflow, respectively because the
suggested algorithm needs a unique arrival and leaving task.
The computation times of newly added tasks are considered
to be zero with zero weight dependency added to or from
existing arrival and leaving tasks.

The proposed concept is built on pay for a usage

pricing model, analogous to what public Clouds offer.

Cloud users are debited for the total amount of periods in

which they have consumed the resources for complete

intervals as well as for partial intervals. The cost of

computing service si for a single time interval is assumed

to be ci in this study. ET (ti,sj) is also the time it takes to

complete task ti on computational service sj. All of the

services (computational and storage) are meant to be in
the same physical location, with nearly similar average

bandwidth among the computational services. TT (eij),

data transfer time for dependency ei,j, is determined solely

by the size of data exchanged between tasks ti and tj and is

unaffected by the services that perform them. When both

tasks ti and tj are running on the same computational

service, TT (eij) is equal to zero. Because the cost of data

transfer in most real clouds is zero, we assume that the

cost of data transfer in our model is similarly zero. In

real clouds, clients are charged for storage services

based on the size of the assigned storage volume and
the quantity of input-output activities to/from the

exterior of the cloud. We don’t include these

parameters in our model because they have no bearing

on our algorithm.

Anomaly Detection

A modified matrix profile model is used in the
anomaly detection phase. The following are the primary
changes made to the Matrix Profile utilized here:

 Instead of computing the Euclidean distance
concerning all the existing sub-sequences and
determining the lowest distance for a sub-sequence, a
semi-supervised model that uses M-m+1

Anver Shahabdeen Rahumath et al. / Journal of Computer Science 2022, 18 (6): 555.566

DOI: 10.3844/jcssp.2022.555.566

560

sub-sequences from the start as references to
comparison with no anomalies

 Rather than computing the absolute Euclidean

distance, calculate the relative distance between

sub-sequences

The relative distance between two univariate sub-

sequences T1, m = [t1, t2, …., tm] and ' ' ' '

1, 1 2, ,....,m mT t t t   is

computed as:

() ()

, ,1

()

,1

[] []

[]

m j j

k m i ml

m j

k ml

T l T l
relative distance rd

T l










 (1)

where, k varies from 1 to M-m+1.
During each pace, the Anomaly-Detection approach

uses a sub-sequence of the input stream and the

uncertainty function provided as input and produces betai,

a comprehensive anomaly score that indicates whether or

not the given sub-sequence is an abnormality. The

comprehensive anomaly score produced by the module is

a numeral value in the range of 0 to 1 and when it is close
to 1, the sub-sequence is considered anomalous. There

will be (M −m+1)d viable combinations because there are

M-m+1 sub-sequences and d dimensions and the

algorithm retains a weight for those combinations using

W stored in a hash table indexed by a key. By considering

the adjacent sub-sequences and removing those tasks in

overlapping anomalous sub-sequences.

Anomaly-score (βi) collects the findings of various

Matrix-Profile models operating on different features of a

specific sub-sequence. The anomaly detection module can

also provide information about the individual aspects that
contribute to the anomaly. Our anomaly detection method

employs a semi-supervised framework in which it

determines the exact execution performance of workflows

over a few workflow rounds and recognizes the cases that

gradually diverge from this as possible abnormalities.

Algorithm 1 describes the anomaly detection algorithm.

Adaptive Training

The system thinks that the anomaly flagged is a true

positive with high certainty if the probabilistic value is

near 1 and the converse is assumed if the probabilistic

value is close to 0. The uncertainty function assumes that

the chances of anomalies arising during the first few runs are

modest and that the scenario evolves as the attacker Adaptive

Training method is described in Algorithm 2. When the

method is run, the weights are updated once the anomaly-

detection method detects an abnormality. Once an

abnormality is identified, the weights are modified

considering the uncertainty function and

anomaly-score βi.

