
 

 

 © 2022 Anahita Zolghadr and Afsaneh Jalalian. This open-access article is distributed under a Creative Commons 

Attribution (CC-BY) 4.0 license. 

Journal of Computer Sciences 

 

 

 

Original Research Paper  

A Fuzzy Clustering Based Method for the Spatio-Temporal 

Data Analysis 
 

Anahita Zolghadr and Afsaneh Jalalian  

 

Department of Computer Engineering, Raja University, Qazvin, Iran 

 

Article history 

Received: 03-10-2021 

Revised: 08-05-2022 

Accepted: 14-05-2022 

 

Corresponding Author: 

Anahita Zolghadr 

Department of Computer 

Software, Raja University, Iran 
Emai: anahitazolghadr@gmail.com 

Abstract: Spatiotemporal data is a type of data that is collected by the 

sensors. This type of data has two spatial and temporal dimensions. There 

are many challenges in analyzing spatiotemporal big data. Common 

evaluation metrics of clustering methods are not appropriate for 

spatiotemporal data. Previous clustering methods and the conventional 

evaluation metrics are efficient for data like time series with only one 

segment. Therefore, other metrics are required to evaluate the clustering of 

such data. In this study, energy function, reconstruction, and prediction 

metrics are used to evaluate the quality of spatiotemporal data clustering. The 

purpose of this study is to minimize the energy function using the Fuzzy C-Mean 

method on spatiotemporal data. The obtained results are compared with those 

obtained using k-medoid, DBSCAN, COBWEB, X-means, and TLBO. Also, 

the energy function, reconstruction, and prediction metrics are used to 

evaluate the quality of the clusters. The clustering methods are implemented 

on the dataset of parking located in the CBD area of Australia.   
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Introduction   

Today, with the development of novel technologies in 

the context of social networks, the Web of Things (WOT) 

is extended, and big data is generated. The emergence of 

big data related to spatial location knowledge, called 

geographical big data, provides opportunities for 

recognizing the urban area. The available database 

processing methods are not sufficient for providing fast 

reliable results in the context of geographical big data 

because it needs to define approximate “metrics” and 

increase the run-time of the queries. Big data obtained 

from devices like smart and portable phones, and 

Geographical Positioning System (GPS) devices, have 

penetrated our daily life and they have shown great 

potential for practical applications like climatology, 

natural disaster management, public health, product 

protection, smart cities, emergency management, and 

environment monitoring. Geographical big data is a subset 

of big data including spatial location data (Deng et al., 2019; 

Madbouly et al., 2022). Using various sensors to collect data 

over time is one application of the Web of Things (WoT). 

In WoT applications, there are many various sorts of data, 

such as temperature, light, and sound and they come in 

many different forms. Data quality might vary over time 

or from one device to another, therefore it depends on time 

and location (Barnaghi et al., 2013). Sensor data typically 

includes two features: Time and location This is referred 

to as spatiotemporal data. Spatiotemporal data is similar 

to time-series data since it comprises temporal 

information of an object, but it contains a vector of 

temporal information. While each object in time series 

data has a unique timestamp, the differences between time 

series and spatiotemporal data are (Shao et al., 2016): 

 

 Time series data can measure time intervals, while 

spatiotemporal data measure both temporal and 

spatial intervals 

 Time series data is in one dimension space, but the 

spatiotemporal data is in multiple Euclidean spaces 

 The distances among data in a time series are the same, 

but the spatiotemporal data does not meet this condition 

 

Because of the differences between the two types of 

data, common clustering algorithms such as k-means, 

DBSCAN, and COBWEB, which are usually used to 

cluster time series data, are not proper for 

spatiotemporal data. 

There are several approaches to analyzing spatiotemporal 

big data (Shao et al., 2016; Sheng et al., 2010;                              
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Yao and Sheng, 2012; Yao et al., 2013). When dealing 

with spatiotemporal big data, we confront numerous 

challenges. Real-time data, network density, massive 

volumes of spatiotemporal data and how the sensors link, 

heterogeneity in location and time, and reliable data 

sampling are some of these challenges (Shao et al., 

2016; Sheng et al., 2010; Yao and Sheng, 2012; Yao et al., 

2013; Atluri et al., 2018).  

One of the existing issues is selecting acceptable 

methods for clustering this type of data, as well as 

evaluating the quality of spatiotemporal data 

clustering. There are numerous methods for evaluating 

clustering quality, including Silhouette, Davis Boldin, 

and index C (Shao et al., 2016; Thrun,2018;           

Nerurkar et al., 2018; Rousseeuw, 1987; Sun et al., 

2010), but these approaches are not appropriate for 

spatiotemporal data since they use only one criterion to 

identify the best partition. While analyzing and 

evaluating spatiotemporal data require considering the 

distance between the two spatial and temporal domains 

(Shao et al., 2016). The Fuzzy C-Means (FCM) 

technique is used in this study for clustering. In 

addition, two evaluation metrics, including prediction 

and reconstruction metrics, which are employed for 

fuzzy clustering of spatiotemporal data, have been 

introduced. This research is based on a large dataset of 

parking data from the CBD area in Australia                    

(Shao et al., 2016).  

