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Abstract: As long as natural language processing applications are considered 

prediction problems with insufficient context, usually referred to as a single 

sentence or paragraph, this does not reveal how humans perceive natural 

language. When reading a text, humans are sensitive to much more context, such 

as the rest or other relevant documents. This study focuses on simultaneously 

capturing syntax and global semantics from a text, thus acquiring document-level 

understanding. Accordingly, we introduce a Topic-Transformer that combines 

the benefits of a neural topic model that captures global semantic information 

and a transformer-based language model, which can capture the local structure 

of texts both semantically and syntactically. Experiments on various datasets 

confirm that our model has a lower perplexity metric compared to standard 

transformer architecture and the recent topic-guided language models and 

generates topics that are conceivably coherent compared to those of regular 

Latent Dirichlet Allocation (LDA) topic model. 
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Introduction 

Several research studies have been dedicated to developing 

efficient probabilistic models of documents. Topics or latent 

variables are often included in these models, whose purpose is 

to apprehend unique statistical patterns in conjunction with 

documents. From the topic models standpoint, most of them 

are bag-of-words models where the ordering of words is 

overlooked, which is an excellent way to gain the global 

semantics. In another case, this can be a good reason why       

bag-of-words models do not work efficiently on natural 

language understanding tasks. Topic models have another 

limitation which s that they withdraw the stop words wince 

they do not carry any semantic meaning. 
In another dimension, language models are one of the 

foundational methods of the NLP field that is useful in 
several tasks, including sentiment analysis (Hourrane and 
Idrissi, 2019b), machine translation (Koehn, 2009; 
Hourrane and Idrissi, 2019a), citations analysis and 
bibliometrics (Beskaravainaja and Kharybina, 2020; 
Hourrane et al., 2018); plagiarism detection (Hourrane 
and Benlahmar, 2017; Hourrane and Benlahmer, 2019); 
and many more applications. Recently, much progress has 
been made by neural methods based on Recurrent Neural 
Networks (RNN) (Mikolov et al., 2010), Convolutional 
Neural Networks (CNN) (Gehring et al., 2017); and 
self-attention networks known as Transformers 
(Vaswani et al., 2017). These language models usually 

predict the probability of textual tokens, most of the time 
at the sentence-level, considering that independence of 
sentences between each other. However, these models lack 
the capacity of capturing long-term dependency. Instead, 
they concatenate all the sentences and add a unique token to 
mark sentence boundaries. The cost of this simple approach 
is that the model size may quickly increase with the input 
sequence length, making it hungrier for computation, 
memory and data size and more difficult to train. 

Motivated by the limitations above, we propose the 
Topic-Transformer, a new approach to learn the topic and 
language models jointly. More specifically, we 
incorporate the advantages of a topic model that captures 
global semantic information and a transformer-based 
language model, which efficiently represents the local 
structure of text both semantically and syntactically, which 
grants us to both sensitize the language model predictions to 
the long-range document record using topic vectors and to 
produce topics that are coherent to the local context. We 
conduct some experiments and exhibit that our approach is 
indeed apt to remarkably decrease the language model's 
perplexity and practically detect coherent topics. 

Related Works 

Several previous methods have been proposed to 

ameliorate the results of language models. 
A Sentence Level Recurrent Topic Model (Tian et al., 

2016) assume that the words in the same sentence share 
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the same topic and that the generation of a single word 
relies on the historical words in the same passage. For 
that, they used an LSTM with word embedding as input 
and for the topic model, similar to LDA, they assume 
there is a k-dimensional Dirichlet prior distribution of the 
topic mixture weight of each document. So, the historical 
words and the sentence's topic jointly affect the LSTM 
hidden state and the next word. Finally, the authors adopt 
the mean-field variational inference method for the 
posterior approximation of hidden variables. 

At a document level, the Topic-RNN model (Dieng et al., 

2016) aims to capture the semantics connecting words in 

a text/document through latent topic vectors. More 

precisely, this model combines an RNN-based language 

model that captures syntactic or local dependencies and a 

topic model that captures the semantics and the global 

dependencies. At first, draw a topic vector for the document 

using a normal distribution. Then, they compute the hidden 

state for each word in the document and draw a stop word 

indicator using the sigmoid function to control how the topic 

vector influences the output. The topic vectors are utilized as 

a base instead of through the RNN's hidden states. For the 

model inference, the authors used the vocational objective 

function, and they chose to infer the topic vectors by 

employing a feed-forward neural network. 