Algorithm1: Anomaly detection

 /* The Anomaly Detection

 algorithm is executed for each

 time step i */

 Input:

 i, the time step

()(1) (2)

, , , ,, ,...,
d

i m i m i m i mT T T T 
 

, the sequence of input time

 m, the length of the sub-sequence

 M, the window size

 T, sample sub-sequence for comparison

 R, H, the records to be updated for adaptive training

 d, the number of dimensions

 , the user-defined threshold

 W, the weights

 Output:

 Anomaly detected, a boolean value

 C, the contribution list

 R, H, updated records for adaptive training

1 min rd = 0; for each dimension i do

2 Compute the relative distance using Eq. 1

3 update min-rd if needed (if the current rd is less than

minrd)

4 Compute key, i and D min[i]

5 save i into the contribution list Ci

6 update R

7 if key  W then

8 update i as i * W[key]

9 update H

10 if i > then

11 Anomaly-Detected = TRUE

12 else
13 Anomaly-Detected = FALSE

14 return [Anomaly-Detected, Ci, R, H]

15

Algorithm 2: Adaptive training

 /*The adaptive training

 algorithm is executed for each
 time step i */
 Input:
 i, m, M, q, d, W, R and H, same as in Algorithm 1
 Pi, the uncertainty value at time step i
 ɑ, the training bias value

 Output:

 W, the weight
 H, Upadated information for adaptive training.
1 for each k, the weight value selected do
2 update keys[k]
3 if W does not contain keys[k] then
4 update W [keys[k]] as 1
5 if k = = m+1 then
6 update i and H

7 return [W, H]

Anver Shahabdeen Rahumath et al. / Journal of Computer Science 2022, 18 (6): 555.566

DOI: 10.3844/jcssp.2022.555.566

561

Broker and Modified PCP Scheduling Algorithm

The broker receives the anomaly information for each

task in the workflow and modifies the workflow DAGs

by removing the anomalous tasks from the workflows,

as well as the dependencies associated with the

anomalous tasks.

The broker is also in charge of adding two zero-

execution-time dummy tasks, tentry and texit, which are

linked to the actual entry and exit tasks with zero weight

dependencies. The Scheduling algorithm receives the

changed workflows from the Broker. In this case, we’re

utilizing a modified version of the original PCP algorithm

(Abrishami et al., 2013), as described in Algorithm 3. The

services covered here are diverse and when launching

a new service, the VM start-up time is taken into

account. The Proposed scheduling module has two

ideas for activity start times: The Earliest Start Time

(EST), which is calculated before the workflow is

scheduled, and the Actual Start Time (AST), which is

derived later the tasks are scheduled.

Algorithm 3: Modified PCP

 /*Modified PCP algorithm is

 executed for the scientific

 workflow. */

Input:

 The modified DAG G = (V, E) from the

BROKER. 1

 D, the deadline for executing the workflow.

 Output:

 Cost of executing the Workflow

1 Compute the execution time of each task in each of

 the available services

2 Compute EST and EFT for all tasks in the DAG

 for the fastest available service

3 Compute LFT for all tasks in the DAG

 for the fastest available service

4 Compute the average Data Transfer time between

 the tasks

5 t = texit

6 while t ≠ tentry do

7 while t has an unassigned parent does

8 find the Partial Critical Path (PCP) of t

 with only unassigned parents

9 set si, j as the cheapest instance j of available

 service si, which is already allocated to the

 workflow, which can finish all the tasks the

 PCP before their LFT

10 if (si, jis null) then

11 launch a fresh instance of the least cost service that

could finish all the tasks in the PCP(t) before their

LFT-boot time (service)

12 for (each task ti in PCP (t)) do

13 Schedule ti on si, j

14 set SS (ti) and AST (ti)

15 set assigned (ti) = true

Earliest-Start-Time (EST)

EST (ti), the earliest start-time of an unscheduled task

ti is defined as:

  0 entryEST t  (2)

     '

max

,() (
p i

i p p p it t s parents
EST t EST t MET t TT e


   
 

 (3)

where, MET(ti) is the minimum time to execute a task ti,

which is described as the time to execute task ti on a
service sj ε S, and ET(ti,sj), which is the minimum among

the available services. Notice that MET(entry), as well as

MET(texit), are set to zero. TT(ep, i) is the time for data

transfer over the dependency epi.