The objectives of this study are as follows: 

  

 Providing an FCM-based clustering method on 

spatiotemporal data  
 Providing an optimal distance function and 

examining the results on spatiotemporal data 
 Introducing two optimization metrics including 

reconstruction and prediction error to optimize the 
efficiency of the proposed clustering method   

 Comparing the proposed method with other 
clustering methods on a parking dataset   

 

In the following, the properties of spatiotemporal data 

and time-series data and their problems are described in 

detail. Clustering of the spatiotemporal and time-series 

data is introduced and the previous clustering methods are 

discussed in the next section 

Related Work  

 In this section, the spatiotemporal data is described.  

Spatiotemporal Data 

This type of data includes different types of data with 

different characteristics and different approaches for 

knowledge extraction (Kisilevich et al., 2009). At least 

one Spatio-temporal property is present in spatiotemporal 

objects (Atluri et al., 2018; Dhundale and Takalikar, 2015). 

The spatial feature of objects is related to their geographical 

location, while the temporal feature refers to the time 

intervals for each valid object (Sheng et al., 2010).  

There are three major dimensions to spatiotemporal data: 

Spatial dimension, temporal dimension, and data dimension.  

Temporal Dimension 

Temporal events are divided into time sections. It is 

critical to select the best method for measuring the 

intervals between time segments. The temporal dimension 

is defined below.  
It is assumed that we have a temporal dataset like [ts, te] 

such that the data vector, relates to a dependent variable like 
f(t), 𝑡 𝜖 [𝑡𝑠. 𝑡𝑒]. The vector includes time-related features 
(Shao et al., 2016).  

Spatial Dimension 

The spatial dimension of an object reveals whether it 
has a fixed or variable location. This refers to whether 
or not their location is dynamic and can vary over time. 
This property indicates an object's location in space at 
various moments (over a time interval) (Sheng et al., 
2010). The data in this dimension solely contain 
information on the object's location, such as length and 
width (Shao et al., 2016).  

Data Dimension 

The data dimension of each spatiotemporal data has a 
period but can have multiple data points. This dimension 
can reveal vital information such as the number of parking 
violations. The data dimension is time-dependent, which 
means that data evolves through time. The complexity and 
assessment of similarity between two spatiotemporal 
events increase with distance uncertainty in data 
dimensions (Shao et al., 2016).  

In addition, two general characteristics of 
autocorrelation and heterogeneity are defined for this type 
of data. Auto-correlation indicates that adjacent 
spatiotemporal data are interdependent and this 
autocorrelation in the dataset contributes to the 
transparency and integrity of observations. Each sample 
belongs to a different group or population, which is 
referred to as heterogeneity. This leads to a uniform 
distribution (Atluri et al., 2018).  

There are various types of ST data that are used in 
many cases. There are distinct methods for collecting 
and representing each sort of ST data in two domains. 
As a result, STDM problems are classified into various 
groups. ST data is classified into four general groups. 
1-Event data 2-Trajectory data 3-point Reference data 
4-Raster data: 
 

 Event data are distinct events in time and space. The 

set of Spatiotemporal event data (ST) is seen as a 

spatiotemporal pattern. Each event may have 



Anita Suman and Ajay Kumar / Journal of Computer Science 2022, 18 (6): 480.495 

DOI: 10.3844/jcssp.2022.480.495 

 

482 

additional properties that provide us with further 

information about the event. A forest fire, for 

example, can be viewed as a spatial polygon event 

 Trajectory data depicts the movements of objects 

over time. The animal migration pattern is one 

example. Sensors installed on moving objects can 

be used to acquire this data. Trajectory data is 

utilized in a variety of applications, including 

transportation and the environment 

 Point reference data take a continuous ST field 

measurement, such as temperature, vegetation, or a 

set of moving points in space and time. 

Meteorological factors such as temperature and 

humidity, for example, are measured by balloons 

floating in space, and weather observations are 

recorded continuously at various locations and times  

 A discrete or continuous ST field can be evaluated 

when dealing with Raster data. This data can have a 

definite location in space as well as fixed points in 

time. This type of data is employed in a variety of 

applications, including remote control and brain 

imaging (Atluri et al., 2018) 

 

Problems of Spatiotemporal Data Clustering 

Due to the complexity of spatiotemporal data, 

clustering this type of data has various problems and 

challenges, including the following (Sheng et al., 2010):  

 

 The spatial and temporal features of the objects vary 

continuously 

 Adjacent spatiotemporal objects affect each other. 

For example, rain and wind affect fire intensity 

 Spatiotemporal data represent various multidimensional 

data like time, location, and non-spatial features of 

spatiotemporal objects. Thus, processing, analyzing 

and data mining should be carried out at different 

levels for all features 

 Because spatiotemporal data comprise at least two 

spatial and temporal features, the effect of spatial and 

temporal components on each other must be 

investigated independently in each object while 

clustering (Sheng et al., 2010) 

  

Clustering Spatiotemporal Data 

Clustering is one of the most essential strategies for 

exploring and analyzing data. (Shao et al., 2016; 

Bouguettaya et al., 2015; Liu et al., 2010; Yu and Rege, 

2010; Birant and Kut, 2007). Clustering is a technique in 

which data with common features are clustered inside a 

cluster. Due to the presence of spatial and temporal 

dimensions, clustering ST data presents several issues. 

