

 © 2022 Eddy Muntina Dharma, Yaya Heryadi, Lukas, Wayan Suparta and Antoni Wibowo. This open access article is

distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

 Journal of Computer Science

Original Research Paper

Predicting Depression Levels using Back Propagation

Neural Network

1Eddy Muntina Dharma, 1Yaya Heryadi, 2Lukas, 3Wayan Suparta and 1Antoni Wibowo

1Department of Computer Science Bina Nusantara University, Jakarta, Indonesia
2Department of Cognitive Engineering Research Group, Atmajaya University, Jakarta, Indonesia
3Department of Electrical Engineering, Institut Teknologi Nasional Yogyakarta, Sleman, Indonesia

Article history

Received: 21-11-2022

Revised: 15-02-2022

Accepted: 19-02-2022

Corresponding Author:

Eddy Muntina Dharma

Department of Computer

Science Bina Nusantara

University, Jakarta, Indonesia
Email: eddy.dharma@binus.ac.id

Abstract: Depression is a mood disorder characterized by feelings of deep

sadness and a sense of indifference. When depression recurs in moderate or

severe intensity, it can be a serious health condition. The most effective way

to deal with this problem is to predict the symptoms of depression at an early

stage. In this study, a Back Propagation Neural Network (BPNN) model is

proposed to predict whether a person is categorized as mild, moderate, or

severe depression based on Beck's Depression Inventory (BDI) data. There

are 21 BDI data items that are used as predictors in the built BPNN model.

The dataset used is 227 patients and divided into 2 categories, namely 181

observations (80%) as training data and 46 observations (20%) as test data.

While the BPNN model that is built has 21 neurons in the input layer, one

hidden layer with 21 hidden neurons and 4 neurons in the output layer. After

testing, it was found that the BPNN model is able to predict the level of

depression with F1-Score of 100, 95.65, 90.91 and 95.24% for the

classification of normal, mild depression, moderate depression and severe

depression, respectively. Overall, the accuracy level reached 95.65%. This

study concluded that the proposed model can help doctors or psychiatrists to

predict depression at an early stage, whether it is classified as mild, moderate,

or severe depression, so that the patient can receive appropriate treatment.

Keywords: Depression, Back Propagation Neural Network, Beck's

Depression Inventory

Introduction

Based on data from the World Health Organization

(WHO), depression is a mental disorder that affects more

than 280 million people worldwide (WHO, 2021). It is

characterized by persistent deep sadness, a sense of

indifference and a lack of interest or pleasure in activities

that were previously beneficial or pleasurable. A person is

declared depressed if she/he has felt sad, hopeless, or

worthless for 2 weeks. Depression is different from the

usual fluctuations in mood and short-lived emotional

responses toward challenges in everyday life. Especially

when it is repeated and of moderate or severe intensity,

depression can be a serious health condition. This can

cause the affected person to suffer greatly and function

poorly at work, at school and in the family, changes in

appetite and weight, changes in sleep and activity quality,

weakness, feelings of guilt, problems with thinking and

make decisions (difficulty concentrating). This condition

is very worrying, where at worst, depression can lead to

suicide. Therefore, the ability to predict the depression at

an early stage, whether it is classified as mild, moderate

or severe depression, would be considered as the most

effective method to overcome this problem. Thus, the

patient can receive appropriate treatment.

Related Work

Several methods have been proposed to predict

whether a person is categorized as depressed or not,
including Lam et al. (2019), using a Convolutional Neural

Network (CNN) algorithm with acoustic features as the

predictor. This study produces performances including
F1-Score of 0.87, Precision of 0.91 and Recall of 0.83.