In the same context, another model (Lau et al., 2017), 

uses the convolution max-pooling encoder that takes as an 

input word representation and produces a single document 

vector, which is then blended with the topic vectors passing 

through an attention mechanism that calculates the weighted 

average of topic vectors. These vectors predict the next term 

in the text/document. The authors used an LSTM language 

model that includes the weighted topic vectors to predict the 

following terms; they added an extension that includes some 

other metadata and document labels. 
Moreover, a topic compositional neural language 

model (Wang et al., 2018) represents a method that 
captures both and simultaneously the global semantics 
and the local structure of a document. First, to learn the 
global semantic meaning and parameterize the 
multinomial topic distribution, the authors used a 
Random Gaussian vector passing through a Soft max 
function. Moreover, to learn the local structure of the 
document, they used as a language model Mixture-of-
Expert (MoE) where each expert is an LSTM model. 

An alternative approach introduces a Topic-Guided 
Variational Autoencoder (TGVAE) (Wang et al., 2019) 
as a language model. This model uses a Gaussian 
mixture model GMM tuned by a topic model, which is 
learned jointly with the VAE model. In addition, the 
author used an inference method based on the Household 
flow that generally encourages the complexity and 
diversity of the learned topics. 

While these topics-guided language models have 
shown potentiality, they have other drawbacks. For 
instance, some of these models employ only pre-trained 
topic models. Another critical limitation lies in combining 

the learned topics in the language model, primarily by adding 
the topic vectors as additional features of a neural network. 

Preliminaries 

This section summarizes the background behind building 
the Topic-Transformer model, including constructing the 
latent topic model and neural language model. 

Probabilistic Topic Modeling 

Probabilistic subject models are based on statistical 
methods to identify conceptual subjects to which parts of the 
text might be attached. To achieve this, they infer the latent 
semantic structure underlying long-range unstructured text 
data. Using statistical co-occurrence models among words in 
documents, probabilistic subject models and their changes 
are excellent for retrieving overall semantics. However, they 
generally tend to suffer from document word disorder due to 
an unreliable hypothesis-Word exchange in models. 

One of the conventional topic models is Latent Dirichlet 
Allocation (LDA) (cite LDA). It gives a scalable and robust 
approach for text modeling by including latent variables of 
each word, which indicate the topic distribution. The 
generative process of LDA can be summed as follow: 
 

     0 , ,n n nt Dir z Discrete t w Discrete z 
 

 
where, t expresses the topic proportion of a document d. 
For n  [0, Nd] where Nd is the number of words in d, zn 

represents the topic assignment for word wn, 0 is the 
hyper parameter of the Dirichlet prior and bzn denotes the 
distribution over words for topic zn. The marginal 
likelihood is represented as follow: 
 

0( , ) ( ( ( )
nn

t n nzzn
p d p t p w p z t dt     (1) 

 

Neural Language Modeling 

Language modeling embodies a crucial part in various 

natural language processing applications. Several language 

models exist, starting from a regular n-gram model to the 

most popular Transformer models, which try to answer the 

problem of correctly predicting the next word starting from a 

sequence of historical words. A language model aims to learn 

a probability distribution across a sequence of words in a 

pre-defined vocabulary. Let us denote V as the vocabulary 

set and 1 ,...,
vN

y y as a sequence of words with each yn V. 

The likelihood of the sequence is defined through a joint 

probability distribution as follows: 
 

   1 1 1: 12
,...,

v

v

N

n nN n
p y y p y p y y 

   (2) 

 
Recurrent Neural Network-based language models 

(Mikolov et al., 2010) define the conditional probability 
of each word in through the hidden state ℎ𝑛 given all the 
previous words y1:n-1: 
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   1: 1n n n np y y p y h   (3) 

 

 1 1,n n nh f h y   (4) 

 
where the function f(.) can be replaced by either a 

Short-Term Long Memory (LSTM) cell (Hochreiter and 

Schmidhuber, 1997), or a Gated Recurrent Unit (GRU) cell 

(Chung et al., 2014); While Recurrent Neural Networks 

achieved state-of-the-art performance on language modeling 

task, a recent neural network architecture called the 

Transformer which is based on the attention mechanism, also 

becomes very competitive (Vaswani et al., 2017); While the 

LSTM performed back-propagation through time by giving 

the model the last hidden state of the previous iteration, the 

Transformer passes all the previously hidden states to the 

current batch, to provide context to the first words in the 

batch. More specifically, the Transformer trains a neural 

network with parameter q to minimize the negative log-

likelihood over a dataset D = {X1,…,X|D|}: 
 

   1
log

D k k

i iK
L D p x x 

  (5) 

 

The Topic-Transformer Models 

We introduce our Topic-Transformer model as shown 

in Fig. 1 (a). Our model is a composition of a topic model 

and a transformer-based language model. The topic model 

tries to captivate the long-range semantics in the text, 

while the Transformer is intended to detect both the local 

semantic and syntactic relationships between words. This 

arrangement attempts to get better overall performance on 

document-level NLP tasks. 