For instance, clustering locations based on their 

temporal information. Spatial clusters in raster ST data 

clustering must be continuous. Ignoring this will result 

in spatial cluster fragmentation. As a result, errors will 

occur in the interpretation of cluster information (Yao and 

Sheng, 2012).  

Also, the spatial and temporal dimensions include 

various types of data with various features, providing various 

methods for knowledge extraction (Yao et al., 2013).  

Clustering is divided into 4 groups hierarchical, 

partitioning, hard and fuzzy. Hierarchical clustering 

connects an input of a hierarchy to its corresponding 

output. The partitioning clustering employs an objective 

function to convert the input partition to a fixed set of 

clusters. In hard clustering, the patterns are in specific 

Clusters. But due to the overlap of the clusters, some 

patterns are located in a single cluster or different groups 

of data. This feature challenges using hard clustering in 

real-world applications. Fuzzy clustering was developed 

to overcome such limitations and it provides more 

information about the membership of the patterns. After the 

introduction of the Fuzzy theory by Zadeh, the scientists 

employed fuzzy theory for clustering (Nayak et al., 2015; 

Madbouly et al., 2022; Theodoridis and Koutroumbas, 2008; 

Iglesias and Kastner, 2013; Jain et al., 1999;            

Legany et al., 2006; Guha et al., 1998).  

The result of a clustering algorithm in the same dataset 

might be different from each other because other input 

parameters of an algorithm might change the behavior and 

execution of the algorithm significantly. The purpose of 

cluster validity is to find a partition that best fits the 

principle data. Usually, two dimensions datasets are used 

to evaluate the clustering algorithms, because the reader 

can easily verify the result. But visual validation and 

visualization of high-dimensional data are not easy, thus 

official methods are required (Legany et al., 2006).  

 Materials and Methods  

Here, three algorithms of fuzzy c mean, k-medoid, and 

TLBO are presented and their performance is compared. The 

Fuzzy C-Means (FCM) algorithm is a fuzzy clustering 

method, which is based on the minimum second-order 

criterion in each cluster. The membership degree of the data 

in a cluster is near one another. FCM has the advantage of 

generating new point clusters where the degree of 

membership of points in one cluster is close to each other. 

The FCM approach typically employs three operators. The 

fuzzy membership function, the partitioning matrix, and the 

objective function (Nayak et al., 2015; Ben Ayed et al., 2014; 

Alomoush et al., 2018; Rao et al., 2011; Gopala Krishna and 

Lalitha Bhaskari, 2016; Yang et al., 2018).  

The Fuzzy C-means Algorithm in Temporal and 

Spatial Dimensions 

For clustering the spatiotemporal data, it is assumed 

that there are n data as 𝑋1. 𝑋2. … . 𝑋𝑛 such that each one 

contains temporal and spatial components. The data xi, the 
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link between spatial and temporal components of data, is 

represented as 𝑋𝑖 = [𝑋𝑖(𝑆)|𝑋𝑖(𝑡)]𝑇 such that 𝑋𝑖(𝑆) is the spatial 

component of Xi and 𝑋𝑖(𝑡) is the temporal component of the 

data. Assuming that there are r attributes in the spatial 

component and q attributes in the temporal component 

(Shi and Pun-Cheng, 2019; Izakian et al., 2012): 
 

1 1( ) ( ) ( )...... ( ) ( )...... ( )
T T

i i i i ir i iqX X S X t x s x s x t x t    
     (1)  

 
The purpose of the FCM method is to construct a set of c 

clusters including a set of initial samples 𝑣1. 𝑣2. … . 𝑣𝑐 and 

the fuzzy partition matrix 𝑈 = [𝑢𝑖𝑘] , c, 𝑘 = 1.2. … . 𝑛 such 

that (Shi and Pun-Cheng, 2019; Izakian et al., 2012;         

Zhou et al., 2008): 
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The following equation is obtained by minimizing 

the objective function (Shi and Pun-Cheng, 2019; 

Izakian et al., 2012; Zhou et al., 2008): 
 

 2

1 1

m
C n

ik i k

i k

J u d v x
 

   (5) 

 
If m>1, it is considered the fuzzification coefficient. 

The distance d is also known as the Euclidean or relative 

distance. Because spatiotemporal data is divided into two 

components of space and time, the distance calculation 

function must be defined such that the space and time 

components can be calculated individually. The distance 

function can be generalized to include two components 

to accomplish this (Shi and Pun-Cheng, 2019;          

Zhou et al., 2008; Yang et al., 2018): 
 

 
2 2 2

( ) ( ) ( ) ( ) 0i k i k i kd v x v s x s v t x t          (6) 

 
Equation 6 is a generalized function of distance and 

it can be used to control the effect of different parts of 

space and time on each other. When 𝜆 = 0, the data has 

no temporal attributes and the spatial attribute effect is 

taken into account. The greater the value of 𝜆, the larger 

the time effect. The following equation is constructed 

by using the distance function given in Eq. 6 in the 

objective function (Shi and Pun-Cheng, 2019;                  

Zhou et al., 2008; Yang et al., 2018): 
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Equations 8 and 9 represent the initial sample and the 

partition matrix that is obtained through optimizing the 

objective function (Shi and Pun-Cheng, 2019;               

Zhou et al., 2008; Yang et al., 2018): 
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 To obtain optimal clusters, the partition matrix 

and the initial sample should be updated continuously. 