Furthermore, Sen et al. (2018), used s-MRI and rs-fMRI
as predictors and produced an accuracy of 64.3%. In the

study of Pinaya et al. (2019), also used s-MRI as a

predictor and resulted in an accuracy of 63.9%. Next,
Aghdam et al. (2018), using s-MRI and rs-fMRI data as

predictors) and Deep Belief Network (DBN) algorithms.
The dataset used is a combination of Autism Brain

Eddy Muntina Dharma et al. / Journal of Computer Science 2022, 18 (3): 151.161

DOI: 10.3844/jcssp.2022.151.161

152

Imaging Data Exchange I and II (ABIDE I and ABIDE
II). DBN was used to focus on a combination of resting-state

fMRI (rs-fMRI), Gray Matter (GM) and white matter
(WM) data. The performance obtained is accuracy =

65.56%, sensitivity = 84%, specificity = 32.96%, F1 score
= 74.76%. In the following year, Aghdam et al. (2019)

again refined their study by adding Adam's optimization,

so that the results obtained were showing an accuracy of
= 0.7045, sensitivity = 0.679, specificity = 0.7421.

Another study that also used the rs-fMRI predictor was by
Wang et al. (2019) where they used prediction models

such as SVM-RFE and Stacked Sparse Auto-Encoder

(SSAE) and the accuracy obtained was 93.6%. Zhao et al.
(2019) has used a Hierarchical Attention Transfer

Network (HATN) approach, which analysed depression
based on the emotions contained in the speech. The results

of the trial on the Patient Health Questionnaire (PHQ)-8
scale which has a scale of [0, 24] show that the technique

used Reaches Mean Square Error (RMSE) = 5.51 and

Mean Absolute Error (MAE) = 4.20.
From those studies above, it is mostly limited to yield

a prediction whether a person is categorized as depressed

or not but also to predict whether a person was categorized

as having mild, moderate, severe or normal depression.

The model proposed in this study is called the Back

Propagation Neural Network (BPNN) model

accompanied by the use of a predictor called Beck's

Depression Inventory (BDI) data, for a total of 21 items.

BPNN was selected in this study because the dataset used

has been classified, therefore, supervised learning is the

suitable type of learning model to be applied where BPNN

is one of the models of supervised learning.

While BDI is a psychometric test that is used to

determine the symptoms that arise in someone who may

be experiencing depression. The BDI was developed by

the United States psychiatrist, Aaron T. Beck, with his

colleagues and was first published in 1961. This test is one

of the most frequently used psychometric tests and has

been tested for validity in various studies in several

countries and is considered consistent and feasible to use

(Wang and Gorenstein, 2021).

Methods

The stages in this study is described in Fig. 1,

starting from dataset collection then continued to

training process, model testing and finally it is ended

by calculating the accuracy.

Dataset Determination

The dataset used in this study was taken from the

Denpasar Mental Health Centre, Bali, Indonesia with the

number of dataset is 227 patients, within 4 classification

patient’s condition such as: 63 People are normal patients,

50 mild patients, 68 Moderate patients and 46 Severe

patients. Those 227 data, then divided into 181 data (80%) as

training data and 46 data (20%) as test data. Sample of the

used dataset chunk is shown on the Fig. 2.

The number of predictor features used as input data is

21 predictors representing the scale of: Feelings,

pessimism, feeling of failure, satisfaction, feeling guilty,

feeling punished, hate for yourself, self-pattern, wishes of

self-denial, cry irritability, social withdrawal,

indecisiveness, physical identity, reduce productivity,

sleep disorders, easy fatigue, loss of appetite, weight loss,

subchondral disturbances and loss of libido.

Furthermore, all the predictor values above are

normalized to a value between [0,1].

The number of target (output) patterns is one, with

different 4 classifications as follows:

1. NORMAL (Normal)

2. RINGAN (Mild depression)

3. SEDANG (Moderate depression)

4. BERAT (Severe Depression)

The target feature is encoded using one-hot encoding,

as it shown on the Table 1.