The Model 

The generative process of the Topic-Transformer 

model is as follows: 
 

1. Get the topic vector  2

0, .N    

2. Given the word y1:n-1 for the n-th word 𝑌𝑛 in the 

document: 

(a) Perform the transformer encoding for each word 

in the sequence and get the output vector as 

follow: 1 1... .n nz z z     

(b) Get the stop word indicator: 

ln ∼ Bernoulli(σ(ΓTzn) s With  being the 

Sigmoid function. 

(c) Get the word yn ~ p(yn|zn, ln, , B) where: 
 

    , , , exp 1T T

n n n i n iP y i z l B v z l n b      (6) 

 

where, N(, 2

0 ) is an isotropic Gaussian distribution, with 

 as the mean and 2

0  
as the variance in each dimension. 

We pass the Gaussian vector into a Soft max function to 

fine-tune the multinomial topic assignments. Rather than 

utilizing the Dirichlet distribution, we prefer to use the 

Gaussian distribution, since it presents more flexibility in 

the next-word prediction task and also has benefits 

throughout the inference stage. 

Then, we pass the input words to the transformer 

encoders, as depicted in Fig. 1 (b). An encoder takes each 

word's embeddings and positional encoding in the text 

sequence. The self-attention mechanism takes the 

resulting encoding vector and calculates their pertinence 

to form the output encoding, which an anticipatory neural 

network will then treat. This process is iterated based on 

the number of encoding layers from the model sittings. 

 Next, we add ln as the stop word indicator that manages 

how the topic vector 𝑞 affects the output (Dieng et al., 2016). 

If ln = 1, it indicates that yn is a stop word, hence, the topic 

vector 𝑞 has no supplement to the output.  

Finally, a bias value is appended and calculated to favor 

more probable words to arise when crossing with𝑞.  

As shown in Fig.1 (a), we indicate all model parameters 

as Q = {G, V, B, W, Wd}, with Wd being a parameter for the 

inference network. The marks are the word sequences y1:N 

and the stop word indicators l1:N. Therefore, the log marginal 

likelihood of the sequence 𝑦1:𝑁 is as follows: 

 

     1: 1: 1: 0
log , log ( ) , ,

N

N N N n n n n nn
p y l Z p p y z l p l z d  


   (7) 

 

Model Inference 

We use variational inference for our model inference 

(Blei and Jordan, 2006). We denote q( )to be the variational 

distribution on the marginalized variable . As a result, we 

build the variational loss function, also named the Evidence 

to Lower Bound (ELBO), which can be inscribed as follows: 

 

 

   

1: 1: q

1

, ( ), , ( )

( )
log , , log log

( )

N N

N

n n n n nn

L y l q

p
p y z l p l z

q

 






 

 
  

 


 (8) 

 

 1: 1:log ,N N np y l z   (9)  

 

where, q() is a fully-connected neural network with 

batch normalization and dropout. The topic distribution 

q(|Xd) for each document d is written as follows: 

 

      ( ) , expd d dq X N g X diag g X    (10) 

 

where, g(.) and g(.) are feed-forward neural network 

implementations and Xd is bag of words of document d. 

We then apply stochastic samples from q(X) and the       

re-parameterization trick of (Kingma and Welling, 2013) 

to create an low-variance and unbiased gradient estimator.
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Fig. 1: (a) The Topic-Transformer joint learning framework, (b) The transformer encoder that takes as inputs word embeddings and 

gives as outputs transformer-based word encodings 

 

Computation Complexity 

Our model complexity is of O (t2 L  N  V   K + 

Wd) The transformer part accounts for O (t2 L  N) 

where t is the sequence length, L is the number of layers 

and N is the number of neurons in each layer. In 

addition, V is considered the dimension of the 

vocabulary, K is the size of the topic vector and Wd 

indicates the number of parameters of the inference 

neural network. 

