

 © 2022 Mohammad Habibullah Rakib, Showkot Hossain, Mosarrat Jahan and Upama Kabir. This open access article is

distributed under a Creative Commons Attribution-NoDerivatives (CC BY-ND) 4.0 license.

 Journal of Computer Science

Original Research Paper

A Blockchain-Enabled Scalable Network Log

Management System

Mohammad Habibullah Rakib, Showkot Hossain, Mosarrat Jahan and Upama Kabir

Department of Computer Science and Engineering, University of Dhaka, Bangladesh

Article history

Received: 15-02-2022

Revised: 27-03-2022

Accepted: 06-04-2022

Corresponding Author:

Mosarrat Jahan

Department of Computer

Science and Engineering,

University of Dhaka,

Bangladesh
Email: mosarratjahan@cse.du.ac.bd

Abstract: Log data is an essential tool to identify the footprint of

unauthorized activities executed in a network system. Hence, a compact storage

mechanism is required for the massive volume of log data to protect them from

malicious tampering attacks. In this regard, Blockchain (BC) has been used to

design tamper-proof storage of log records. However, the existing BC-based

solutions cannot efficiently handle continuously growing massive log data,

creating tremendous storage overhead on the participating BC nodes. Although

some works address the storage scalability issue through separate off-chain

storage, these works cannot support log data confidentiality and essential query

mechanisms to manage log data are missing. Moreover, due to inadequate

analysis of the real-time implementation, the performance gain obtained by these

schemes is not clearly understood. To handle these deficiencies, we propose a

BC-based network log data storage and management scheme that uses an

InterPlanetary File System (IPFS) to outsource most of the log data to external

off-chain storage. In addition, the proposed scheme performs query and audit

operations to manage plaintext and encrypted log records efficiently. Besides, we

present a theoretical analysis to show our scheme’s scalability in storage gain.

Extensive experiments on the prototype implementation of the proposed system

show that storage gain increases exponentially with increasing log records

per transaction. Moreover, our scheme attains nearly 93% storage

reduction in supporting per day storage demand of log records. The

experimental results also demonstrate that the proposed system can be

realized with a low computational overhead.

Keywords: Blockchain, Distributed Computing, Off-Chaining, Log

Management System

Introduction

Nowadays, the cyber-physical system has evolved into a

reality due to the onset of several leading-edge technologies

such as the cloud, Internet of Things (IoT), Software-Defined

Network (SDN), 5G cellular technology and blockchain. It

eases our life by automating almost every operation of our

day-to-day life. Therefore, the accurate operation of a cyber-

physical system is essential to ensure the safety and security

of human life. Due to continuous internet connectivity,

cyber-physical systems constantly face various security

threats. Often patches are not readily available as newer

attacks are emerging every day (Poolsappasit et al., 2011).

Besides, incorporating patches into the running system is

difficult (Poolsappasit et al., 2011). In this respect, log data

analysis performs a vital role in guaranteeing the security

of cyber-physical systems.

Different components of a cyber-physical system such

as servers, firewalls, routers, switches and individual PCs

create log records when executing various operations.

These log records are a valuable source of information for

tracking the activities conducted in a system (Accorsi,

2009). Hence, they can be used to audit different events in

the network and detect and troubleshoot different

improper activities that hinder the network’s

functionalities (Kent and Souppaya, 2006). Consequently,

log data is often a target of various cyber attacks that

tamper log files to hide the malicious activities conducted

within a system. Besides, a lack of stable storage and

management platform for massive log data can cause

deficiencies in proper network logging and auditing,

allowing attackers to hide their footprint and an attack

may go unnoticed. Hence, designing a compact

mechanism to store the enormous log data is essential to

assure the security of the computing system.

Mohammad Habibullah Rakib et al. / Journal of Computer Science 2022, 18 (6): 496.508

DOI: 10.3844/jcssp.2022.496.508

497

Conventional log management systems utilize the

memory capability of the most up-to-date storage

technologies and take the support of cloud servers for

storing and replicating the massive volume of log data.

However, classical systems are a victim of a single point

of failure (Ray et al., 2013), (Söderström and

Moradian, 2013). Besides, ensuring consistency among

the multiple copies of data stored in different storages

is a problematic issue (Söderström and Moradian,

2013), (Ray et al., 2013). Recently Blockchain has

received wide acceptance for data decentralization and

tamper-proof storage of data (Zheng et al., 2018).

However, storing a huge volume of system log records

directly in the BC creates several performance issues.

For example, each node of a BC network stores the

complete copy of log records maintained by the BC,

imposing significant storage and bandwidth overhead

(Bhutta et al., 2021), (Zheng et al., 2018). Over time

the size of BC increases, and the performance degrades

significantly. Besides, a new node in the BC needs a

significant amount of time to synchronize with the

chain state (Miyachi and Mackey, 2021). In literature,

the memory scalability issue of BC is handled using

off-chain mechanisms (Wang et al., 2021), (Miyachi

and Mackey, 2021), where most of the data is outsourced

to off-chain storage while the digital fingerprint of data is

maintained in the BC (on-chain).

Although few works (Pourmajidi and Miranskyy,

2018), (Kumar et al., 2018) presented a framework to

store log data using BC, they did not address the storage

scalability issue created due to storing huge volumes of

log records. Besides, these works lack real-time

implementation and hence it is not possible to get an

indication about the performance of these systems.

Moreover, they do not support query mechanisms, an

indispensable tool for network log management and do

not ensure log data confidentiality. More recently,

Rakib et al. (2020) partly addressed these shortcomings

and proposed efficient BC-based log storage and

management scheme with data privacy, query and audit

operations. In addition, this study presents a real-time

performance analysis of the proposed BC-enabled log

management scheme. Nevertheless, this scheme also

falls short of managing the massive volume of log data

due to the lack of an off-chain mechanism. Some recent

works (Huang, 2019), (Rane et al., 2021),

(Marangappanavar and Kiran, 2020) address the

memory scalability issues using IPFS network (Benet,

2014) besides the BC network, where IPFS network

plays the role of off-chain storage. However, these

works cannot show the performance gain achieved

through the use of an off-chain (IPFS) mechanism.