One Hot Encoding is a process in which data

processing is applied towards categorical data, converted

into a binary vector representation and applied on

machine learning algorithms. In this study, One Hot

Encoding was used because of the target (output) patterns

of the used dataset was in the form of categorical data

within 4 categories (Normal, Mild, Moderate, Severe). In

fact, the use of other encodings such as text encoding or

integer encoding on categorical data may result in poor

performance or unexpected results, therefore, one hot

encoding is selected. So that, the dataset in Fig. 2 will

change as shown in Fig. 3.

Determining the BPNN Architecture

The BPNN architecture used consists of 3 layers,

called Input Layer, Hidden Layer and Output Layer (Fig. 4).

The number of neurons in each layer can be briefly

described as follows:

 The Input Layer consists of 21 neurons, which receive

21 predictor inputs (X1, X2, X3,, X21)

 Hidden Layer consists of 21 neurons. There is only

one hidden layers used in this study. According to

Fausett (1993), one hidden layer is sufficient for a

backpropagation net to approximate any continuous

mapping from then input patterns to the out patterns to

an arbitrary degree of accuracy (Fausett, 1993). In

addition, within one hidden layer, it can speed up the

training process. In addition, in determining the

optimal number of neurons in the hidden layer,
Genetic Algorithm (GA) is used as it applied by

Eddy Muntina Dharma et al. / Journal of Computer Science 2022, 18 (3): 151.161

DOI: 10.3844/jcssp.2022.151.161

153

Ding et al. (2011). Finally, ffter applying GA, the

optimal neuron obtained at the hidden layer is 21.

 Output Layer consists of 4 neurons (Y1, Y2, Y3, Y4)

Training Using BPNN Algorithm

A. Prepare Dataset. In this study, the data set is stored

in a formal MS-Excel file. The following is part of

the program to read files from excel using matlab.

% Read from excel file using matlab

filename = 'dataset_bdi.xlsx';

sheet = 2;

xlRange = 'D2:AB182';

Data = xlsread(filename, sheet, xlRange);

B. Initialization of Target Mean Square Error (MSE),

Learning rate (α) and assigning values of synaptic

weights Vij and Wjk randomly.

% V: weight between input layer and hidden layer

V = rand 21,21);

% W: weight between hidden layer and output layer

W = rand (4,21);

% b_hid: bias on hidden layer

b_hid = rand (21,1);

% b_out: bias on hidden layer

b_out = rand (4,1);

% MSE target

target_MSE = 0.001;

% lr:learning rate

lr = 0.1;

% Save to text file

writetable(table(V), 'param_V.txt')

writetable(table(W), 'param_W.txt')

writetable(table(b_hid), 'param_b_hid.txt')

writetable(table(b_out), 'param_b_out.txt')

C. Employing Training to the Network

The parameters set during training are: Epoch = 0 and

MSE = 1.

Performing these following steps during

(MSE>Target error)

1. Epoch = Epoch + 1

2. For each pair of elements to be studied, do:

Forward Propagation

i. Each input neuron (Xi) receives a signal and forwards

the signal to all neurons in the hidden layer.

ii. Each neuron in the hidden layer (Z_inj) adds up

the weighted input signals (Russell and

iii. Norvig, 2002):

1

_ .
n

hid

j j ij i

i

Z in b V X

 (1)

Vij = Weight between the i neuron input with the i hidden

neuron

bhid
j = Bias weight of the j hidden neuron on hidden layer

Xi = Entry from the i neuron input

n = Total number of neuron input

Z_inj = The sum of weighing output signal from the hidden

layer of the j neuron unit

Use the sigmoid activation function to calculate the

output signal (Russell and Norvig, 2002):

_

1

1
j z inj

Z
e

 (2)

where, Zj would be the output of hidden layer on the j

hidden neuron.