It should be considered that the weight 𝜆 should be 

highly flexible. 

In the following, two evaluation metrics are 

introduced (Shi and Pun-Cheng, 2019): 

The k-medoid method is also known as the                   

object-based technique representative. This is an 

unsupervised learning algorithm that is comparable to the 

K-means algorithm. This approach computes the mean 

point by inventing a hypothetical point, whereas the            

k-medoid computes the mean point by computing the 

closest real point in the dataset. This method's scalability 

can be extended by using algorithms like PAM, CLARA, 

and CLARANS (Han et al., 2012).  

The TLBO technique is an algorithm inspired by the 

teaching-learning process presented by (Rao et al., 2011) 

It is one of the most recently developed algorithms. This 

idea was inspired by a classroom learning experience. A 

crucial idea of TLBO is the teacher's influence on the 

learner. This algorithm does not necessitate any control 

parameter. It is a population-based technique, similar to 

other nature-inspired algorithms. Learners (students) are 

regarded as the study population, or as candidate 

solutions. There are numerous applications of TLBO 

for various optimization problems (Gopala Krishna and 

Lalitha Bhaskari, 2016; Rao and Savsani, 2012; 

Satapathy and Naik, 2011; Satapathy et al., 2012a,b; 

Parvathi et al., 2012; Naik et al., 2012; Nayak et al., 

2012; Ren et al., 2022).  

Various characteristics of an optimization problem are 

analogous to various courses taught in the classroom. The 

scores acquired in each of these subjects, as well as the 

total scores obtained, are regarded as "fitness." The 

teacher is regarded as the best solution since he or she is 

regarded as the best person in the community. The TLBO 

is broken into two parts: Teacher and student               

(Gopala Krishna and Lalitha Bhaskari, 2016).  

The TLBO algorithm is devoid of any algorithmic 

parameters. As a result, no parameters need to be tweaked 

to optimize the performance of the FCM-TLBO algorithm 
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(Gopala Krishna and Lalitha Bhaskari, 2016). In the C-

means fuzzy method, the termination condition is attained 

when the generated solution is not improved further. The 

number of iterations in the spatial domain is 8, 20, and 50, 

whereas the number of iterations in the spatiotemporal 

domain is 10, 20, and 50. Furthermore, in all 

circumstances, the weight power equals 2 (m = 2).  

Evaluation Metrics 

It can be said that the validation of the results obtained 

by a clustering algorithm tries to provide a measure of the 

algorithm's success and accuracy. Here, we identify two 

strategies for investigating clustering solutions. 

On the one hand, there are cluster or clustering methods, 

which attempt to evaluate findings by mathematical analysis 

and direct observation of solutions based on the intrinsic 

qualities of the input dataset. In other words, it comprises 

idealistic analysis approaches because they focus on the 

definition given to a cluster, regardless of the rationale for 

establishing clustering (i.e., end application).  

Clustering solutions, on the other hand, can occasionally 

be tested directly by the program or the environment that 

simulates the application (clustering evaluation). This is a 

practical (or engineering) approach to testing that focuses on 

program-based testing. Generalizations are riskier in this 

context. It is worth noting that the program has introduced 

corruption and deformations, as well as boundary constraints 

and unique data utilized for testing.  

The value of such quantitative metrics is always 

relative in both cases, implying that they are the only tools 

accessible to specialists to evaluate clustering           

(Iglesias and Kastner, 2013; Han et al., 2012).  

In this case, two metrics are employed: 

Reconstruction and prediction. The nature of these two 

metrics is depicted in Fig. 1 (Shi and Pun-Cheng, 2019; 

Adhikari et al., 2015). 

 Reconstruction Metric 

This evaluation metric reconstructs the main data and 

the partition matrix by minimizing the sum of distances 

(Shi and Pun-Cheng, 2019): 
 

2

1 1
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m
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i k
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   (10) 

 

Such, ˆ
kx  is the reconstructed version of xk. If the 

gradient of F is set to zero, considering ˆ
kx , we have           

(Shi and Pun-Cheng, 2019): 
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Fig. 1: Evaluation metrics of the FCM algorithm (Shi and Pun-Cheng, 2019) 
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When reconstruction is complete, 1 2. .... nx x x  is the new 

dataset is constructed using Eq. 11. The reconstruction 

quality as the λ function is defined as follows: (Shi and 

Pun-Cheng, 2019): 
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2

j is the variance of the jth attribute. In this study, the 
Euclidean distance is used. The reconstruction error E(λ) 
is a function of λ and its minimum is determined inside a 
specific set of values of λ (Shi and Pun-Cheng, 2019).  

