

 © 2022 Samuel Oluwatosin Hassan, Adewole Usman Rufai, Samson Ojo Ogunlere, Olujimi Daniel Alao, Lukman Adebayo

Ogundele, Michael Olugbenga Agbaje, Aderonke Adelola Adegbenjo and Shade Oluwakemi Kuyoro. This open access

article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

 Journal of Computer Science

Original Research Paper

I-RED: An Improved Active Queue Management Algorithm

1Samuel Oluwatosin Hassan, 2Adewole Usman Rufai, 3Samson Ojo Ogunlere, 3Olujimi Daniel Alao,
1Lukman Adebayo Ogundele, 4Michael Olugbenga Agbaje, 4Aderonke Adelola Adegbenjo and
4Shade Oluwakemi Kuyoro

1Department of Mathematical Sciences, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
2Department of Computer Sciences, University of Lagos, Lagos, Nigeria
3Department of Information Technology, Babcock University, Ilisan-Remo, Nigeria
4Department of Computer Science, Babcock University, Ilisan-Remo, Nigeria

Article history

Received: 25-08-2021

Revised: 08-12-2022

Accepted: 10-12-2021

Corresponding Author:

Samuel Oluwatosin Hassan

Department of Mathematical

Sciences, Olabisi Onabanjo

University, Ago-Iwoye, Nigeria

Email: samuel.hassan@

oouagoiwoye.edu.ng

Abstract: Quality of Service (QoS) of Internet routers is still challenged with

the issue of congestion. Active Queue Management (AQM) algorithms

aimed at improving end-to-end delay of packets by keeping the average

queue size small. This objective is yet to be fully accomplished, especially

for interactive services. In this paper, an AQM algorithm named Improved-

Random Early Detection (I-RED) algorithm based on the popular Random

Early Detection (RED) is presented. I-RED deploys a combination of a

nonlinear and a linear packet dropping functions. ns-3 simulation

performance evaluations proved that I-RED effectively controls the average

queue size and delay under light and heavy network traffic conditions.

Replacing/upgrading the RED algorithm implementation in Internet routers

(either software or hardware) requires minimal effort since only the packet

dropping probability profile needs to be adjusted.

Keywords: Active Queue Management, Congestion Control, End-to-End

Delay, I-RED, Simulation

Introduction

Essentially, in a computer network, congestion is said

to occur when the aggregated amount of generated data

traffic is greater than the network’s resource buffer

capacity (Abu-Shareha (2019); Adamu et al. (2021)).

Congestion has adverse effect on network performance

leading to poor utilization, low throughput, large delay/jitter,

high packet loss rate (Abdel-Jaber (2020); Adamu et al.

(2020)). There is therefore a need to avoid congestion in

order to have an improved Quality of Service (QoS) provided

in network resources (Adamu et al., 2020).

Some of the shortcomings of the traditional Drop-Tail

queue management algorithm are: buffer overflow, long

delay in data delivery, lock-out phenomenon, and global

synchronization. To address these problems, Internet

Engineering Task Force (IETF) recommends the

implementation of Active Queue Management (AQM)

algorithm in Internet routers (Braden et al. (1998);

Brandauer et al. (2001)).

AQM algorithm which differs from the traditional

Drop-Tail queue management algorithm controls

congestion by early detection of incipient congestion and

sending feedback signals to end-hosts allowing them to

reduce their rate of transmission before the router’s buffer

overflows (Aweya et al., 2001). Adamu et al. (2021)

noted that research on AQM congestion control algorithm

is necessary even in the current Internet, due to the ever

increasing number of active users.

A lot of proposals on AQM algorithms leveraged on

the simple, yet profound design of the famous Random

Early Detection (RED) developed by Floyd and Jacobson

(1993). The procedures for RED comprises of two

sections: the computation of the average queue size (avg)

and the decision of whether or not to accept an incoming

packet. For the first section, avg (that is, the average

number of packets in the buffer of the router) is estimated

by the instantaneous queue length using an Exponential

weighted Moving Average (EWMA) approach. For the

second section, the avg is compared with two preset

thresholds: the minimum threshold (denoted minTH) and

maximum threshold (denoted maxTH). Packets will be

enqued if the avg is below the minT H; when avg varies

between the two thresholds, the packet will be dropped

randomly with a linear drop function that increases from

0 to a maximum packet dropping probability parameter

(denoted maxP); all arriving packets are dropped if the

avg is greater than maxTH threshold.