Earliest-Finish-Time (EFT)

For an unscheduled tasks ti, EFT (ti), is defined as:

     i i iEFT t EST t MET t  (4)

Latest Finish-Time (LFT)

Latest Finish-Time of an unscheduled task ti, LFT(ti)

is defined as the latest time where ti can finish its

execution so that the entire workflow can complete its

execution before the user-specified deadline, D. It is

calculated as:

 LFT texit D (5)

' ,() () () ()
i

min

i C C i ctc t schildren
LFT t LFT t MET t TT e


     (6)

Selected Service (SS): The Selected Service of

every scheduled task ti, SS(ti) = sj,k, is the service

chosen for executing ti during scheduling, and sj,k is the

kth instance of service sj .

Actual Start Time (AST)

The actual start time of any task ti, AST (ti), is termed

as the time in which the task ti starts on the selected service

and this is calculated only after scheduling.

Assigned-Node

An assigned node is the node that is already scheduled

to service and indicates that the selected service of task

is identified.

Anver Shahabdeen Rahumath et al. / Journal of Computer Science 2022, 18 (6): 555.566

DOI: 10.3844/jcssp.2022.555.566

562

Critical Parent

ti’s parent, which is not yet assigned to any resource

and has the last data reaching time at ti. i.e., it’s ti‘s parent

tp whose EFT(tp)+TT(ep,i) is maximum.

Partial Critical-Path (PCP)

For every node ti, (PCP) is the most important concept

in the proposed scheduling algorithm, which is defined as:

 PCP of ti is empty when ti do not possess

unassigned parents

 if ti has an unassigned parent tp, then PCP(ti) includes

tp and PCP(tp)

The Partial Critical Path (PCP) of a task t is computed

as–consider all the unassigned parents of t and out these

unassigned parents, the parent tp whose EST + MET + TT

is maximum belongs to PCP(t) and continue adding

parent tasks of tp to PCP(t) until there are no unassigned

parents left, or we reach tentry.

Once the PCP of a task is obtained, the scheduler

checks, whether, there is an existing instance, which is

cheaper and which can finish all the tasks in the PCP

before its LFT. It is not available, it launches a new

service instance and takes care of the boot-up time of

the new service and schedules all the tasks in the PCP

of t to the same service, and updates the Selected

Service (SS) and Actual Start Time (AST) of every task

ti in PCP (t).

Performance Analysis

The proposed scheduling algorithm is evaluated on

two Scientific Workflow–Montage and Cyber shake.

Developed a workflow generator, which creates

workflows of an arbitrary size similar to the real-world

Scientific Workflow. These workflows are available in

DAX (Directed acyclic graph in XML) format on their

website (PWMS), from which we choose three sizes for

our experiments–small, large, and extra-large Table 2.

The cloud computing Environment is simulated using

CloudSim (Calheiros et al., 2011).

The input workflows are first analyzed for anomalies.

Experimental results show that an average of 15% of tasks

in the workflows are anomalous tasks. The anomalous

tasks are eliminated from the workflows and the resulted

workflows are scheduled using a modified PCP algorithm.