Fig. 1: Research flow prediction of depression level with BPNN

Eddy Muntina Dharma et al. / Journal of Computer Science 2022, 18 (3): 151.161

DOI: 10.3844/jcssp.2022.151.161

154

Fig. 2: Example of the dataset used

Fig. 3: Example of Normalized and encoding dataset

(a) Forward propagation

Eddy Muntina Dharma et al. / Journal of Computer Science 2022, 18 (3): 151.161

DOI: 10.3844/jcssp.2022.151.161

155

(b) Backward Propagation

Fig. 4: BPNN architecture used

Table 1: One-hot encoding for target feature

Classification Normal Mild Moderate Severe

Normal 1 0 0 0

Mild 0 1 0 0

Moderate 0 0 1 0

Severe 0 0 0 1

Then send the signal to all units at the output layer.

The sigmoid function is used as a transfer function with

the consideration that it has a gradient proportional

towards the output reflection.

iii. Each output neuron (Y_ink) sums the weighing input,

under this formula (Russell and Norvig, 2002):

1`

_ .
n

out

k k jk j

j

Y in b W Z

 (3)

Wij = Weight between the j hidden neuron and the k output

neuron

bout
j = bobot bias weight of the j output = neuron on output

layer

Zj = hidden layer output towards the j hidden neuron

n = Total numbers of output neuron

Y_inj = The sum of weighing output signal on the k output

neuron unit

Perform the sigmoid activation function to calculate

the output signals (Russell and Norvig, 2002).

where Yk would be the output of hidden layer on the k

hidden neuron:

_

1

1 k
k Y in

Y
e

 (4)

iv. Calculating the Error Value Error (E) is the difference

between the desired output value (T = Target of

pattern) within the exact output from the learning

result NN (Yk) as follows (Russell and Norvig, 2010):

E T Y (5)

Sum Square Error (SSE) In the output layer of the

artificial neural network of advanced bait is (Russell and

Norvig, 2002):

2

1

n

k k

k

SSE T Y

 (6)

where, n is the number of neurons at the output layer; Tk

is the output target in the k-neuron.

The steps of forward propagation above, written in

Matlab:

% Forward Propagation

% X: Input Layer

X = Data(i,1:21)';

% T: Target

T = Data(i,22:25)';

% Zin: hidden layer

% Z: sigmoid of Z_in

Zin = V * X + b_hid;

Eddy Muntina Dharma et al. / Journal of Computer Science 2022, 18 (3): 151.161

DOI: 10.3844/jcssp.2022.151.161

156

Z = sigmoid (dlarray(Z_in));

% Yin:output layer

% Y:sigmoid dari Y_in

Yin = W * Z + b_out;

Y = sigmoid (dlarray(Y_in));

% E: Error

E = T - Y;

SSE = SSE + dot(E,E);

Backward Propagation

i. Each unit of output (Yk) receives a target pattern

related to the learning input pattern, calculating its

error information (Russell and Norvig, 2002):

 * 1k k kE Y Y (7)

where, δk is the error information (delta) in the k-output

neuron.

Then calculate the weight correction (which will be

used to fix the value of Wjk) (Russell and Norvig, 2002):

.jk kW (8)

where, ∆Wjk is the change in weight variable between

hidden layer and output layer; α is the learning rate value;

Also calculate the correction of the bias in the

output layer (which will later be used to fix the value

bout
k) (Russell and Norvig, 2002):

.out

k kb (9)

where, ∆bout
k is the change in refractive weight on the k-

output neuron

ii. Each neuron has a hidden layer (Zj) summing its input

delta (from the units at the next layer). (Russell and

Norvig, 2002):

1

_ .
n

j k jk

k

in W

 (10)

Multiply this value by a derivative of its activation

function to calculate error information (Russell and

Norvig, 2002):

 _ * 1j j j jin Z Z
 (11)

where, δj is the error information (delta) in the j-hidden

neuron.

Then calculate the weight correction (which will later be

used to update the Vij value) (Russell and Norvig, 2002):

. .ij j iV X (12)

where, ∆Vij is the change in weight variable between the

input layer and the hidden layer.