To improve network performance, there is a need for

a congestion control algorithm that stabilizes the average

Samuel Oluwatosin Hassan et al. / Journal of Computer Science 2022, 18 (3): 130.137

DOI: 10.3844/jcssp.2022.130.137

131

queue size. Unlike several proposals to increase the

performance of RED algorithm, we propose a RED-based

AQM algorithm called Improved RED (I-RED) which

aimed at stabilizing and keeping the average queue size small

which will in turn reduce the end-to-end delay of packets

needed to ensure an improved QoS of Internet routers.

Related Works

The Random Early Detection (RED) algorithm

developed by Floyd and Jacobson (1993) is indeed a

profound congestion control algorithm for routers. Four

parameters are important in RED, they include: the minimum

threshold (denoted minTH), the maximum threshold (denoted

maxTH), the maximum packet dropping probability (denoted

maxP), and the queue weight (denoted w).

The average queue size (denoted avg) is computed

by applying a low-pass filter with EWMA (Exponential

weighted Moving Average) which acts to smooth out

the burstiness of the instantaneous queue length

according to Eq. (1):

() ()

()

1 0

1
m

w avg w q q
avg

w avg otherwise

 − +
=

−

 (1)

where:

q = Refers the current queue size

avg' = Refers to the computed previous average queue size

w = (which varies between 0 and 1) is a preset weight

parameter to calculate avg; and

m = Refers to the idle time parameter computed as

follows:

()_ _m f time q idle time= − (2)

where, q−idle−time indicates the beginning of the queue

idle time.

When avg is less than minTH, then the arriving packet

is accepted in the router’s queue. However, if avg is

between minTH and maxTH then the packet will be dropped

with a linear packet dropping function that rises from 0 to

maxP. Lastly, if avg value is equal or greater than the

maxTH, then the incoming packet will be dropped with a

probability of 1. Hence, initial drop probability (Pb)

function of RED is expressed as:

0, min

min
max , min max

max min

1, max

TH

TH
b P TH TH

TH TH

TH

avg

avg
P avg

avg

 −

=
−

 (3)

Thus:

()1

b
a

b

P
P

count P
=

−
 (4)

where, Pa is the final packet dropping probability and count

is the number of packets not dropped since the last dropped .

To address the parameter configuration issue of RED,

Abdel-Jaber (2020) suggested an enhanced RED algorithm

named RED-Exponential (RED−E) which does not require

maxP in the packet dropping function (as expressed in Eq.

(5)) when avg varies between the minTH and maxTH queue.

RED-E was reported to achieve a reduced end-to-end delay

especially at heavy congestion state:

min

max min

0, min

, min max

1, max

TH

avg

b TH TH

TH

avg

e e TH
P avg

e TH e TH

avg

 −

=
−

 (5)

Adamu et al. (2021) developed the SARED (Self-

Adaptive Random Early Detection) algorithm. SARED

initiated a self-adaptive mechanism for RED algorithm such

that when avg falls between minTH and maxTH, packets are

dropped with a nonlinear packet dropping function for a light

and moderate traffic load conditions. However, when the avg

falls between minTH and maxTH, SARED changes to a linear

mode for a high traffic load condition. At low and moderate

traffic loads, SARED improved the throughput performance

but at the expense of delay.

An introduction of self-adaptation mechanism for RED

algorithm called Flexible RED (FXRED) algorithm was

suggested by Adamu et al. (2020). FXRED employs both

avg and the current traffic load condition as indicators for

congestion. When avg size falls between minTH and a

midpoint threshold, FXRED deploys a nonlinear quadratic

drop function for both low and moderate traffic loads in order

to obtain an improved throughput and link utilization

performance but at the expense of delay. Also, when avg falls

between the mid-point threshold and maxTH, FXRED

deploys a linear packet dropping function for high traffic load

in order to obtain an improved delay.

By employing a fewer number of parameters for the

calculation of the packet dropping probability, the

Improved Gentle RED (IGRED) algorithm proposed by

Abdel-Jaber et al. (2019) obtained an improved average

queue size, average queuing delay and packet loss

probability performance.

(EFRED) Enhancement of Fair Random Early

Detection algorithm developed by Abdulkareem et al.

(2015) aimed at achieving a low packet loss and reduced

delay performance by employing hazard rate to determine

packet dropping function for reducing packet dropping.

Abu-Shareha (2019) proposed the (DcRED) Delay-

Controlled Random Early Detection algorithm which is

an improved RED algorithm in order to achieve a reduced

delay performance. DcRED determine the dropping rate

by computing an estimated delay parameter with RED.