Our proposed algorithm is compared with the IC-LOSS

(LOSS algorithm for IaaS clouds) algorithm, a modified

version of the original LOSS algorithm used with Grids

(Sakellariou et al., 2007) and ICPCP algorithm

(Abrishami et al., 2013). For our experiments, we assume an

IaaS Cloud environment with 7 different computational

services (same as in Amazon EC 2) with varying prices and

performances Table 3.
The bandwidth between computational services is set to

20 Mbps on average (same as in EC 2). Amazon charges
users for the large time interval of an hour, but cloud sigma
prefers a shorter time of 5 min. In our trials, we used two
distinct time intervals of one hour and five min,
respectively. Because we are evaluating a large number of
workflows with various sorts of attributes in our studies,
we have defined a parameter called Normalized cost
(which is comparable to the Normalized Deadline (ND)
used in Anwar and Deng, 2018):

Total Scheduled Cost
Normalized Cost

CheapestCost
 (7)

where, Cheapest Cost is defined as the total cost to execute

the same workflow in the cheapest service available.
To assign a deadline to the input workflows, we are

defining the term Fastest Executing Time (FT), as the
time obtained when each task in the work is allocated
to the fastest service available and considering the data
transmission time as zero, which is a
theoretical measure.

The deadline D is computed as:

. TD F (8)

where, ɑ varies from 1.5 to 5 with a step value of 0.5.

Figure 3 shows the workflow scheduling cost for the

large workflows in IC-PCP, IC-LOSS and M-PCP for the

time interval of 1 hour which are tabulated in Table 4 and

Table 5 and Fig. 4 shows the workflow scheduling cost

for the same workflows for the time interval of 5 min

which are tabulated in Table 6 and 7. It is clear that all the

methods successfully scheduled incoming workflows

over their allotted deadlines, even for tight deadlines

where D = 1.5* FT or D = 2* FT.

Table 2: The applications used and their sizes

Application Small Large Extra large

Cyber shake 30 nodes 100 nodes 1000 nodes
Montage 25 nodes 100 nodes 1000 nodes

Table 3: VM types used

VM Type vCPU Memory Price

a 1. Medium 1 2 GB $ 0.0255 per h
m 6 g. Medium 1 4 GB $ 0.0385 per h
t 3. Small 2 2GB $ 0.0208 per h
t 3. Medium 2 4 GB $ 0.0416 per h
t 3. Large 2 8 GB $ 0.0832 per h
t 3a. Large 4 16 GB $ 0.1504 per h

t 2. 2  Large 8 32 GB $ 0.3712 per h

Anver Shahabdeen Rahumath et al. / Journal of Computer Science 2022, 18 (6): 555.566

DOI: 10.3844/jcssp.2022.555.566

563

Fig. 3: The cost of scheduling workflows with the time interval of 1 h

Fig. 4: The workflow scheduling cost for the time interval of 5 min

Anver Shahabdeen Rahumath et al. / Journal of Computer Science 2022, 18 (6): 555.566

DOI: 10.3844/jcssp.2022.555.566

564

Table 4: Performance of Cyber shake workflow for billing
interval 1 h

α M-PCP IC-PCP IC-LOSS

1.5 119 125 140
2.0 71 75 84
2.5 43 48 62
3.0 19 24 36
3.5 19 24 36
4.0 16 18 36
4.5 16 18 36
5.0 15 16 21

Table 5: Performance of montage workflow for billing

interval 1 h

α M-PCP IC-PCP IC-LOSS

1.5 278 280 288
2.0 242 246 248
2.5 148 154 180
3.0 37 40 86
3.5 36 40 74
4.0 36 40 60
4.5 36 40 50
5.0 36 40 49

Table 6: Performance of Cyber shake Workflow for billing

interval 5 min

α M-PCP IC-PCP IC-LOSS

1.5 22.00 22.0 23.0
2.0 12.00 12.5 16.0
2.5 7.50 8.0 9.8

3.0 4.25 4.5 5.0
3.5 4.00 4.4 5.0
4.0 2.30 2.8 4.6
4.5 2.20 2.8 3.2
5.0 2.00 2.1 2.1