Also calculate the bias correction (which will later be

used to change the value of bhid
j) (Russell and Norvig, 2002):

.hid

j jb (13)

where ∆ bhid
j is the change in the bias weight of j-neurons

at the hidden layer

iii. Each unit at the output layer (Yk) improves its weight

and bias (Russell and Norvig, 2002):

() ()jk jk jkW new W old W (14)

() ()out out out

k k kb new b old b (15)

Each hidden layer unit (Zj) improves its weight and

bias (Russell and Norvig, 2002):

() ()jk jk jkV new V old V (16)

 ()hid hid hid

j j jb new b old b (17)

Calculating MSE (Russell and Norvig, 2002):

1

1 n

i

i

MSE SSE
n

 (18)

where, SSEi is the SSE of each epoch and n is the number

of epochs.

The steps of backward propagation above is written in

Matlab:

% Backward Propagation

% Update Bobot W & bias on output layer

delta_out = E.*Y.*(1-Y);

dW = lr.*delta_out*Z';

db_out = lr.*delta_out;

W = W + dW; % --> Update Bobot W

b_out = b_out + db_out; % --> Update bias on Output Layer

% Update Bobot V & bias on hidden layer

delta_hid = (delta_out'*W)'.*Z.*(1-Z);

dV = lr.*delta_hid*X';

Eddy Muntina Dharma et al. / Journal of Computer Science 2022, 18 (3): 151.161

DOI: 10.3844/jcssp.2022.151.161

157

db_hid = lr.*delta_hid;

V = V + dV; % --> Update Bobot V

b_hid = b_hid + db_hid; % --> Update bias on Hidden Layer

The steps for forward and backward calculations

above are for one training cycle (one epoch) so they must

be repeated until the specified number of epochs or the

desired MSE has been reached. In this study, only MSE

was used as a reference for the training cycle. The MSE

target used is: 0.001.
The final result of the BPNN training is the obtaining

of Vij, Wjk, bhid
j, bout

k weights which are then stored for the

testing phase.

BPNN training algorithm in complete source code

using Matlab can be seen in the Appendix 1 of this study.

After the training process is complete, the next process

is to test the result of BPNN model with 46 data testing.

Testing

The weights of Vij, Wjk and bias bhid
j, bout

k generated in

the training process will be used to test the test dataset,

with the following steps:

1. Initialization of weights and biases according to the

training results, namely Vij, Wjk, bhid
j, bout

k

2. For each input pattern do the following steps:

i. Each input neuron (Xi) in the input layer receives

a signal and forwards the signal to all neurons in

the hidden layer

ii. Each neuron in the hidden layer (Z_inj) adds up

the weighted input signals (Russell and

Norvig, 2002):

1

_ .
n

hid

j j ij i

i

Z in b V X

 (19)

Use the sigmoid activation function to calculate its

output signal (Russell and Norvig, 2002):

1

1 j
j inz

Z
e

 (20)

iii. Each output neuron (Y_ink) sums up the weighted

input signals (Russell and Norvig, 2002):

1

.
n

out

k k jk j

j

Y in b W Z

 (21)

Use the sigmoid activation function to calculate its

output signal (Russell and Norvig, 2002):

1

1 k
k Y in

Y
e

 (22)

where, Yk is the output of the neural network.
Testing Algorithm in complete Matlab code can be

seen in the Appendix 2 of this study.

Results and Discussion

The training process uses 181 training data, 21

predictors and one target with 4 classifications. Then the

parameters used in the training process are MSE target of

a validation set is 0.001 and learning rate value is 0.1.

After the training process is carried out, the number of

epochs = 1,695 to achieve an MSE of a validation set of

0.001, with a training time of 208 seconds. The training

result can be shown in Fig. 5.

After the MSE target is achieved, the optimal weights

and biases for the BPNN model are found. The optimal

weights and biases will be tested on 46 test data. The

performance of the BPNN model is presented in Table 2.

Of the 46 data tested, 44 data were found to be classified

correctly, or resulting an accuracy of 95.65%.