Samuel Oluwatosin Hassan et al. / Journal of Computer Science 2022, 18 (3): 130.137

DOI: 10.3844/jcssp.2022.130.137

132

The underlying idea of the (BRED) Balanced−RED

algorithm proposed by Anjum and Tassiulas (1999) is

simply to achieve a fair bandwidth utilization between

adaptive and non-adaptive traffic flows.

(Durresi et al., 2006) developed (LED) Load Early

Detection algorithm prefers to compute the average traffic

load as an indicator for congestion instead of avg (as

common with RED algorithm). LED obtained an

improved link utilization performance.
Floyd, (2000) observed that RED algorithm is too

aggressive because packets are dropped when avg
exceeds maxTH. Therefore, the (GRED) Gentle RED
algorithm was proposed which extended RED by another
threshold: (2×maxTH). GRED utilizes two linear packet
dropping functions. When avg is between minTH and
maxTH, packets are dropped linearly from 0 to maxP.
However, if avg lies between maxTH and 2 × maxTH,
packets are dropped linearly from maxP to 1. GRED
obtained an increased throughput performance than RED.

The ModRED (Modified RED) algorithm was developed
by Kachhad and Lathigara (2018) with the aim of achieving
an improved throughput, goodput, packet delivery ratio and
delay performance metrics. Depending on the incoming
traffic, ModRED divides the packet dropping probability of
RED algorithm into three sections and utilizes the (AIMD)
Additive Increase Multiplicative Decrease algorithm.

MRED was developed by Koo et al. (2001) in order to

improve throughput and delay. MRED computes the

packet dropping probability by using a stepwise function

based on the link history and packet loss information

when avg varies between the minTH and maxTH thresholds.

The (HRED) (Half-way RED) algorithm was developed

by Hamadneh et al. (2019) is an idea to address the parameter

configuration problem of RED algorithm. HRED provides

an enhancement to the packet dropping probability

calculation and developed a nonlinear dropping probability.

HRED obtained an improved performance in terms of link

utilization, throughput and packet loss rate metrics.

Ismail et al. (2014) proposed the ENRED (Enhanced

RED) algorithm with the aim of reducing the packet loss

rate and delay performance metrics by working on the

computation of avg.

Patel and Karmeshu (2019) chose to modify the

dropping function of RED, especially when avg lies

between minTH and maxTH in order to achieve an improved

network performance, such that:

()()1 1log
1

1
b

p p
P

count

 −
 = −
 +

 (6)

In which:

1

min
max

max min

TH
p

TH TH

avg
p

 −
=

−
 (7)

QRTRED algorithm was proposed by Jamali et al.

(2014) to address the fixed parameter setting issue of RED.

The minTH and maxTH of RED are dynamically configured

by the algorithm based on one QRT metric which

estimates network condition from occupancy of the

router’s buffer. QRTRED achieved an improved

performance in terms of link utilization.

Patel (2013) developed the URED (Upper threshold

RED) algorithm as an extension for RED. URED

introduced a queue threshold between minTH and maxTH of

RED algorithm and utilizes two linear packet dropping

functions in order to achieve an improved performance in

terms of throughput and packet loss rate metrics.

The Smart Red(SmRED) algorithm proposed by

Paul et al. (2016) is an enhanced RED algorithm. SmRED

initiates another threshold, Target (Eq. 6) between minTH and

maxTH. SmRED deploys a combination of a nonlinear

(quadratic) and a linear packet dropping functions. SmRED

was reported to achieve an improved end-to-end delay at

heavy traffic and an increased link utilization at light traffic:

max min
min

2

TH TH
THTarget

+
= + (8)

ExRED (Extended Double Slope Random Early

Detection mechanism) developed by Prabhavat et al.

(2002) aimed at providing a tolerance scheme for RED by

introducing a 2nd order polynomial drop function when

avg exceeds maxTH. ExRED was reported to achieve an

increased throughput.
Abdel-Jaber et al. (2015) developed two analytical

models based on RED namely, RED-Exponential and
RED-Linear which utilizes instantaneous queue length as
the congestion detector in lieu of average queue size.

The underlying idea of SDRED (State Dependent
RED) algorithm proposed by Ryoo and Yang (2006) is to
dynamically configure the maxTH and queue weight
parameters of RED. SDRED achieved a reduction in
queue delay and jitter.

Su et al. (2018) proposed the Q-Learning-based RED
(QRED) algorithm which dynamically modify maxP by
using the Q-Learning approach. QRED was reported to
obtain an improved throughput performance.