Prediction Metric 

Since the spatiotemporal data is comprised of 

spatial and temporal components, the centers of the 

cluster of this type of data also have spatial (v(s)) and 

temporal (v(t)) components. If the spatial component of 

each data and the spatial component of the cluster 

centers are known, a new partition matrix can be 

comprised, called 𝑈 ̃: (Shi and Pun-Cheng, 2019): 
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Also, the new partition matrix and the temporal 

component of the cluster centers (v(t)), can be used to 

minimize the sum of distances: 
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Such that x̂ (𝑡) is the predicted temporal component of 

the kth data. If the gradient of F is set to zero, considering

x̂ (𝑡), we have: 
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The prediction quality is evaluated using the following 

prediction error: 
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     (18) 

 

The prediction quality is calculated using the sum of 

normalized Euclidean distances between the temporal 

component and the predicted temporal component. 

Similar to the previous metric, the purpose is to minimize 

E(λ) by adjusting λ (Shi and Pun-Cheng, 2019).  

 Organization and Implementation  

This study employs data acquired by parking sensors in 

the CBD area of Australia, which totaled one gigabyte in 

2012. Each record contains information such as the district 

name, street name, arrival and departure times, and so on.   

Only spatial information was used to cluster the data 

in the first experiment. That is, each data simply has the 

latitude and longitude properties. The second experiment 

employs all spatiotemporal features. Spatial and temporal 

event information are both included in spatiotemporal 

information. The goal is to investigate the impact of 

temporal information on energy production. The results 

suggest that clustering spatiotemporal data reduces energy 

production when both spatial and temporal components 

are present. In this experiment, information for one day 

was chosen at random from a one-year total dataset.  

Clustering evaluation metrics were employed in the 

last experiment, including both the reconstruction and 

prediction metrics. One day is chosen at random. The 

energy function, as well as the evaluation metrics, are 

calculated as a result of the fuzzy clustering. 

The number of clusters in c-means has been chosen as 

an internal index by the Bayesian information criteria 

(Shao et al., 2016; Nerurkar et al., 2018). This suggests 

that the number of clusters chosen by c-means is nearly 

optimal. The R X-means clustering program is utilized, 

which chooses the best value of k automatically          

(Shao et al., 2016; Pelleg and Moore, 2000). After 

clustering with the methods described above, the energy 

functions E(t), E(s), density, and E(f) are computed.  

Data clustering with the Fuzzy c-means method will 

be done and the distance of each point from its cluster 

center, partition matrix, and the objective function will be 

calculated. Energy function, E(t), E(s), Density, and E(f) 

will be calculated.  
As mentioned in the introduction, common metrics for 

evaluating clustering methods cannot be applied to 
spatiotemporal data. Various evaluation methods are carried 
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out using cluster validation approaches. Cluster validation 
depicts the process of evaluating the clustering algorithm's 
results. Metrics such as energy function (E(f)), prediction, 
and reconstruction can be used to analyze this type of data.  

The purpose of the energy function is to increase the intra-
cluster similarity while decreasing the inter-cluster similarity. 
It should be noticed that this improves the cluster quality. 
Equation 19 specifies this function (Shao et al., 2016):  
 

( ) ( ) ( )spatial temporalE f E f E f   (19)   

 
E temporal (f) is used to measure the dissimilarity between f 

and the data observed in the time domain, whilst Espatial(f) is 

used to measure the similarity in the spatial domain: 
 

     
1

* .

p q p q

s T

f f L f f L

E f Dist p q Dist p q
    

 
   
 

   (20) 

 
Fp is the label for the point p. DistT is used to measure 

distance in the time domain.  is a constant parameter that 

is greater than one (>>1), implying that the relationship 

between the first and second parameters is linear.   

Measuring Distances in the 

Spatial-Temporal Domain 

As discussed above, in this study, the Euclidean distance 

is used to calculate spatiotemporally. DistS is determined 

using the following equation (Shao et al., 2016): 
 

     
2 2

S x x y yDist p q p p p q      (21) 

  
The length and width of the points p and q are 

represented by x and y.   
The distance in the time domain is determined as a 

density function, hence F and G are regarded as 
probability density functions in the following form: 
(Shao et al., 2016): 
 

 
2

( ) ( )F t G t dt



  (22) 

 

Similarity and Balance 

Both metrics are used to measure distance in space and 

time and measure intracluster similarity. Another point 

that should be considered is the balance of the clusters. 

This means that the distinction between each pair of 

clusters is negligible. Variance is a critical parameter. 

According to Eq. 5, variance is measured for this purpose: 

(Shao et al., 2016): 
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    (23) 

 

μ is the average size of all clusters, 𝑥𝑖 is the density of 

the ith cluster and k is the number of clusters.  

Density 

Here, a general definition of density in spatiotemporal 
data features space is given based on Eq. 6 (Shao et al., 
2016). Xi is a point in space. Pxi is the ratio of time events 
at this point to all events in the time domain. For example, 
the high incidence and length of parking violations at a 
specific point suggest that high-volume points can 
increase the burden of officers in these areas. As a result, 
Pxi has a significant impact on intra-cluster density in 
spatiotemporal dimensions (Shao et al., 2016): 
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.
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    (24) 

 

Results 

The simulation results are divided into two sections: 

Spatial and spatial-temporal. The spatial section of the 

data provides information about the location of each 

data, such as the length and width of the parking lot and 

the spatiotemporal section of the data contains 

information about the start and end times of each event.  
The clustering results of x-means, DBSCAN, and 

COBWEB methods are compared with the methods 
provided in this study, namely FCM, k-medoid, and 
TLBO, according to (Shao et al., 2016). 