The result presented in Table 2 reveals that BPNN

model is able to predict the level of depression with F1-

Score of 100, 95.65, 90.91 and 95.24% for the

classification of normal, mild depression, moderate

depression and severe depression, respectively.

However, the model that was suggested would achieve

the best accuracy if it precisely using 21 predictors. This

result then supported as after conducting trial and error

using 5 or 10 predictor or below 21 predictors, the

accuracy was not really satisfying. This is also supported

by BDI's suggestion that these 21 predictors are valid and

have been tested by Beck et al. (1961).

Table 2: Performance of BPNN model

 Classified as

 --

Class Normal Mild Moderate Severe TPR (%) FNR (%) PPV (%) F1-Score (%) Accuracy (%)

Normal 13 0 0 0 100 0 100 100 95.65

Mild 0 11 1 0 91.67 8.33 100 95.65

Moderate 0 0 10 1 90.91 9.09 90.91 90.91

Severe 0 0 0 10 100 0 90.91 95.24

TPR = True Positive Rate (Recall); FNR = False Negative Rate; PPV = Positice Predictive Value (Precision)

Eddy Muntina Dharma et al. / Journal of Computer Science 2022, 18 (3): 151.161

DOI: 10.3844/jcssp.2022.151.161

158

Fig. 5: Training Result (MSE vs Epoch)

Conclusion and Recommendation

Prediction of depression level with BPNN model with

one hidden layer shows a good performance, reaching

95.65% accuracy, with 181 datasets as training data and

46 data as test data with 21 BDI data items that are used

as predictors. In this study, the proposed model is able to

predict the level of depression with F1-Score of 100 95.65

90.91 and 95.24% for the classification of depression:

normal, mild, moderate and severe, respectively.

From the results achieved in this study, the proposed

model can be applied to help doctors or psychiatrists to

predict depression at an early stage, whether it is classified

as mild, moderate, or severe depression, so that the patient

can receive appropriate treatment.

Acknowledgement

Thanks to Denpasar Mental Health Center for the sample

data and the doctor on duty, dr. I Putu Belly Sutrisna, M.

Biomed, Sp.KJ and dr. Nyoman Widhyalestari Parwatha,

Sp.KJ for all the input and suggestions.

Author’s Contributions

Eddy Muntina Dharma: Contributed to collecting

dataset, design the research methodology, data-analysis,

conducting experiments and writing of the manuscript.

Yaya Heryadi: Advise data-analysis and design the

research methodology.

Lukas: Contributed to conducting experiments.

Wayan Suparta: Contributed to conducting

experiments, data-analysis and writing of the manuscript.

Antoni Wibowo: Advise research methodology.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of the

other authors have read and approved the manuscript and

no ethical issues involved.

References

Aghdam, M. A., Sharifi, A., & Pedram, M. M. (2018).

Combination of rs-fMRI and sMRI data to

discriminate autism spectrum disorders in young

children using deep belief network. Journal of digital

imaging, 31(6), 895-903.

 doi.org/10.1007/s10278-018-0093-8

Aghdam, M. A., Sharifi, A., & Pedram, M. M. (2019).

Diagnosis of autism spectrum disorders in young

children based on resting-state functional magnetic

resonance imaging data using convolutional neural

networks. Journal of digital imaging, 32(6), 899-918.

doi.org/10.1007/s10278-019-00196-1

Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., &

Erbaugh, J. (1961). An inventory for measuring

depression. Archives of general psychiatry, 4(6),

561-571.

doi.org/10.1001/archpsyc.1961.01710120031004

https://doi.org/10.1007/s10278-018-0093-8
https://doi.org/10.1007/s10278-019-00196-1
https://doi.org/10.1001/archpsyc.1961.01710120031004

Eddy Muntina Dharma et al. / Journal of Computer Science 2022, 18 (3): 151.161

DOI: 10.3844/jcssp.2022.151.161

159

Ding, S., Su, C., & Yu, J. (2011). An optimizing BP neural

network algorithm based on genetic algorithm.