Table 7: Performance of Montage Workflow for billing

interval 5 min

α M-PCP IC-PCP IC-LOSS

1.5 49.5 49 51
2.0 28.0 28 41
2.5 6.9 7 22
3.0 6.8 7 17
3.5 6.7 7 15

4.0 6.7 7 12
4.5 6.0 6 10
5.0 6.0 6 10

All the results show that M-PCP beats IC-PCP as

well as IC-LOSS in nearly all situations, even if the

boot-up time for the newly launched instances is

considered. From the results, we can see that the

Normalized Cost is very high when the Deadline factor

α is 1.5, the reason for the high values is that, as the

deadline becomes very tight, it is required to allocate a

new instance to each new task to finish the workflow

before its specified deadline and many of the tasks are

using a small fraction of the allocated instances. The

results in Fig. 3 and 4 show that we can produce cost

savings in scheduling when the deadline factor α ≥2.5.

When the time interval is short (5 min), we get high-

cost savings on all deadlines, and M-PCP outperforms.

Conclusion

From experiments, it is seen that some of the tasks in

the workflows are anomalous tasks. If the anomalous

tasks are also considered for scheduling in a cloud

environment, it will increase the cost of cloud usage. In

this study, we are considering scheduling of workflows as

a two-step process-first step is a preprocessing step, which

detects anomalous tasks in the workflows and the

experiments show that an average of 15% of the tasks are

anomalous tasks, and resulting workflows without

anomalous tasks are scheduled in heterogeneous cloud

environment using a modified PCP algorithm. Here the

modification used is, that the cloud environment is

more close to the real cloud environment, where the

cloud boot-up time is also considered. The experiments

are conducted on two scientific workflows-Cyber

shake and Montage. The proposed algorithm is

compared with IC-PCP and IC-LOSS algorithms for

different deadlines and analyzed the cost of cloud usage

and the results show that M-PCP outperforms IC-PCP

and IC-LOSS algorithms. In the future, we will extend

our work to identify the nature of anomalies in the

workflow tasks, if the task is anomalous.

Acknowledgment

The research was done as part of my (first author) Ph.

D. work, with second and third authors as my Internal

Supervisors and fourth author as my external supervisor.

All the experiments are conducted in Karpagam Academy

of Higher Education, Coimbatore, Tamilnadu, India

and this research received no specific grant from any

funding agency in the public, commercial, or not-for-

profit sectors.

Author’s Contributions

Anver Shahabdeen Rahumath: Investigation,

problem formulation, methodology, formal analysis,

software implementation, data analysis, original draft

paper preparation.

Santhosh Rajendran, Natarajan

Mohanasundaram and Abdul Rahiman Malangai:

Supervision, design research plan, research

administration, problem formulation, methodology,

resources, writing review, draft paper

correction and editing.

Anver Shahabdeen Rahumath et al. / Journal of Computer Science 2022, 18 (6): 555.566

DOI: 10.3844/jcssp.2022.555.566

565

Ethics

This article is an original research work. The

corresponding author confirms that all of the other authors

have read and approved the manuscript and no ethical

issues involved.

References

Abrishami, S., Naghibzadeh, M., & Epema, D. H. (2013).

Deadline-constrained workflow scheduling

algorithms for infrastructure as a service cloud.

Future generation computer systems, 29(1), 158-169.

doi.org/10.1016/j.future.2012.05.004

Alam, F., Thayananthan, V., & Katib, I. (2016, August).

Analysis of round-robin load-balancing algorithm

with adaptive and predictive approaches. In 2016

UKACC 11th international conference on control

(pp. 1-7). IEEE.

 doi.org/10.1109/CONTROL.2016.7737592

Alguliyev, R. M., Aliguliyev, R. M., & Abdullayeva, F. J.

(2019). The hybridization of classifiers for anomaly

detection in big data. International Journal of Big

Data Intelligence, 6(1), 11-19.

 https://www.inderscienceonline.com/doi/abs/10.150

4/IJBDI.2019.097396

Anshu, B., Kaveri, P. R., Singh, H., & Chavan, V., (2020).