Implementation Results of the Spatial Domain 

As can be seen in Table 1, the maximum energy in the 

FCM method is produced by cluster 7. Also, according to 

Table 2, the maximum energy in the k-medoid method is 

produced by cluster 2.  

It should be noted that the difference of the maximum and 

minimum energy by FCM (min = 0.087 and max = 2.0087) 

is less that x-means (min = 1,366.57 and max = 430,130) and 

DBSCAN (min = 0.9866 and max = 1,235,190).   

The number of iterations for implementation of TLBO 

is 8, 15, and 20 and the number of variables is 4.   

Implementation Results of the 

Spatiotemporal Domain 

In this section, information regarding the time and 

location of the events is used.  

As can be seen in Table 4, cluster 3 produces 

maximum spatial energy, while Cluster 9 produces 

maximum temporal energy. However, using the FCM 

approach, cluster 9 produces maximum energy. Cluster 

6 also produces minimum energy.  
As in the spatial domain, the difference between the 

maximum and minimum energy produced by the FCM 
technique with min = 0.96 and max = 19.50 is less than that 
produced by the x-means methods with min = 2.71 and max = 
26,281.5 and DBSCAN with min = 0.264 and max = 59,118.6.  

Also, for implementing the TLBO method, the 

number of iterations is 10, 15, and 20 and the number 

of variables is 4.  
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Figure 10 shows the temporal distribution of data for 
10 clusters in the FCM method. As can be seen in Fig. 5, 
the clusters are balanced and maximum energy is 
produced by cluster 9. 

Tables 4 and 5 compare spatiotemporal clustering 

approaches. The energy obtained from clustering using 

the aforementioned approaches is given in the Espatial and 

Etemporal columns. Equation 5 is also used to calculate 

Ebalance. The total Espatial, Etemporal and Ebalance of the          

x-means, DBSCAN, and COBWEB techniques are 

extracted and compared (Shao et al., 2016).  

The reconstruction and prediction metrics are used to 

measure the quality of the clusters. The results of these 

two evaluation metrics are given in Table 9. 

 

Table 1: Results of FCM clustering in spatial domain 

Clusters Espatial Etemporal Density 

Cluster 1  0.27291  0.330500  2.5000  

Cluster 2  1.91800  0.533000  7.0000 

Cluster 3  0.97402  1.294400  3.9000  

Cluster 4  0.25930  0.433500  2.1000  

Cluster 5  0.62090  1.144700  3.3000  

Cluster 6  0.46820  0.545400  4.4000 

Cluster 7  2.00780  2.553100  6.3000 

Cluster 8  0.08790  0.021000 1.4000  

Cluster 15  0.01790  0.064600  0.0218  

Cluster 20  0.00643  0.009321  0.0238  

Cluster 50  0.00254  0.004197  0.0293  

 
Table 2: The energy produced in k-medoid method in spatial domain 

Clusters  Espatial  Etemporal  Density  

Cluster 1  846.1400  15.3000  30.060  

Cluster 2  2041.0200  26.7400  28.980  

Cluster 3  1236.7900  16.1251  31.420  

Cluster 4  0.1698  0.0500  764.009  

Cluster 5  398.0100  67.8500  14.360  

Cluster 6  148.6700  23.1830  12.080  

Cluster 7  9.0040  2.8500  55.566  

Cluster 8  75.1100  10.5900  2.540  

Cluster 15  49.3590  9.8800  2.190  

Cluster 20  40.1290  9.0010  1.980  

Cluster 50  20.6500  5.3320  1.530  

 
Table 3: Implementation of TLBO in spatial domain 

Clusters  Worst score  Best score  

Cluster 8  83.3901  1.5767000  

Cluster 15  65.7681  0.0378560  

Cluster 20  55.2142  0.0029530  

Cluster 50  37.3420  1.021e-09  

 
Table 4: Results of clustering using FCM in Spatiotemporal domain 

Clusters  Espatial  Etemporal  Density  

Cluster 1  75.67000  13.9400 1.10 

Cluster 2  38.41000  9.6619  0.77  

Cluster 3  124.20000  16.2586  1.38  

Cluster 4  102.20000  15.3155  1.20 

Cluster 5  53.21000  13.9541  0.66  

Cluster 6  2.23000  0.9655  0.57  

Cluster 7  13.06000  11.1258  0.44  

Cluster 8  69.46000  15.5955  1.32  

Cluster 9  123.14000  19.5025  1.02  

Cluster 10  40.08000  16.3894  1.33  

Cluster 15  0.04300  8.1040  0.08  

Cluster 20  0.00340  2.0780 0.17  

Cluster 50  0.00046  1.6763  0.16  
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Table 5: Results of clustering using k-medoid in spatiotemporal domain 