Artificial intelligence review, 36(2), 153-162.
doi.org/10.1007/s10462-011-9208-z

Fausett, L. V. (1993). Fundamentals of Neural Networks:

Architectures, Algorithms and Applications (1st

Edition). Pearson. ISBN: 978-0133341867

Lam, G., Dongyan, H., & Lin, W. (2019, May).

Context-aware deep learning for multi-modal

depression detection. In ICASSP 2019-2019 IEEE

International Conference on Acoustics, Speech and

Signal Processing (ICASSP) (pp. 3946-3950). IEEE.

doi.org/10.1109/ICASSP.2019.8683027

Pinaya, W. H., Mechelli, A., & Sato, J. R. (2019). Using deep

autoencoders to identify abnormal brain structural

patterns in neuropsychiatric disorders: A large-scale

multi-sample study. Human brain mapping, 40(3),

 944-954. 40, 944-954. doi.org/10.1002/hbm.24423

Russell, S., & Norvig, P. (2002). Artificial intelligence: A

modern approach. ISBN: 978-0-13-604259-4

Sen, B., Borle, N. C., Greiner, R., & Brown, M. R. (2018).

A general prediction model for the detection of

ADHD and Autism using structural and functional

MRI. PloS one, 13(4), e0194856.

 doi.org/10.1371/journal.pone.0194856

Wang, C., Xiao, Z., Wang, B., & Wu, J. (2019).

Identification of autism based on SVM-RFE and

stacked sparse auto-encoder. Ieee Access, 7,

118030-118036.

doi.org/10.1109/ACCESS.2019.2936639

Wang, Y. P., & Gorenstein, C. (2021). The Beck

depression inventory: Uses and applications. In The

Neuroscience of Depression (pp. 165-174).

Academic Press.

 doi.org/10.1016/B978-0-12-817933-8.00020-7

WHO. (2021). Depression. Depression Fact Sheet of

World Health Organization.

 https://www.who.int/news-room/fact-

sheets/detail/depression

Zhao, Z., Bao, Z., Zhang, Z., Deng, J., Cummins, N.,

Wang, H., ... & Schuller, B. (2019). Automatic

assessment of depression from speech via a

hierarchical attention transfer network and attention

autoencoders. IEEE Journal of Selected Topics in

Signal Processing, 14(2), 423-434.

 doi.org/10.1109/JSTSP.2019.2955012s

Appendix 1

training.m
% Predicting Depression Level Using BPNN

% Eddy Muntina Dharma

% eddy.dharma@binus.ac.id

% --

clc;clear;close all;warning off all;

tic;

% Read from excel file

filename = 'dataset_bdi.xlsx';

sheet = 2;

xlRange = 'D2:AB182';

Data = xlsread(filename, sheet, xlRange);

% V : weight between input layer and hidden layer

V=importdata('param_V.txt').data;

% W : weight between hidden layer and output layer

W=importdata('param_W.txt').data;

% b_hid : bias on hidden layer

b_hid=importdata('param_b_hid.txt').data;

% b_out : bias on hidden layer

b_out=importdata('param_b_out.txt').data;

% lr : learning rate;

lr = 0.1;

% Sample Data = 227, Training 181 and Testing 46

jml_data = 181;

jml_epoch = 0;

target_MSE = 0.001;

MSE = 1;

fileMSE = fopen('repMSE.txt','a');

https://doi.org/10.1007/s10462-011-9208-z
https://doi.org/10.1007/s10462-011-9208-z
https://doi.org/10.1109/ICASSP.2019.8683027
https://doi.org/10.1002/hbm.24423
https://doi.org/10.1371/journal.pone.0194856
https://doi.org/10.1109/ACCESS.2019.2936639
https://doi.org/10.1016/B978-0-12-817933-8.00020-7
https://www.who.int/news-room/fact-sheets/detail/depression
https://www.who.int/news-room/fact-sheets/detail/depression
https://doi.org/10.1109/JSTSP.2019.2955012