Cloud resource management: Comparative analysis

and research issues. International Journal of

Scientific and Technology Research, 9(6), 162- 169.

 https://www.researchgate.net/publication/34270169

8_Cloud_Resource_Management_Comparative_An

alysis_and_Research_Issues

Anwar, N., & Deng, H. (2018). Elastic scheduling of
scientific workflows under deadline constraints in

cloud computing environments. Future Internet,

10(1), 5. doi.org/10.3390/fi10010005

Banyal, R. K., & Ojasvee, K. (2016). Anal. and improve.

Of load balancing in cloud computing. (ICTBIG) Int.

Conf. on ICT in business industry government, pp.

1-5. doi.org/10.1109/ICTBIG.2016.7892711

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose,

C. A., & Buyya, R. (2011). CloudSim: A toolkit for

modeling and simulation of cloud computing

environments and evaluation of resource

provisioning algorithms. Software: Practice and
experience, 41(1), 23-50. doi.org/10.1002/spe.995

Dabbagh, M., Hamdaoui, B., Guizani, M., & Rayes, A.
(2015). Toward energy-efficient cloud computing:
Prediction, consolidation and overcommitment.
IEEE Network, 29(2), 56-61.

 doi.org/10.1109/MNET.2015.7064904
Chen, D., Chen, L., Shao, G., Li, H., Yin, X., & Tao, S.

(2018). Research of security as a service for VMS in
the IaaS platform. IEEE Access,
629158-29172.

Rynge, M., Poehlman, W., Feltus, F., Vahi, K., Deelman,
E., Mandal, A., Baldin, I., Bhide, O., Heiland, R.,
Welch, V. & Hill, R., (2019). Integrity protection for
scientific workflow data: Motivation and initial
experiences. pages 1-8, 07 2019. ISBN 978-1-4503-
7227-5.

 doi.org/10.1145/3332186. 3332222

Genez, T. A., Bittencourt, L. F., & Madeira, E. R. (2020).
Time-discretization for speeding-up scheduling of
deadline-constrained workflows in clouds. Future
Generation Computer Systems, 107, 1116-1129.
doi.org/10.1016/j.future.2017.07.061

Hu, Z., Gnatyuk, S., Koval, O., Gnatyuk, V., &

Bondarovets, S. (2017). An anomaly detection

system in the secure cloud computing environment.

International Journal of Computer Network and

Information Security, 9(4), 10.
 doi.org/10.5815/ijcnis.2017.04.02
Snir, M., Wisniewski, R., Abraham, J., Adve, S., Bagchi,

S., Balaji, P., Belak, J., Bose, P., Cappello, F.,
Carlson, B., Chien, A., Coteus, P., DeBardeleben, N.,
Diniz, P., Engelmann, C., Erez, M., Fazzari, S., Geist,
A., Gupta, R., Johnson, F., Krishnamoorthy, S.,
Leyffer, S., Liberty, D., Mitra, S., Munson, T.,
Schreiber, R., Stearley, J., & Hensbergen, E. V.
(2014). Addressing failures in exascale computing.
International Journal of High Performance
Computing Applications. ISSN 1094-3420.
doi.org/10.1177/1094342014522573.

Torre, E., Durillo, J. J., Maio, V. D., Agrawal, P.,

Benedict, S., Saurabh, N., & Prodan, R. (2020). A

dynamic evolutionary multiobjective virtual machine

placement heuristic for cloud data centers.

Information and Software Technology, 128, 2020.
doi.org/10.1016/j.infsof.2020.106390

Körber, N., Geldreich, K., Stahlbauer, A., & Fraser, G.

(2021, May). Finding anomalies in scratch

assignments. In 2021 IEEE/ACM 43rd International

Conference on Software Engineering: Software

Engineering Education and Training (ICSE-SEET)

(pp. 171-182). IEEE.

 doi.org/10.1109/ICSE-SEET52601.2021.00027

Mehraj, S., & Banday, M. T. (2021). A flexible fine-

grained dynamic access control approach for the

cloud computing environment. Cluster computing,

24(2), 1413-1434.

 doi.org/10.1007/978-3-642-03829-7_5

Mehta, H., Prasad, V. K., & Bhavsar, M. (2017). Efficient

resource scheduling in cloud computing.