In this study, we supplement the work of (Rakib et al.,

2020) to devise well-structured and practical log storage

and management scheme that can efficiently handle the

storage scalability issue and execute query and audit

operations on both plaintext and encrypted data. Besides,

we implement the proposed system and conduct extensive

analysis to evaluate its performance. Specifically, we

make the following contributions:

 A reliable storage scheme for network log data that

addresses the memory scalability issue by

incorporating IPFS network (off-chain) with the

BC network

 A practical network log management scheme,

supporting query and data auditing operations on the

plaintext and encrypted log records

 A theoretical analysis of the storage gain of the

proposed scheme over a non-off-chain BC-based log

storage scheme

 A prototype implementation and analysis

demonstrate that the proposed scheme can be

accomplished with low processing and storage

overhead. More specifically, our scheme exhibits

exponential storage gain with more log records per

transaction. Besides, it cuts down the per day log

storage requirement by almost 93%.

Related Work

Log records are crucial for investigating malicious

activities, detecting policy violations and analyzing

system performance issues (Accorsi, 2009). Therefore,

the design of a reliable storage and management scheme

for log data is explored extensively in the literature. Olaf

and Esmiralda (Söderström and Moradian, 2013)

proposed a system where log data are collected through

installed agents and stored in a centralized server.

However, this scheme does not support a query

mechanism and is subject to a single point of failure due

to a centralized server. Besides, (Ray et al., 2013)

explored the challenges of a cloud-based log management

service and proposed a mechanism for storing log records

in a cloud environment. However, this scheme does not

guarantee data consistency and does not prevent illegal

access as the cloud server is semi-trusted.

Recently BC has been used to store unblemished log

data. For example, (Pourmajidi and Miranskyy, 2018)

proposed Log chain, uncontaminated log storage for cloud

service providers built upon BC. This scheme divides data

into various segments and associates each piece with a

block in a higher-level BC known as super chain. The

authors also developed a preliminary prototype of their

scheme, which is immature for production

implementation as the APIs are not implemented.

Mohammad Habibullah Rakib et al. / Journal of Computer Science 2022, 18 (6): 496.508

DOI: 10.3844/jcssp.2022.496.508

498

Besides, Louis and Erez (Shekhtman and Waisbard, 2019)

proposed Engrave Chain to secure log data using the

natural properties of BC. The authors implemented a

proof-of-concept using Hyperledger Fabric. However,

this work does not support query operations and does

not provide a performance analysis of the proposed

scheme. In addition, (Liang et al., 2017) presented Prov

Chain, a BC-based framework for accumulating and

confirming cloud data provenance by mapping

provenance data to BC transactions. Alongside, (Park et al.,

2017) proposed a mechanism for data logging while

ensuring the integrity of data through the use of BC.

Although the authors presented a theoretical analysis of

performance evaluation, the data collection interval is

not practical and privacy of log data is not ensured.

Moreover, (Ali et al., 2021) proposed a BC-enabled log

management framework for a cloud computing

environment that manages immutable log records of the

fog networks. The gateway responsible for each fog

network stores the filtered log records in the BC

network. However, the compromise of the gateway

node can damage the log data of an entire fog network.

Moreover, this scheme is unsuitable for handling the

enormous volume of log data generated by the edge

devices due to the lack of off-chain mechanisms. Recently

(Rakib et al., 2020) proposed a network log management

scheme that supports data privacy, query and audit

operations on the plaintext and encrypted data stored in

the BC. However, this scheme suffers for storing a vast

volume of data as it does not consider off-chaining log

records. In our work, we enhance the work of (Rakib et al.,

2020) to remove the shortcoming of storage issues by

incorporating an off-chain mechanism.

The requirement of storing a large volume of data in

BC creates memory scalability issues, hampering the

extensive deployment of BC. To overcome this

shortcoming, Jabarulla and Lee (2021) proposed a

proof-of-concept design for a distributed patient-

centric medical record management system that stores

and shares medical images using BC and IPFS

networks. This scheme uses the IPFS network as off-

chain storage to outsource most BC data. Although the

authors illustrated the performance of the proposed

scheme using various parameters, the performance

improvement compared to a non-off-chain BC-based

system was not shown. Besides, this scheme does not

support query operations on the stored data. Similarly,

Kumar and Tripathi (2020) offered a platform for

sharing patients’ COVID-19 reports using consortium

blockchain and IPFS. However, this scheme does not

support data privacy and query mechanism and does not

provide a comparative analysis between the BC-based

system with an off-chaining mechanism and the BC-only

system. Moreover, (Rane et al., 2021) proposed a

BC-based model for tamper-proof storage of log records

generated in a cloud service environment. The encrypted

log records are stored in the IPFS network while BC keeps

the IPFS hash of the log files. Although this scheme

supports data confidentiality and audit operation, it does

not support query operations. Also, this study did not

show the performance gain over a BC-based scheme

without an off-chain facility. Similar to the previous

works, our scheme proposed a flexible network log

management scheme that uses BC and IPFS networks to

store log data efficiently. In contrast to the existing works,

our scheme supports data confidentiality, query and audit

operations. Moreover, we present both a theoretical and

implementation-based detailed analysis of the

performance gain of the proposed BC-based framework

with the off-chain facility over the BC-based system

without off-chain provision.

Terminology

In this section, we present a brief discussion on the

jargon used in our proposed scheme.

Blockchain

Blockchain (BC) is a constantly expanding distributed

database of records known as blocks (Zheng et al., 2018).

It acts as a distributed ledger to permanently preserve

transactions among several parties in a verifiable way.

Each participating node in a BC network remains

synchronized with other nodes and holds the same copy

of BC. They acknowledge the validity of the transactions

through the use of Consensus Algorithms such as Proof of

Work (PoW), Proof of Stake (PoS) and Practical

Byzantine Fault Tolerance (PBFT). A set of BC nodes

acts as miners that assembles transactions into blocks and

makes them permanent using a hash value. In a BC, the

hash value of a previous block is included in the

successive block. Hence, a modification in a block alters

the hash value, promulgating to the blocks mined

subsequently. Therefore, any node can detect data

modification and prevent illegal stored data tampering.

The first block in a BC is known as the genesis block. It

does not have any parent block, so its previous block hash

is set to 0. Fig. 1 shows the configuration of a BC.

A BC block consists of a block header and a block

body as shown in Fig. 2. The block header contains

various information such as version number of a block,

timestamp, Merkle tree root hash, earlier block hash and

nonce. In contrast, the block body contains a transaction

counter and transactions.