Experiments and Results 

In this section, we evaluate our Topic-Transformer 

model on both language modeling and topic modeling 

tasks. Then, we employ this model on document 

clustering and interpret the overall results both 

quantitatively and qualitatively. 

Language Model Evaluation 

Datasets 

We assess our method on conventional benchmark 

datasets for language modeling: WikiText-2             

(Merity et al., 2017); and the Penn Tree-Bank (PTB) 

(Marcus et al., 1993); Table 1 describes the statistics. 

The vocabulary of the two datasets includes the special 

token [eos] that symbolizes the end of a sentence and 

[unk] symbolizes uncommon words. Since the 

inference network necessitates as input the                     

bag-of-words, the vocabulary dimension of the 

inference neural network is reduced to 32314 after 

eliminating 964 stop words from WikiText-2 and 9551 

after eliminating 449 pre-defined stop words for the 

PTB dataset. 

Metrics and Settings 

We used these preprocessed datasets for fair 

comparison using the perplexity metric which is 

surprising for a language model. It is calculated as the 

exponential of the average negative log-likelihood. 

Regarding the topic modeling part, we adopted a             

2-layer neural network to learn the function q(|Xd), 

within each layer 200 hidden units and the ReLU Nair and 

Hinton (2010) as the loss function and we experiment 

with different numbers of topics; 30, 50 and 100 

respectively. Regarding the baseline and the 

transformer encoder of our model, we consider 2 

settings: (i) 2-hidden layers with 2 attention heads in 

each layer, (ii) 4-hidden layers within each layer four 

attention-heads. The dimension of both input 

embedding and the feed-forward network model is 200.To 

mitigate overfitting, we used a dropout function with a 

rate of 0.2 in both the topic model and the transformer’s 

hidden layers. Furthermore, adaptive Softmax is used 

to speed up the training process. Throughout the 

training, all the hyper-parameters are fine-tuned based 

on the performance of the validation dataset. We 

empirically find that these settings are logically robust 

and optimal over the two datasets. All the experiments 

were carried out using Pytorch. 

 
Table 1: Statistics of PTB and WikiText-2 

 PTB WikiText-2 

Vocabulary 10 000 33 278 

#Train Tokens 929 590 2 088 628 

#Validation Tokens 73 761 217 646 

#Test Tokens 82 431 245 569 
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Baseline 

We examined our proposed model with diverse 

quantities of topics and diverse quantities of layers and 

heads and compare it with 6 different methods: (1) A 

regular Transformer (Vaswani et al., 2017); with the same 

settings we set for our model; (2) the ”Topic-RNN” which 

is a mutual learning model that learns concurrently an 

RNN-based language model and a topic model (Dieng et al., 

2016); (3) the ”TDLM” which is a joint learning model 

that learns concurrently a language model and a 

convolution-based topic model (Lau et al., 2017); (4) the 

”TGVAE” which is a joint learning framework that learns 

concurrently a VAE-based neural sequence model and a 

topic model (Wang et al., 2019). 

Results 

Table 2 shows the results of our Topic-Transformer 

model which achieves superior performance across the 

two datasets than the baselines, demonstrating the 

practical merit of our model. Our Topic-Transformer 

achieves a lower perplexity score among a relatively 

greater quantity of layers and heads. It is important to 

regard that lately numerous large transformer models 

have been suggested as language models, like BERT 

(Devlin et al., 2018); Transformer-XL (Dai et al., 2019); 

and T5 (Raffel et al., 2019). In this study, we aimed at a 

comparably shallow transformer model for a reasonable 

judgment. Therefore, we are apt to presume that the higher 

results metrics are primarily a result of our topic-guided 

language modeling approach. Furthermore, by adding 

more layers and heads to the transformer, we get a reduced 

perplexity. Therefore, we conclude that if we increase the 

size of the transformer encoder in our model in a 

comparable way with the large transformers mentioned 

before, this can lead to even more improved results, 

showing the efficiency of including global semantics such 

as topics. We additionally perceive steady advances while 

lowering the number of topics, the thing that proves the 

performance of our Topic-Transformer. 