Clusters  Espatial  Etemporal  Density  

Cluster 1  4326.0202  127.140 0.39  

Cluster 2  1087.7100  117.142  0.21  

Cluster 3  821.5500  92.453  0.14  

Cluster 4  2852.1900  51670.000 0.40  

Cluster 5  111.8270  522.879  0.11  

Cluster 6  31.3330  17.580  0.06  

Cluster 7  8.2000  3.240  0.05  

Cluster 8  16314.0800  1244.001  0.16  

Cluster 9  7.4600 4.303  0.12  

Cluster 10  1.4400  2.521  0.09  

Cluster 15  10.2423  6.713  0.05  

Cluster 20  5.9070  2.308  0.02  

Cluster 50  0.1100  1.790  0.01  

 
Table 6: Implementation using TLBO in the spatiotemporal domain 

Clusters Worst score Best score 

Cluster 10  65.7314  0.298920  

Cluster 15  53.5759  0.042091  

Cluster 20  63.9475  0.001570 

Cluster 50  43.6619  1.387e-09  

 

Table 7: Comparing the FCM, k-medoid and TLBO clustering methods 

 FCM   k-medoid 
 ----------------------------------------------  -------------------------------------------   

 Espatial Etemporal  Espatial Etemporal  TLBO 

Clusters (Total energy) (Total energy) Ebalance (Total energy) (Total energy) Ebalance Best score 

C = 8 6.60903  6.855600   1481.600  4754.913  162.6881  3,285.912 1.5767000  
C = 15 0.01790  0.064600  257.190  4804.272  93.8402  2562.927  0.0378560  

C = 20 0.00643  0.009321  4.631  4849.401  70.8302  1803.471  0.0029530  

C = 50 0.00254  0.004197  0.198  729.441  25.5600 584.301  1.021e-09 
Clustering in spatiotemporal domain 

C = 10 641.66000  132.708000  0.080  35,560.810  2,648.1290  0.190  0.2989200  

C = 15 640.70300  129.812800  0.050  25572.050  2690.5140  0.110  0.0420910  
C = 20 530.95000  98.147000  0.010 10539.250  536.7800  0.090  0.0015700  

C = 50 266.40000 53.180000  0.005  729.441  25.5600  0.080  1.387e-09  

 
Table 8: Comparing the energy generated by clustering methods (Shao et al., 2016) 

 Etemporal Espatial Clustering 

Ebalance (Total energy) (Total energy) method 

Clustering in spatial domain 

121،979.9 22’132.23 465’965.18 x-means 
22’717’033 43’606.79 1’241’492 DBSCAN 

Clustering in the spatiotemporal domain 

0.21 33’312.99 230’380.94 x-means 
0.95 59’425.45 1’107’414.5 DBSCAN 

8.18 51’247’869.73 46’194.95 COBWEB 

 
Table 9: Evaluation metrics of clustering 

Clusters Reconstruction metric Prediction metric 

Cluster 2 0.6802 1.4790 

Cluster 3 0.5130 1.2636 

Cluster 4 0.4197 1.1877 

Cluster 5 0.3615 1.1394 

Cluster 6 0.3564 5.3811 

Cluster 7 0.3487 5.0185 

Cluster 8 0.3446 4.8336 

Cluster 9 0.3369 4.2127 

Cluster 10 0.3227 3.9133 

Cluster 20 0.1100 1.7000 

Cluster 50 0.0500 0.0900 
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Fig. 2: Clustering using the k-medoid method in the spatial domain 

 

 
 

Fig. 3: Clustering using the FCM method in the spatial domain 
 

 
 

Fig. 4: Best scores for 8 iterations in the spatial domain 
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Fig. 5: Best scores for 50 iterations in the spatial domain 

 

 
 

Fig. 6: Clustering using FCM in the spatiotemporal domain 
 

 

 
Fig. 7: Clustering using k-medoid in the spatiotemporal domain 
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Fig. 8: Best scores for 8 iterations in the spatial domain 
 

 
 

Fig. 9: Best scores for 50 iterations in the spatiotemporal domain 

 

 

 
Fig. 10: Temporal distribution of data for 10 clusters in the FCM method 
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Fig. 11: Results of evaluation criteria 

 

Discussion 

In the spatial domain, as shown in Fig. 2 and 3, the 

FCM method is more balanced than the k-medoid method 

and the small value of density represents that intra-cluster 

distribution is normal. 

Also, according to (Shao et al., 2016), maximum 

energy E(s) and E(t) are produced by the last cluster in the 

x-means method and the clusters in this method are 

unbalanced. In general, the x-means method is more 

balanced compared to the DBSCAN method and the FCM 

approach uses less energy than the two methods discussed 

(Shao et al., 2016), x-means and DBSCAN and the proposed 

k-medoid method is more balanced, and efficient than              

x-means. This suggests a normal intra-cluster data 

distribution, which improves the FCM method's similarity 

and balance. This method, in general, is more balanced and 

uses less energy than the x-means and DBSCAN methods. 

As can be seen in Table 3, Fig. 4 and 5, by 

increasing the number of clusters, the obtained score 

decreases, which indicates that the performance of this 

algorithm is improved. 

In the Spatiotemporal domain temporal component 

is used and the purpose is to examine the effect of 

temporal information on energy reduction. The number 

of clusters is 10. 