Mohammad Habibullah Rakib et al. / Journal of Computer Science 2022, 18 (6): 496.508

DOI: 10.3844/jcssp.2022.496.508

499

Fig. 1: Architecture of Blockchain

Fig. 2: Structure of a block

InterPlanetary File System

InterPlanetary File System (IPFS) is a distributed peer

to-peer (P2P) system for storing and sharing files (Benet,

2014). Each file stored in IPFS is associated with a unique

Content Identifier (CID) used for locating that file in the

network. The CID of a file is computed using the unique

hash of that file. Often the content of a large file is split

into multiple blocks for ease of hosting by peers. IPFS

uses the Merkle Directed Acyclic Graphs (DAGs) to

link the split content of a file and Distributed Hash

Table (DHT) to discover the content in the P2P network.

A file in IPFS is represented by an IPFS object, a data

structure consists of data and links. Data represents a BLOB

of unstructured binary data less than 256 KB while links is

an array of link structure containing name, hash and size. A

file of size less than 256 KB is represented by an IPFS object

where data field contains file content and links is an empty

array. In contrast, a file larger than 256 KB is represented by

multiple IPFS objects where links field contains a list of links

to other IPFS objects into which the content of the file is

divided. An empty IPFS object with no data is also created

to hold links to all the IPFS objects representing the file.

Figure 3 shows the procedure of storing a file greater than

256 KB in an IPFS network.

An IPFS network can be either public or private. In a

public IPFS network, every node connected to the

network can access data if it knows the CID of the data.

In a private IPFS network, only peers with a shared secret

key can access data.

Fig. 3: IPFS file storage mechanism

The advantage of using IPFS as off-chain storage with
BC is that it is distributed and decentralized in nature like
BC. Besides, IPFS provides immutability and persistence
of data along with garbage collection.

MultiChain

MultiChain (Greenspan, 2015a) is an open-source,
private BC platform where participants need permission
from the network members to connect to the BC. It is less
decentralized than public BC and uses a lightweight
consensus process to obtain faster transaction processing.
This platform is based on a fork of Bitcoin Core, enabling
the deployment of private BC within or between
organizations (Greenspan, 2015b). We choose
MultiChain to realize the BC network in our proposed
scheme for the following reasons:

 Abstraction of storage, indexing and retrieval of data

through data stream make data processing faster in BC

 Simple and thorough composition of BC parameters

 Easy management of permission for nodes and user

friendly API

We utilize the data stream feature of MultiChain to store
metadata related to log data in BC, where a stream is a group
of items, each associated with a transaction. A single
transaction can publish one or multiple items in BC, where
an item contains data to be stored, publisher address, keys
for faster retrieval, transaction ID, etc. A BC node
subscribes to a stream to index its items to enable
searching by keys. Besides, MultiChain provides a rich
set of APIs to allow any modern programming language
to interact with the BC.

System Model

Our proposed system model comprises four entities,

the BC network, an IPFS private network, participating

nodes and auditors. Fig. 4 shows a pictorial representation

of our system model.
The BC network is a distributed peer-to-peer network

for storing data in an unmodifiable form. It ensures
transparency among the participating nodes through data
verifiability. In our scheme, BC network is used to store
metadata about the system log data.

Mohammad Habibullah Rakib et al. / Journal of Computer Science 2022, 18 (6): 496.508

DOI: 10.3844/jcssp.2022.496.508

500

Fig. 4: System model of the proposed scheme

An IPFS private network is used as off-chain
storage in our proposed scheme. It stores the actual log
records in plaintext or an encrypted form. Data stored
in this network are only accessible to the member nodes
of this network.

Participating nodes are Personal Computers (PCs) that
are part of the IT infrastructure of an organization. These PCs
create log entries to preserve the details of each operation and
Quality of Service (QoS) measures related to the operation
of software applications, servers, network components, etc.
They periodically upload encrypted or plaintext log data to
the private IPFS network for storage. Besides, they interact
with both the BC network and IPFS network using
appropriate Remote Procedure Call (RPC) API. Each
participating node maps to a unique blockchain address to
track its published log records. When a node uploads a log
file to the IPFS network, the CID of the file along with the
blockchain peer address of that node is stored in BC. This
ensures mapping between blockchain data and IPFS data
for a particular node.

Auditors are responsible for auditing log files and
reporting discovered inconsistencies. Upon receiving a
request from a participating node, they retrieve log files
from the IPFS network using CID obtained from the BC
network. They analyze the retrieved log files using
traditional log analysis tools such as Papertrail (2021),
Loggly (2021) and Splunk (2021) to report any threat. In
case of encrypted log files, encryption keys are shared
with the auditors via the BC network.

Working Principle

This section presents the detailed working principle of

the proposed scheme with an elaborate discussion on each

functional feature.

Publication of Log Records

Participating nodes upload log records periodically

and metadata to the IPFS private network and BC

network, respectively, where both networks run in the

cloud. Before interacting with both networks, each

participating node must authenticate and map to an

IPFS peer address and BC node address separately. At

first, a participating node uploads a file to the IPFS

network and receives the corresponding CID. It then

immediately constructs the file metadata object and

publishes it to BC. The BC network contains an entry

for the BC node address, the CID and metadata to link

with the corresponding log file in the IPFS network.

The time interval between two successive publish

operations is determined by the attack probability of

the network (Hajizadeh et al., 2018). In reality, the time

interval should be compact enough to reduce the

possibility of attackers modifying the log data before

being published to the IPFS private network. The

content of metadata is Table 1.

Table 1: Metadata of Log Records

Field Value

File_ID Syslog

IPFS_CID QmP3jiWmaViXJW1c7ZyQ6ntdcwADe5

 qAksVGUsdwbD3Gxo

Size 12917

Publisher 1Y8VTgooMfiAvgoQc51TpsRu7jCGoUE

 JsEVrR6

Start_UTC 1613274426

End_UTC 1613274431

Publish_time 1613274433

Encryption_status Yes

Mohammad Habibullah Rakib et al. / Journal of Computer Science 2022, 18 (6): 496.508

DOI: 10.3844/jcssp.2022.496.508

501

In our proposed scheme, a participating node can choose
to publish encrypted or plaintext log data to IPFS.