Topic Model Evaluation 

Dataset 

We conduct further experiments and analysis on a 

NeuIPS scientific papers dataset (Perrone et al., 2016); 

specifically to evaluate the global semantic coherence of 

the documents driven from the topic model side of our 

joint learning framework. This dataset includes around 

9717 extracted text for all NeurIPS papers ranging from 

the first 1987 conference to the 2016 conference. In the 

preprocessing steps, we lowercase all characters; tokenize 

words and sentences using Stanford CoreNLP 

(Manning et al., 2014) and filter unique words that occur 

less than ten times. For the topic model, we also remove 

stop words and the top 0.2% most frequent words. 

Metrics and Settings 

We assess the quality of the learned topics by examining 

the coherence of insinuated topics (Mimno et al., 2011). In 

fact, we try to average the coherence of topics upon the 

topmost 10/30/50 topic words. For quantitative comparison, 

we use the following baseline models: The TF-IDF model 

(Ramos, 2003); the LDA model (Blei et al., 2003); and a 

standard Transformer model with 4-layers 16-heads. For the 

settings, we used the same setting as in the previous section, 

we chose the 4-layers 16-heads option since it gives us better 

results in language modeling evaluation. Additionally, as we 

perform the document clustering task, we also evaluate our 

method by using the silhouette value (Aranganayagi and 

Thangavel, 2007), which is a measure of how similar an 

object is in its own cluster compared to other clusters, to 

demonstrate the logic of our method. The result of the 

clustering is shown in  Fig. 2 where we compare our models 

with the TF-IDF model and a basic transformer for 

qualitative analysis. 

Results 

The results are depicted in Table 3. The Topic-

Transformer gains encouraging results, with the best 

coherence across the scientific papers corpus. Additionally, 

the advantage of our Topic-Transformer over a standard 

transformer and LDA indicates that our method provides 

more robust topic guidance. Subsequently, to fully 

comprehend the topic model and confirm that the Topic-

Transformer learns perceivable topic-based priors, multiple 

samples as drawn from each mixture element and visualize 

them with t-SNE (Van der Maaten and Hinton, 2008). As 

shown in Fig.2 we have learned a group of separable clusters, 

which are more distinguishable comparing with a simple TF-

IDF model and a basic transformer. Each cluster maintains 

semantic meaning in the latent space. We additionally draw 

some inferred topic assignments of a sample of documents 

using the Topic-Transformer;  10 topics for 10 documents as 

for instance in Fig. 3. Same as the regular topic models, those 

distributions are too approximately sparse. Those qualitative 

analyses moreover confirm that the presented method 

completely gathers the sense of topic. 

 
Table 2: Comparison of perplexity on PTB and WikiText-2 datasets 

 PTB WikiText-2 

Topic-RNN 179.23 270.13 

TDLM 171.01 244.65 

TGVAE 160.84 250.03 

Standard Transformer (2-layers 4-heads) 162.75 263.37 

Standard Transformer (4-layers 16-heads) 157.53 239.29 

Topic-Transformer (2-layers 4-heads, 30 Topics) 154.84 276.72 

Topic-Transformer (2-layers 4-heads, 50 Topics) 156.02 232.69 

Topic-Transformer (2-layers 4-heads, 100 Topics) 179.48 253.98 

Topic-Transformer (4-layers 16-heads, 30 Topics) 108.73 213.38 

Topic-Transformer (4-layers 16-heads, 50 Topics) 160.63 198.93 

Topic-Transformer (4-layers 16-heads, 100 Topics) 151.30 227.62 
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Table 3: Silhouette and topic coherence comparison over NeurIPS papers dataset 

Method Silhouette Coherence 

TF-IDF 0.012 0.517 

LDA None 0.476 

Transformer 0.061 0.536 

Topic-Transformer 0.205 0.561 

 

 

 

Fig. 2: Inferred distributions using Topic-Transformer on 10 different documents and 10 topics 
 

 
 

Fig. 3: The t-SNE visualization of NeurIPS papers drawn from TF-IDF, basic transformer and the learned Topic-Transformer models 
 

Conclusion 

This study introduces the Topic-Transformer 

model, a novel approach to jointly learn a language 

model and atopic model for a better document-level 

language understanding. The topic model captures 

global semantic information and the transformer-based 

language model captures the local structure of a 

sequence both semantically and syntactically.          

Topic-Transformer produces rival perplexity on the 

WikiText-2 and PTB datasets as opposed to a basic 

Transformer model and the existing topic-guided 

language models. We have also demonstrated the 

ability of Topic-Transformer to produce coherent 

topics. In future work, we may extend the Topic-

Transformer parameters and fine-tune them for various 

natural language understanding downstream tasks. 
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