International Journal of Advanced Research in

Computer Science, 8(3), 809-815.

Osypanka, P., & Nawrocki, P. (2020). Resource usage

cost optimization in cloud computing using machine

learning. IEEE transactions on cloud computing.

doi.org/10.1109/TCC.2020.3015769

Anver Shahabdeen Rahumath et al. / Journal of Computer Science 2022, 18 (6): 555.566

DOI: 10.3844/jcssp.2022.555.566

566

Pan, Y., Sun, X., Xia, Y., Zheng, W., & Luo, X. (2020,
November). A Predictive-Trend-Aware and Critical-
Path-Estimation-Based Method for Workflow
Scheduling Upon Cloud Services. In 2020 IEEE
International Conference on Services Computing
(SCC) (pp. 162-169). IEEE.

 doi.org/10.1109/SCC49832.2020.00029
Rodriguez, M. A., & Buyya, R. (2018). Scheduling

dynamic workloads in a multi-tenant scientific
workflow as a service platform. Future Generation
Computer Systems, 79, 739-750.

 doi.org/10.1016/j.future.2017.05.009
Rodriguez, M. A., Kotagiri, R., & Buyya, R. (2018).

Detecting performance anomalies in scientific
workflows using hierarchical temporal memory.
Future Generation Computer Systems, 88, 624-635.
doi.org/10.1016/j.future.2018.05.014

Gaikwad, P. Mandal, A., Juve, G., Krol, D., &
Deelman. E. (2016) Anomaly detection for
scientific workflow applications on networked
clouds. Inter. Conf. on High-Performance
Computing.

 doi.org/10.1109/HPCSim.2016.7568396
Sakellariou, R., Zhao, H., Tsiakkouri, E., & Dikaiakos,

M. D. (2007). Scheduling workflows with budget
constraints. In Integrated research in GRID
computing (pp. 189-202). Springer, Boston, MA.
doi.org/10.1007/978-0-387-47658-2_14

Santra, S., & Mali, K. (2015, September). A new approach
to survey on load balancing in VM in cloud
computing: Using cloud sim. In 2015 International
Conference on Computer, Communication and
Control (IC4) (pp. 1-5). IEEE.

 doi.org/10.1109/IC4.2015.7375671

Somani, G., Gaur, M. S., Sanghi, D., Conti, M., & Buyya, R.

(2017). DDoS attacks in cloud computing: Issues,

taxonomy and future directions. Computer

Communications, 107, 30-48.

 doi.org/10.1016/j.comcom.2017.03.010

Sridharan, R., & Domnic, S. (2021). Network policy-

aware placement of tasks for elastic applications in

IaaS-cloud environment. Cluster Computing, 24(2),

1381-1396. doi.org/10.1007/s10586-020-03194-z

Tiwari, A., & Garg, R. (2021). ACCOS: A Hybrid

Anomaly-Aware cloud computing formulation-based

ontology services in clouds. http://ceur-ws.org/Vol-

2786/Paper42.pdf

Joshi, S., & Kumari, U. (2016, December). Load

balancing in cloud computing: Challenges and issues.

In 2016 2nd International Conference on

Contemporary Computing and Informatics (IC3I)

(pp. 120-125). IEEE.

 doi.org/10.1109/IC3I.2016.7917945

van Zelst, S. J., van Dongen, B. F., van der Aalst,

W. M., & Verbeek, H. M. W. (2018). Discovering

workflow nets using integer linear programming.

Computing, 100(5), 529-556.

 doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-

dc35f063a460

Varshney, P., & Simmhan, Y. (2020). Characterizing

application scheduling on edge, fog and cloud

computing resources. Software: Practice and

Experience, 50(5), 558-595.

 doi.org/10.1002/spe.2699