Retrieval of Log Records

Participating nodes retrieve log data from the IPFS

network using a web interface. This process starts with

inputting a time frame encompassing the desired log records

from the participating node. Our scheme then uses

appropriate BC API (e.g., liststreampublishersitems) to

retrieve transactions containing log metadata of that

particular participating node. If the start and end timestamp

in metadata are within the desired time frame, the IPFS CID

included in the metadata is added to the list of desired CIDs.

Finally, our scheme fetches all original log records

referenced by the list of CIDs from the IPFS private network

using appropriate IPFS API.

Publication and Retrieval of Confidential Log Data

Storing plaintext log data in the IPFS network

compromises privacy since data is visible to every peer

in the network. A participating node may not share its

data with its peers in the same or different organization.

Hence, a participating node can encrypt its data before

uploading it to the IPFS network and share the

encryption key securely via the BC network with the

suitable recipient nodes.

We use Advanced Encryption Standard (AES)

(Daemen and Rijmen, 2001) to support encryption and

decryption operation and public-key cryptography

algorithm RSA (Rivest et al., 1978) to share keys. Our

scheme maintains two separate streams in the BC

network for sharing the RSA public key and AES secret

key. The AES secret key and RSA key length are 256

bit and 2048 bit, respectively. Each participating node

generates its RSA public-private key pair, stores the

private key locally and publishes the public key on BC.

The public key is labeled with the node’s address for

easy retrieval by other nodes. Whenever a node wants

to share an encryption key, it retrieves the recipient’s

public key and encrypts the secret key using that public

key. It then publishes the encrypted secret key on BC

by labeling it with the IPFS CID of the file and the

recipient node’s address. The recipient participating

node can now easily find the secret key on BC. After

retrieval, it decrypts the encrypted secret key using its

private key and decrypts a file using the retrieved

secret key.

Consensus Process

Our proposed system uses permission-based mining

supported by the MultiChain framework to add

transactions into blocks. In this scheme, a set of nodes

with mine permission granted by the admin nodes acts

*© 2020 IEEE. Reprinted, with permission, from Rakib et al. (2020).

as miners. A mine permission is allocated when a

specific portion (e.g., admin-consensus-mine

parameter) of admin nodes reach consensus in doing so.

Admin nodes use a BC parameter known as mining

diversity, taking a value between 0 and 1, to prevent

monopoly in the mining process. A node with mine

permission must wait for mining diversity × active

miners blocks to be mined by other nodes before it

gets a chance to mine another block.

Admin Node Selection*

Admin nodes are super users having every permission

to control the entire BC network and need to be changed

frequently to prevent a single authoritarian in the network

and distribute workload equally to every node in the BC.

Hence, we propose the Algorithm 1 (Rakib et al., 2020)

to periodically rotate the admin permission among nodes

in the BC network. Every admin node in the BC network

executes this algorithm:

 There are n × p admin nodes where n is the total

number of nodes in the BC network and p is a value

between 0< p ≤1

 list is a sorted list of admin nodes as reported by the

time of being an admin. Besides, next denotes the

succeeding admin node to enter list

 Each node in the list allocates admin permission to the

next and abolishes admin permission from the first k

nodes in the list. For example, k = 1 revokes admin

permission from first node of list and grants that to the

(n × p+1)-th node after current admin nodes finish the

execution of Algorithm 1.

Algorithm 1: Algorithm for selecting admin nodes

Require:

n: number of nodes

p: proportion of nodes that can be admins

k: number of admins to be swapped

1: N ← n× p ▷ N = number of admins

2: if Clock() == ElectionTime then

3: list = sorted list of current admins based on time

4: for i ← 0 to k−1 do

5: remove admin permission from list[i]

6: next = (i+N) mod n

7: assign admin permission to node next

8: end for

9: end if

In case one or more admin nodes do not grant admin

permission to next, our scheme uses MultiChain’s

consensus process where admin-consensus-admin

Mohammad Habibullah Rakib et al. / Journal of Computer Science 2022, 18 (6): 496.508

DOI: 10.3844/jcssp.2022.496.508

502

parameter determines the number of admin nodes

required to reach a consensus.

Query Mechanisms

Our proposed scheme performs query operation on

both plaintext and encrypted log records (after

decryption). We develop an integrated approach to

support queries on both data types by linking

MultiChain’s metadata with the original log records

stored in the IPFS private network.

Our scheme stores the timestamp of the earliest and

latest log records in a log file in the metadata information

associated with that file in the BC (Table 1). To retrieve

log records of interest, our scheme obtains metadata from

the BC using the timestamp associated with those log

records that ultimately reveals the CID of the desired log

records in the IPFS network. After retrieving log records

from the IPFS network, a user decrypts the data in the

local machine using the correct decryption key

recovered from the BC if the data is encrypted. Here, a

query is single-phase query if it uses only the

timestamp, otherwise two-phase query if the user

inquires on other fields of the log records recovered

from the single-phase query.

Algorithm 2: Algorithm to execute timestamp point

query

Require:

S: name of a stream

T: a particular date or timestamp

P: owner of log records

1: items ← liststreamkeyitems(S, T)

2: cid_list ←Ø

3: for item in items do

4: if item[”Publisher”] == P then

5: cid_list ← cid_list ∪ item[”IPFS_CID”]

6: end if

7: end for

8: logs ←Ø

9: for cid in cid_list do

10: logs ← logs ∪ IPFS_API.get(cid)

11: end for

12: return logs

Single-Phase Query

A single-phase query can be of two types. They are:

 Timestamp Point Query: Algorithm 2 describes the

procedure of retrieving log records associated with a

particular date or timestamp T for a specific

publisher or owner P. Our scheme first fetches

*© 2020 IEEE. Reprinted, with permission, from Rakib et al. (2020).

metadata associated with T from the BC network using

liststreamkeyitems API of MultiChain, running in

O (log m) time, where m is the number of items fetched

from BC (Greenspan, 2015b). Our scheme further

retrieves CID associated with a particular owner P from

the retrieved metadata. Finally, log records associated

with P for a particular date or timestamp T is fetched

from the IPFS network. The execution time (i) for

plaintext log records turns into O (log m) + r and (ii) for

encrypted log records is O (log m) + r + e where r is the

file retrieval time from IPFS using IPFS_API.get(cid), e

is the time complexity for AES decryption operation

measured following (Daemen and Rijmen, 2001). Here

to note that running the loop in line 9 ∼ 11 in parallel

contributes r to the overall execution time, while

introducing parallelism in the loop in line 3 ∼ 7 generate

a negligible constant overhead.