MRED developed by Zhang et al. (2012) is an improved
GRED algorithm in the sense a nonlinear quadratic packet
drop function is used when the avg falls between the minTH

and maxTH (instead of a linear packet drop function as used
by GRED). MRED obtained an increased throughput and a
reduced packet loss rate.

Double Slope RED (DSRED) was developed Zheng
and Atiquzzaman (2000) by in order to address the low
throughput weakness of RED. The algorithm extended
RED by introducing a mid-point threshold between
minTH and maxTH and deploys a combination of two
linear packet dropping functions. The slopes of these
two functions are complementary and adjustable
through a mode selector.

Samuel Oluwatosin Hassan et al. / Journal of Computer Science 2022, 18 (3): 130.137

DOI: 10.3844/jcssp.2022.130.137

133

The NLRED (Nonlinear Random Early Detection)
algorithm was developed by Zhou et al. (2006). When
the avg is greater than minTH but less than maxTH (in
comparison with RED), NLRED drops packet using a
nonlinear quadratic drop function. The gentle increase
in the packet dropping probability of NLRED is aimed
at reducing the number of packet dropped at light
traffic load thereby achieving an improved throughput.

One of the important goals of AQM is to keep the
average queue size small which will in turn positively
impact the end-to-end delay of packets needed for
interactive services. Despite all the highlighted proposals,
not much has been achieved in this area.

In this study, we propose an extension to RED
algorithm to improve the QoS of Internet routers by
effectively keeping the average queue size thereby
resulting in a reduced end-to-end delay.

The Proposed Improved RED (I-RED) Algorithm

The proposed algorithm is named Improved-

Random Early Detection (denoted I-RED) which is

based on the RED algorithm is shown in Fig. 1. I-RED

modified RED’s packet dropping function by dividing

the section between minTH and maxTH thresholds of the

queue into two parts in order to distinguish between

two traffic load situations namely, light and heavy.

Similar to RED, for every packet that arrive the

router’s queue, I-RED measures congestion by computing

the average queue size (avg) by using Eq. (1).

The control function for dropping packets in I-RED

can be described as follows:

(a) If avg is found to exist between 0 and minTH threshold,

then the incoming packet will be admitted into the
queue. That is:

0bP = (9)

(b) If avg value is found to be higher than the minTH

threshold but less than Target threshold, then the

packet is dropped with probability:

min max
2

3

TH THTarget
 +

=

 (10)

2

min
9max

2max min

TH
b P

TH TH

avg
P

 −
=

−
 (11)

The quadratic drop function in Eq. (9) is meant to

ensure a slow increase in the packet dropping probability

from 0 to maxP for smaller average queue size when

congestion is not too serious.

(c) If avg is found to be higher than the Target threshold

but less than maxTH threshold, then the incoming

packet is dropped with probability:

()max 3 1 max
max 2min

b P P

TH TH

avg Target
P

 −
= + −

−
 (12)

The linear drop function in Eq. (10) is meant to

ensure a fast increase in the packet dropping

probability from maxP to 1 for larger average queue

size when congestion is very serious.

(d) However, if avg value is found to be equal or greater

than maxTH threshold, then the arriving packet will be

forced dropped with a probability of one. That is:

1bP = (13)

The pseudocode for I-RED algorithm is presented in

Algorithm 1.

Algorithm 1 I-RED Algorithm

1: For each packet arrival into I-RED router buffer do

2: Compute the average queue size avg according to Eq. (1)

3: if (avg < minTH) then

4: Packet is admitted

5: else if (minTH ≤ avg < Target) then

6: Compute the packet drop probability using a

quadratic function according to Eq. (9)

7: With the calculated probability, drop the

arriving packet

8: else if (Target ≤ avg < maxTH) then

9: Compute the packet drop probability using a

linear function according to Eq. (10)

10: With the calculated probability, drop the

arriving packet

11: else if (maxTH ≤ avg) then

12: Arriving packet is dropped

13: end if

Simulation and Performance Analysis

In this section, we implement I-RED algorithm in

ns-3 simulation tool and compare its performance with

the NLRED algorithm under two traffic load conditions

namely, light and heavy. The network topology used to

test both algorithms is depicted in Fig. 2. The network

topology has the following configuration parameters: N

connecting TCP sources, two routers (A having I-RED

and NLRED implementations while B has Drop-Tail

implementation), one sink. Each of the sources is

connected to router A with a link rate of 100 Mbps and

3 ms propagation delay time. Similarly, the destination

node D has a capacity of 100 Mbps with 3 ms

propagation delay time. The bottleneck link has a

constraint of 10 Mbps with 10 ms propagation delay

time. Packet size is set as 1000 bytes. Buffer size is set

to 25 packets. Simulation duration is 100 sec.