Finally, the results of the mentioned methods are 

compared with those of the methods mentioned in 

(Shao et al., 2016).  

The spatial and temporal energy generated by the 

FCM method is lower in the spatiotemporal domain 

than the energy generated by the k-medoid approach, 

as shown in Tables 4 and 5. This method uses less 

energy than the x-means method except for clusters 8 

and 9. Thus, it has enhanced the energy production 

process compared to the x-means technique, 

demonstrating the superior performance of the 

proposed methods in spatiotemporal data clustering. 

Also, Fig. 6 and 7 show more equilibrium than the 

methods mentioned in (Shao et al., 2016). 

As in the spatial domain, in the spatiotemporal domain, 

this reflects the normal intra-cluster distribution, which 

increases similarity and balance in the FCM approach. 

Furthermore, because of using the time parameter, the 

energy E(t) and E(s) produced in the spatiotemporal 

domain are less than the energy produced in the spatial 

domain. In this case, the x-means method outperforms the 

DBSCAN method. Although the COBWEB approach is 

more balanced in the spatiotemporal domain than the 

DBSCAN method, it has not improved compared to the x-

means method, according to (Shao et al., 2016).  

In general, the results of the FCM approach are not much 

better than the DBSCAN method because the DBSCAN 

method has less energy in half of the clusters, according to 

(Shao et al., 2016). In terms of energy production, it can be 

determined that this approach is more efficient than the FCM 

method. However, it produces substantially less energy than 

the x-means technique.  

According to Table 6, Fig. 8 and 9, by increasing 

the number of clusters, the obtained score decreases.   

When diverse time intervals are included in a cluster, 

the cluster produces less energy. DBSCAN, which has 

maximum energy, cannot partition the time domain into 

different time intervals. As a result, clustering algorithms 

that can divide the temporal domain into various intervals 

are likely to use less energy (Shao et al., 2016). The FCM 

approach generates a smaller Ebalance and is more balanced 

in both spatial and temporal domains than previous 

methods. This is because FCM uses a new distance 

function. Because effective regulation of the time section 

makes the data more balanced. 

According to Table 7, when comparing Ebalance, the 

FCM technique outperforms the k-medoid method in 

both spatial and spatial-temporal domains, owing to the 

usage of the fuzzy method. Because of its independence from 

the control parameter, the TLBO approach outperforms the 

proposed methods significantly in the spatial domain. 

However, when clustering with 10 clusters in the 

spatiotemporal domain, the TLBO approach improves 

performance less than the other methods, but this problem is 

resolved by increasing the number of clusters.  

By comparing the values of Ebalance in Tables 7 and 8, it 

can be concluded that all three methods outperform the          

x-means and DBSCAN clustering methods in the spatial 

domain, and the FCM and Kmedoid methods outperform the 

x-means, DBSCAN and COBWEB in the temporal domain.   

When using TLBO with 10 clusters, no improvement 

is achieved, but by increasing the number of clusters, the 

performance of this method improves compared to the 

methods mentioned in Table 8.  

As can be seen, in Fig. 11, as the number of clusters 

increases, both metrics decrease. The smaller the values of 

the evaluation metrics, the quality of the clusters is higher.  
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Conclusion 

As previously stated, significant amounts of 

spatiotemporal data are generated and recorded by systems 

that record sequential remote sensing, mobility, and social 

media data (sensors). These intricate and implicit 

relationships are very dynamic. Finding solutions to ensure 

real-time data, latency, network congestion, and recognizing 

links between sensors and spatial heterogeneity are all 

challenges when dealing with this type of data.  

Because of the complexity of spatiotemporal data, 

clustering this type of data presents several problems and 

challenges, including 1-continuous and discrete  

changes in the spatial and non-spatial features of 

spatiotemporal objects and 2-the effect of neighboring 

spatiotemporal objects on each other.  

Because of the challenges highlighted in this study, 

three strategies were utilized to cluster spatiotemporal 

data. The results of the proposed method were compared 

to those of other approaches. The following can be 

mentioned according to the findings. 

The distance function in the FCM clustering technique 

is employed in this research, in which its time domain is 

discriminated from the spatial domain with the weight 

parameter . When data contains both space and time 

parameters,  = 1 is used, whereas when data just contains 

spatial information,  = 0 is used. This enables the data's 

temporal component to be calculated efficiently.  

It can be concluded that clustering spatiotemporal 

data with a fuzzy method in which the temporal 

component's effect is regulated by a parameter such as 

weight can boost intra-cluster similarity and balance 

while reducing energy generation. In spatiotemporal 

data clustering, the FCM approach uses minimum 

energy in both the spatial and temporal domains. 

The k-medoid approach uses less energy than the          

x-means method and it has been enhanced since it 

calculates the mean point by finding the nearest real point 

in the dataset. As a result, it outperforms x-means. Also, 

according to the obtained data, the TLBO approach 

outperforms the other two methods because it does not 

rely on any algorithm parameters other than population 

size and the maximum number of iterations.  

The focus of this study is on spatiotemporal data and it 

can be extended to other types of data like time series data.   

As mentioned, the parameter  is used in calculating the 

distance of the FCM algorithm. In future works, the effect of 

using this parameter on the energy function can be studied.   
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