 Timestamp Range Query*: Algorithm 3

(Rakib et al., 2020) describes the procedure of

searching records in a specified time range. Our

scheme considers the timestamp range query as a

collection of a timestamp point query for each

timestamp between the start time and end time of

that range. The execution time of the algorithm (i)

for plaintext log records is O (R log m) ≈ O (log m)

where R denotes the time range and different

timestamp queries within the range R execute in

parallel and (ii) for encrypted log records is

O (R log m) + e ≈ O (log m) + e.

Algorithm 3: Algorithm to execute timestamp range

query

Require:

 S: name of a stream

 Tstart: start time

 Tend: end time

P: owner of log records

1: logs ←Ø

2: for t in range (Tstart, Tend) do

3: logs  logs ∪ timestamp_point_query(S, t, P)

4: end for

5: return logs

Two-Phase Query*

Two-phase queries carry out further queries on the

records fetched from a single-phase query based on

different fields of log records. There are three types of

queries. They are:

Mohammad Habibullah Rakib et al. / Journal of Computer Science 2022, 18 (6): 496.508

DOI: 10.3844/jcssp.2022.496.508

503

 Single Key Query: Our scheme considers each field

of a log record as a key and searches the log records

obtained from a single-phase query using getitems ()

as shown in Algorithm 4 (Rakib et al., 2020). The

execution time of the two-phase query (i) for

plaintext log records is O (log m) + O (ql), where O

(log m) is the time complexity of a single-phase query

and O(ql) is the execution time of a single key query

where q is the number of records in D and l is the

average length of a log record and (ii) for encrypted

log records is O (log m) + e + O (ql)

Algorithm 4: Algorithm to execute single key query

Require:

D: Log records fetched from single-phase query

K: Key

1: list_rec ← getitems(D, K)

2: return list_rec

 Multiple Key AND Query: In our scheme, a user

can also perform query using multiple keys.

Algorithm 5 (Rakib et al., 2020) shows that for each

key in lk, a single key query is executed. Finally, the

query result is obtained by taking the intersection of

every single key query performed using keys in lk.

The overall running time complexity of the two-

phase query (i) for plaintext log records is O (log m)

+ O (Lql) ≈ O (log m) + O (ql) and (ii) for the

encrypted log records is O (log m) + e + O (ql),

where O (ql) is the execution time of a single key

query, L is the length of lk and the queries using

multiple keys L run in parallel.

Algorithm 5: Algorithm to execute multiple key AND

query.

Require:

D: log records obtained from single-phase query

lk: list of keys

1: L ←| lk |

2: list_rec ← single key query(D, lk[0])

3: for i ← 1 to L-1 do

4: list_rec ← single_key_query(list_rec, lk[i])

5: end for

6: return list_rec

 Multiple Key OR Query: This query also allows a

user to perform queries using different keys. Similar

to the multiple key AND query, this query also performs

a single key query on different keys. It differs from

multiple key AND query by taking the union of the

results of the single key query performed on all keys.

The execution time of multiple key OR query is the

same as multiple key AND query.

Audit Log Files

Any modification in a log file stored in the IPFS

network changes the CID of that file. However, analysis

of log files stored in the IPFS network is required for

detecting threats in an IT infrastructure. In the proposed

scheme, auditor nodes serve this purpose. They can access

both the IPFS private network and the BC network. A

participating node may request an auditor to verify log

data stored in a specific timeframe. The auditor queries

the BC using the timestamp range query to retrieve the

CIDs of the log files and then fetches original logs from

the IPFS network. If the log data is encrypted, AES secret

key is shared with the auditor. Auditors analyze log files

using traditional log analysis tools and report any threat to

the participating nodes. In our scheme, several auditors work

concurrently to decide the validity of log files. A decision is

taken by a participating node when more than 51% auditors

support that decision, similar to consensus algorithms in BC

(Zheng et al., 2018).

Theoretical Analysis of Memory Scalability

Our proposed scheme distributes data between two

networks where BC stores log metadata and the IPFS

network stores actual log records. Here, the IPFS private

network works as an off-chain storage layer to our system.

With IPFS storage, we retain log records as long as we

need and get them removed by garbage collector service

in IPFS when data are not required anymore. This

approach keeps storage requirements within the capacity;

thus, reasonable usage of the storage is ensured and

memory scalability is attained.

To perform the theoretical analysis on the memory

scalability of the proposed scheme, we consider two

scenarios, one with IPFS storage and the other without

IPFS storage. We introduce some notations for this

purpose in Table 2.

Table 2: List of notations

Symbol Description

N Number of participating nodes

B Size of a block

T Time interval for periodic collection of log records

S tx Size of a transaction

L r Average length of a log record

N r Average number of log records generated within T

S m Size of metadata for log records within T

N tx Number of transactions in a block

Blockchain size without IPFS (off-chain) storage:

It can be seen that the size of a transaction is

tx r r S L N (1)

Mohammad Habibullah Rakib et al. / Journal of Computer Science 2022, 18 (6): 496.508

DOI: 10.3844/jcssp.2022.496.508

504

where, L r and N r are the average length of a log record

and the average number of log records generated in T ,

respectively. We assume that all the log records generated

by a participating node in T are accumulated in a single

BC transaction.

Total amount of storage required per Transactions per

Second (TPS) is

tx
tps



S N

S
T

 (2)

where, N is the number of BC nodes.

Total size of a BC is

_
tx

without off chain

tx




 
S N

S B
N

 (3)

Blockchain size with IPFS (off-chain) storage:

This scheme keeps only the metadata S m in the BC

and outsources the remaining data to the IPFS network.

Hence, the size of a transaction is

tx mS S (4)

Total amount of storage required per Transaction per

Second (TPS) is

m
tps



S N

S
T

 (5)

Total size of a BC with an off-chain storage is

m
off chain

tx




 
S N

S B
N

 (6)

Since, S m is much smaller than S tx, which gives

Soff−chain << S without_off−chain.

_

_

100%
without off chain off chain

without off chain

Storage gain
 




 
S S

S
 (7)

Experimental Evaluation

In this section, we discuss the experimental setup,

followed by a detailed analysis of the performance of the

proposed scheme.