Eddy Muntina Dharma et al. / Journal of Computer Science 2022, 18 (3): 151.161

DOI: 10.3844/jcssp.2022.151.161

160

while (MSE>target_MSE)

 jml_epoch = jml_epoch + 1;

 SSE = 0;

 for i=1:jml_data

 % Forward

 % X : Input Layer

 X = Data(i,1:21)';

 % T : Target

 T = Data(i,22:25)';

 % Z_in : hidden layer; Z : sigmoid of Z_in

 Z_in = V * X + b_hid;

 Z = sigmoid (dlarray(Z_in));

 % Y_in : output layer; Y : sigmoid of Y_in

 Y_in = W * Z + b_out;

 Y = sigmoid (dlarray(Y_in));

 % E : Error

 E = T - Y;

 SSE = SSE + dot(E,E);

 % Backward

 % Update weight W & bias on output layer

 delta_out = E.*Y.*(1-Y);

 dW = lr.*delta_out*Z';

 db_out = lr.*delta_out;

 W = W + dW; % --> Update weight W

 b_out = b_out + db_out; % --> Update bias on Output Layer

 % Update weight V & bias on hidden layer

 delta_hid = (delta_out'*W)'.*Z.*(1-Z);

 dV = lr.*delta_hid*X';

 db_hid = lr.*delta_hid;

 V = V + dV; % --> Update weight V

 b_hid = b_hid + db_hid; % --> Update bias on Hidden Layer

 end

 % Each epoch saves weights and biases to a file

 writetable(table(extractdata(V)), 'param_V.txt');

 writetable(table(extractdata(W)), 'param_W.txt');

 writetable(table(extractdata(b_hid)), 'param_b_hid.txt');

 writetable(table(extractdata(b_out)), 'param_b_out.txt');

 % Save MSE

 MSE = SSE/jml_data;

 fprintf(fileMSE,'%g\n',MSE);

end

fclose(fileMSE);

toc;

dataMSE=importdata('repMSE.txt');

figure

plot(dataMSE)

title('MSE vs Epoch')

xlabel('Epoch')

ylabel('MSE')

Eddy Muntina Dharma et al. / Journal of Computer Science 2022, 18 (3): 151.161

DOI: 10.3844/jcssp.2022.151.161

161

Appendix 2

testing.m
% Predicting Depression Level Using BPNN

% Eddy Muntina Dharma

% eddy.dharma@binus.ac.id

% --

clc;clear;close all;warning off all;

% Read from excel file

filename = 'dataset_bdi.xlsx';

sheet = 3;

xlRange = 'D2:AB47';

Data = xlsread(filename, sheet, xlRange);

% V : weight between input layer and hidden layer

V=importdata('param_V.txt').data;

% W : weight between hidden layer and output layer

W=importdata('param_W.txt').data;

% b_hid : bias on hidden layer

b_hid=importdata('param_b_hid.txt').data;

% b_out : bias on hidden layer

b_out=importdata('param_b_out.txt').data;

benar=0;

jml_data=46;

for i=1:jml_data

 % Forward

 % X : Input Layer

 X = Data(i,1:21)';

 % T : Target

 T = Data(i,22:25)';

 % Z_in : hidden layer; Z : sigmoid of Z_in

 Z_in = V * X + b_hid;

 Z = sigmoid (dlarray(Z_in));

 % Y_in : output layer; Y : sigmoid of Y_in

 Y_in = W * Z + b_out;

 Y = sigmoid (dlarray(Y_in));

 % E : Error

 E = abs(T - round(Y));

 if (sum(E)==0)

 benar=benar+1;

 end

end

akurasi=benar/jml_data*100

"Amount of Data Testing : " + jml_data

"Classified correctly : " + benar

"Accurate : " + akurasi + "%"