Experimental Setup

 We implemented the proposed system using

MultiChain community edition, version 2.1.2 (Greenspan,

2015b) and IPFS version 0.7.0 (Benet, 2014). We set up

both the BC network and IPFS private network on virtual

machines running on Microsoft Azure cloud platform

(Azure, 2021). Besides, we used Python IPFS HTTP

*© 2020 IEEE. Reprinted, with permission, from Rakib et al. (2020).

Client (Python IPFS Client, 2021) and MultiChain JSON-

RPC API (Python MultiChain Client, 2020) to interact with

the IPFS private network and BC network, respectively. We

also developed a web interface to enable easier interaction

between the participating nodes and the proposed system.

We ran the experiments on computers possessing Intel

Core i7 processor, 16 GB RAM and 1 terabytes HDD

and running Ubuntu operating system 18.04. Besides,

we used Syslog data (Gerhards and GmbH, 2009) to

obtain log records for our experiments. In addition, to

support encrypted publication of log data, we used

AES-256 (Daemen and Rijmen, 2001) to perform

encryption operation.

We compared the performance of the proposed

BC-based log management scheme associated with an

off-chain mechanism (BC with off-chain) with

Rakib et al. (2020)’s BC-only log management scheme

(BC-only) (Rakib et al., 2020).

Performance Evaluation

We considered processing time as the performance

metric to depict the efficiency of various operations of the

proposed scheme. Besides, we considered storage

requirements to narrate the performance gain obtained

through off-chain storage. The results shown in different

graphs were taken as mean values over 50 samples.

Record Extraction and Encryption*

Before uploading data to the BC and IPFS network,

the proposed scheme spends time locating and retrieving

log records that are part of a given time frame. We denote

this time as record extraction time. It depends on the log

records’ placement in the file and the size of log records’

chunk, which relies on the amount of data collected

between two subsequent publish operations (Rakib et al.,

2020). To run the experiment, we consider chunk size up

to 4 MB as it is the default maximum size of a transaction

in MultiChain (Greenspan, 2015b).

Fig. 5: Log records extraction and encryption time
© 2020 IEEE. Reprinted, with permission, from Rakib et al. (2020).

Mohammad Habibullah Rakib et al. / Journal of Computer Science 2022, 18 (6): 496.508

DOI: 10.3844/jcssp.2022.496.508

505

Figure 5 shows that log record extraction time

grows linearly with the chunk size. The time to retrieve

a 4 MB chunk is nearly 0.32 seconds while the time to

fetch and encrypt the same size chunk is a bit more than

0.35 seconds due to encryption operation. Tiny

discrepancies are noticed in the graph due to the

position of chunks in the log files.

Publish and Retrieval Operation

Throughout a publish operation, a participating

node uploads a chunk of log records to the IPFS private

network and publishes metadata about the log records

in the BC network. Later on, to retrieve the log records,

a computing node first accesses the BC network to

obtain the corresponding CIDs and uses those CIDs to

access log files from the IPFS network. As shown in

Fig. 6 and 7, publish and retrieval time increase almost

linearly with chunk size. Besides, publish time is

slightly higher than retrieval time as a publish

operation consists of multiple steps such as IPFS nodes

splitting data into multiple chunks, calculating their

hash and publishing metadata (i.e., publisher,

timestamp, etc.) to the BC network. The proposed

scheme takes about 0.25 sec to publish and 0.125 sec

to retrieve a chunk of 4 MB. We observed that the

proposed BC-based off-chain scheme took more time

than the BC-only (onchain) scheme for publish and

retrieval operations. Although data uploading and

retrieval from the IPFS network are faster than that of

BC, overall performance slightly degrades compared to

the BC-only approach for the construction and

searching of metadata during publishing and retrieval

operation, respectively. Our experiment found that the

publish and retrieval operations had an average

degradation of approximately 26% compared to the

BC-only scheme because of internet connectivity. A

faster and more stable internet connection can improve

performance and reduce the performance gap with the

BC-only scheme.

Query Operation

To perform the query operation, we first fetched the

CIDs of the log files from the BC and then used those

CIDs to retrieve data from the IPFS network. We then

performed search operations on those data depending on

various attributes to obtain the desired query results.

Hence, query time considers the time to fetch log records,

decryption time (if required) and search time on the

obtained log records. Although an individual log record

can possess various attributes such as appname,

hostname, timestamp and PID, we selected the six most

frequently used attributes K to perform query operations

in our experiments.

Fig. 6: Processing time of publish operation

Fig. 7: Processing time of retrieval operation

Figure 8 shows the processing time of different queries

on plaintext data for both the proposed BC with an off-

chain mechanism and BC-only scheme. It is clear from the

experimental data that the multiple key AND query is

constant for different values of K in the proposed

scheme and BC-only scheme. In the proposed scheme, the

multiple key AND query attains nearly 19% more

processing overhead compared to the BC-only scheme,

mainly due to the retrieval operation. In contrast, the

processing time of multiple key OR query grows with the

higher values of K in both schemes. This is due to the OR

query searches more records compared to the AND query for

the inherent properties of query operations as discussed in

Subsection Query Mechanisms. The multiple key OR-query

incurs approximately 8% more processing time in the

proposed scheme compared to the BC-only scheme.

Figure 9 shows that the processing time of a query on

plaintext data relies on the number of log records N

retrieved from the IPFS network when K = 6. It

increases linearly as the retrieval, decryption and search

time are proportional to N in both schemes. As shown in

Fig. 9, the multiple key AND query and multiple key OR

query incur nearly 11% and 12% more processing time,

respectively in the proposed scheme compared to the

BC-only scheme at N = 300000 and K = 6. The

performance gap can be reduced if a faster and more

stable internet connection is used.

Mohammad Habibullah Rakib et al. / Journal of Computer Science 2022, 18 (6): 496.508

DOI: 10.3844/jcssp.2022.496.508

506

Fig. 8: Query time for different number of keys when N =

300000

Fig. 9: Query time for different number of records when K = 6

The graphs for query operations on encrypted log
records exhibit the same trend depicted in Fig. 8 and 9
except the fact that decryption operation adds
approximately 20% more processing time. We do not
show the graphs for query operations on encrypted data
here for the compact presentation of the paper.

Storage Gain for IPFS Storage

This section highlights the storage gain of the proposed
scheme for using IPFS (off-chain) storage. To evaluate the
effect of off-chain storage, we varied the number of log
records per transaction up to 100 and measured storage
requirements for both our proposed and BC-only schemes.
Then using the formula in Eq. 7, we measured the storage
gain. The size of metadata in our system, as shown in
Table 1 is approximately 250 bytes and we found the average
size of a log record to be around 150 bytes. Here to mention
that we consider storage gain for a single participating node
for simplicity of computation. From Fig. 10 we find an
exponential increase in the storage gain as we publish more
records in a single transaction. It is noticeable that the storage
gain increases rapidly for lower values of log
records/transactions (<60). It approaches almost 100% when
log records/transaction = 60 and after that, the storage gain
maintains a constant value. The reason behind this
performance trend is that the constant value of Sm does not
change with the increasing number of records in a
transaction. As a result, the storage gain increases with the
higher number of log records, which finally reaches
very close to the optimum value of 100%.

Fig. 10: Storage gain for publishing varying number of log

records per transaction

Fig. 11: Per day storage demand of BC network

We also compare per day storage demand of the BC

network in both cases of our proposed scheme and the

BC-only scheme. We obtained the graph shown in Fig. 11

by calculating the size of the BC network against varying

the number of participating nodes in the system. We

assume that log records are generated evenly throughout

the day with a log generation rate of 30 log records per

hour per participating node. We also consider

transaction submission rate = 1 transaction per hour per

participating node, the average size of a log record =

150 bytes, size of a metadata object = 250 bytes and the

number of participant nodes mapped with a BC node =

5. Figure 11 shows that the proposed scheme takes

approximately 93% less storage compared to the BC-

only scheme to store the log records generated in a day for

100 participating nodes.

Conclusion

This study has addressed the storage scalability issue

of BC-based log management schemes by incorporating

an IPFS private network with a BC network. Besides, the

proposed system preserves data privacy and supports query

and audit mechanisms to administer the stored log records

efficiently. Moreover, extensive analysis on the prototype

implementation of the proposed scheme reveals that the

storage gain due to the off-chaining facility increases

exponentially with the increasing log records per

transaction. Besides, the proposed scheme achieves

Mohammad Habibullah Rakib et al. / Journal of Computer Science 2022, 18 (6): 496.508

DOI: 10.3844/jcssp.2022.496.508

507

nearly 93% storage savings compared to the BC-based

schemes without the off-chain facility to support daily

storage demand for log records. Furthermore, our scheme

executes the query, publish and retrieval operations with a

low processing overhead. Hence, our research indicates that

it is possible to build up a practical network log management

scheme by utilizing the advantages of BC. In the future, we

want to extend this platform with various machine learning

and deep learning tools to analyze the patterns of log records

for detecting different cyber attacks.

Acknowledgment

This study is funded by the ICT Innovation Fund’

2020-21, research grant no: 1280101-120008431-

3631108 provided by the ICT division, Ministry of Post,

Telecommunication and Information Technology of the

People’s Republic of Bangladesh.

Author’s Contributions

Mohammad Habibullah Rakib: Investigation,

problem formulation, methodology, formal analysis,

software implementation, data analysis, original draft

paper preparation.

Showkot Hossain: Problem formulation,

methodology, software implementation, data curation,

original draft paper preparation.

Mosarrat Jahan: Supervision, design research plan,

research administration, problem formulation,

methodology, resources, writing review, draft paper

correction and editing.

Upama Kabir: Supervision, design research plan,

research administration, problem formulation,

methodology, resources, writing review, draft paper

correction and editing.

Ethics

This article is an original research work. The

corresponding author confirms that all of the other

authors have read and approved the manuscript and no

ethical issues involved.

References

Accorsi, R. (2009). Log data as digital evidence: What

secure logging protocols have to offer? 2009 33rd

Annual IEEE International Computer Software and

Applications Conference, 2, 398–403.

 doi.org/10.1109/COMPSAC.2009.166

Ali, A., Khan, A., Ahmed, M., & Jeon, G. (2021).

BCALS: Blockchain‐based secure log management

system for cloud computing. Transactions on

Emerging Telecommunications Technologies,

 e4272. doi.org/10.1002/ett.4272

Azure. (2021). Microsoft Azure: Cloud computing
services. https://azure.microsoft.com/en-us/

Benet, J. (2014). IPFS-content addressed, versioned, P2P
file system. arXiv preprint arXiv:1407.3561.

 http://arxiv.org/abs/1407.3561
Bhutta, M. N. M., Khwaja, A. A., Nadeem, A., Ahmad,

H. F., Khan, M. K., Hanif, M. A., Song, H.,
Alshamari, M., & Cao, Y. (2021). A survey on
blockchain technology: Evolution, architecture and
security. IEEE Access, 9, 61048-61073.

 doi.org/10.1109/ACCESS.2021.3072849
Daemen, J., & Rijmen, V. (2001). Advanced encryption

standard (AES), FIPS PUB 197. National Institute of
Standards and Technology, U.S. Department of
Commerce. Accessed on 12 Jan. 2021.
http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf.

Gerhards, R., & GmbH, A. (2009). The syslog protocol
(pp. 1-38). RFC 5424.

 https://tools.ietf.org/html/rfc5424
Greenspan, G. (2015a). Multichain: Open source

blockchain platform. https://www.multichain.com/
Greenspan, G. (2015b). Multichain private blockchain-

white paper.
https://www.multichain.com/download/MultiChain-
White-Paper. pdf

Hajizadeh, M., Phan, T. V., & Bauschert, T. (2018).
Probability analysis of successful cyber attacks in
SDN-based networks. 2018 IEEE Conference on
Network Function Virtualization and Software
Defined Networks (NFV-SDN), 1–6.

 doi.org/10.1109/NFV-SDN.2018.8725664
Huang, W. (2019). A Blockchain-based framework for

secure log storage. 2019 IEEE 2nd International
Conference on Computer and Communication
Engineering Technology (CCET), 96–100.
doi.org/10.1109/CCET48361.2019.8989093

Jabarulla, M. Y., & Lee, H.-N. (2021). Blockchain-based
distributed patient-centric image management
system. Applied Sciences, 11(1), 1-20.

 doi.org/10.3390/app11010196

Kent, K. A., & Souppaya, M. (2006). Guide to computer

security log management. National Institute of

Standards and Technology. Accessed on 12 Jan.

2021. doi.org/10.6028/NIST.SP.800-92

Kumar, M., Singh, A. K., & Suresh Kumar, T. V. (2018).

Secure log storage using blockchain and cloud

infrastructure. 2018 9th International Conference on

Computing, Communication and Networking

Technologies (ICCCNT), 1–4.
 doi.org/10.1109/ICCCNT.2018.8494085

Kumar, R., & Tripathi, R. (2020). A secure and distributed

framework for sharing COVID-19 patient reports

using consortium blockchain and IPFS. 2020 6th

International Conference on Parallel, Distributed and

Grid Computing (PDGC), 231-236.

 doi.org/10.1109/PDGC50313.2020.9315755

https://doi.org/10.1002/ett.4272
http://arxiv.org/abs/1407.3561
https://doi.org/10.1109/ACCESS.2021.3072849
https://tools.ietf.org/html/rfc5424
https://doi.org/10.3390/app11010196
https://doi.org/10.6028/NIST.SP.800-92
https://doi.org/10.1109/PDGC50313.2020.9315755

Mohammad Habibullah Rakib et al. / Journal of Computer Science 2022, 18 (6): 496.508

DOI: 10.3844/jcssp.2022.496.508

508

Liang, X., Shetty, S., Tosh, D., Kamhoua, C., Kwiat, K., &

Njilla, L. (2017). ProvChain: A blockchain-based

data provenance architecture in cloud environment

with enhanced privacy and availability. 2017 17th

IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing (CCGRID), 468–477.

doi.org/10.1109/CCGRID.2017.8

Loggly. (2021). Loggly: Unified log management,

monitoring and analysis. Accessed on 12 Jan. 2021.

https://www.loggly.com/

Marangappanavar, R. K., & Kiran, M. (2020).

Inter-planetary file system enabled blockchain

solution for securing healthcare records. 2020 3rd

ISEA Conference on Security and Privacy (ISEA-

ISAP), 171–178.

 doi.org/10.1109/ISEA-ISAP49340.2020.235016

Miyachi, K., & Mackey, T. K. (2021). hOCBS: A privacy-

preserving blockchain framework for healthcare data

leveraging an on-chain and off-chain system design.

Information Processing and Management, 58(3),

102535. doi.org/10.1016/j.ipm.2021.102535

Papertrail (2021). Papertrail: Cloud-hosted log

management, live in seconds. Accessed on 12 Jan.

2021. https://www.papertrail.com/

Park, J. H., Park, J. Y., & Huh, E. N. (2017). Block chain

based data logging and integrity management system

for cloud forensics. Computer Science & Information

Technology, 149.

 https://csitcp.net/paper/7/711csit12.pdf

Poolsappasit, N., Dewri, R., & Ray, I. (2011). Dynamic

security risk management using bayesian attack

graphs. IEEE Transactions on Dependable and

Secure Computing, 9(1), 61-74.

 doi.org/10.1109/TDSC.2011.34

Pourmajidi, W., & Miranskyy, A. (2018). Logchain:

Blockchain-assisted log storage. 2018 IEEE 11th

International Conference on Cloud Computing

(CLOUD), 978–982.

 doi.org/10.1109/CLOUD.2018.00150

Python IPFS Client (2021). py-ipfs-http-client: A python

client library for the IPFS API. Accesses on 12 Jan.

2021. https://github.com/ipfs-shipyard/py-ipfs-http-

client

Python MultiChain Client. (2020). mcrpc: A python

 wrapper for MultiChain JSON-RPC API. Accessed

 on 12 Jan. 2021. https://github.com/coblo/mcrpc

Rakib, M. H., Hossain, S., Jahan, M., & Kabir, U. (2020).

Towards blockchain-driven network log

management system. 2020 IEEE 8th International

Conference on Smart City and Informatization

(iSCI), 73-80, © 2020 IEEE.

 doi.org/10.1109/iSCI50694.2020.00019

Rane, S., Wagh, S., & Dixit, A. (2021). Blockchain driven

secure and efficient logging for cloud forensics.

International Journal of Computing and Digital System.

 http://journal.uob.edu.bh/handle/123456789/4308

Ray, I., Belyaev, K., Strizhov, M., Mulamba, D., &

Rajaram, M. (2013). Secure logging as a service-

delegating log management to the cloud. IEEE

systems journal, 7(2), 323-334.

 doi.org/10.1109/JSYST.2012.2221958

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A

method for obtaining digital signatures and public-

key cryptosystems. Communications of the ACM,

21(2), 120-126. doi.org/10.1145/359340.359342

Shekhtman, L., & Waisbard, E. (2019). EngraveChain:

Tamper-proof distributed log system. 2019 2nd

Workshop on Blockchain-Enabled Networked

Sensor (BlockSys’19), 8–14.

doi.org/10.1145/3362744.3363346

Söderström, O., & Moradian, E. (2013). Secure audit log

management. Procedia Computer Science, 22,

1249-1258. doi.org/10.1016/j.procs.2013.09.212

Splunk. (2021). Splunk: Turn data into doing. Accessed

on 12 Jan. 2021. https://www.splunk.com/

Wang, K., Yan, Y., Guo, S., Wei, X., & Shao, S. (2021).

On-chain and off-chain collaborative management

system based on consortium blockchain. 2021 7th

International Conference on Advances in Artificial

Intelligence and Security (ICAIS 2021), 172-187.

 doi.org/10.1007/978-3-030-78618-2_14

Zheng, Z., Xie, S., Dai, H.-N., Chen, X., & Wang, H.

(2018). Blockchain challenges and opportunities: a

survey. International Journal of Web and Grid

Services, 14(4), 352–375.

 doi.org/10.1504/IJWGS.2018.095647

https://doi.org/
https://www.loggly.com/
https://doi.org/10.1016/j.ipm.2021.102535
https://csitcp.net/paper/7/711csit12.pdf
https://doi.org/10.1109/TDSC.2011.34
https://doi.org/10.1109/iSCI50694.2020.00019
http://journal.uob.edu.bh/handle/123456789/4308
https://doi.org/10.1109/JSYST.2012.2221958
https://doi.org/10.1016/j.procs.2013.09.212
https://www.splunk.com/