Samuel Oluwatosin Hassan et al. / Journal of Computer Science 2022, 18 (3): 130.137

DOI: 10.3844/jcssp.2022.130.137

134

Unless otherwise stated I-RED and NLRED

parameters are configured to as: minTH = 3 (as

suggested by Abdel-Jaber (2020)), Target = 8, maxTH =

9 (as suggested by Abdel-Jaber (2020)), maxP = 0.1 (as

suggested by Floyd and Jacobson (1993)), and Wq =

0.002 (as suggested by Floyd and Jacobson (1993)).

Light Traffic Load

Figure 3 (a)-(c) presents the simulation results for I-

RED and NLRED algorithms under light traffic load

condition (having 5 TCP connecting sources) using

performance metrics (such as average queue size, delay

and throughput). Using 5 TCP flows to represent light

traffic load is consistent with those reported in

Pan et al. (2013), Schepper et al. (2016) and Jain

et al. (2018).

Figure 3 (a) illustrates the average queue size for the

duo algorithms. It can be seen that I-RED evidently

reduces the average queue size better than NLRED. I-

RED attains an initial peak of 6.7508 while NLRED

attains 6.8007. However, both algorithms controls the

burst and regulates the oscillation in the average queue

size. I-RED attains a mean value of 2.4836 for

instantaneous average queue size while NLRED attains

2.5891. The reason is simple: when avg is near the Target

value, the packet dropping probability of I-RED is higher

than NLRED.

The delay result for the duo algorithms is presented

in Fig. 3 (b). It can be seen that the delay of I-RED is

also satisfactorily lower than NLRED. I-RED attains

0.4875 as a mean value of delay while NLRED

obtained 0.4931.

The throughput result is depicted in Fig. 3 (c). As

illustrated, I-RED achieved a mean value of 9.9887 while

NLRED obtained 9.9825.

Analysis of the performance metrics is further shown

in Table 1.

Heavy Traffic Load

Figure 4 (a)-(c) presents the simulation results for I-

RED and NLRED algorithms under heavy traffic load

condition (having 50 TCP connecting sources) using

performance metrics (such as average queue size, delay

and throughput). Similarly, using 50 TCP flows to

represent heavy traffic load is consistent with those

reported in Pan et al. (2013), Schepper et al. (2016) and

Jain et al., (2018).

 Figure 4 (a) illustrates the average queue size for

the duo algorithms. It can be seen that I-RED

satisfactorily performed better than NLRED algorithm

in terms of average queue size. I-RED attains an initial

peak of 5.3879 while NLRED attains 5.7027. However,

both algorithms controls the burst and regulates the

oscillation in the average queue size. I-RED attains a

mean value of 5.1351 for instantaneous average queue

size while NLRED attains 5.4866. The reason is

simple: when avg is near maxTH, the packet dropping

probability of I-RED is higher than NLRED.

The delay result for I-RED and NLRED algorithms is

presented in Fig. 4 (b). It can be seen that the delay of I-

RED is also clearly lower than NLRED. I-RED attains

5.3588 as a mean value of delay while RED obtained

5.3329.

The throughput result is depicted in Fig. 4 (c). As

illustrated, I-RED achieved a mean value of 10.1016

while NLRED obtained 10.1333.

Analysis of the performance metrics is further shown

in Table 2.

Fig. 1: I-RED’s packet dropping probability

Fig. 2: Network topology

Table 1: Light traffic performance analysis

 Average queue Delay Throughput

Algorithm Size (Packets) (ms) (Mbps)

NLRED 2.5891 0.4931 9.9825

I-RED 2.4836 0.4875 9.9887

Samuel Oluwatosin Hassan et al. / Journal of Computer Science 2022, 18 (3): 130.137

DOI: 10.3844/jcssp.2022.130.137

135

Table 2: Heavy traffic performance analysis

 Average queue Delay Throughput

Algorithm Size (Packets) (ms) (Mbps)

NLRED 5.4866 5.3329 10.1333

I-RED 5.1351 5.3588 10.1016

(a)

(b)

(c)

Fig. 3: Light traffic condition: Average queue size graph

(a)

(b)

(c)

Fig. 4: Heavy traffic condition: Average queue size graph

Conclusion

In this study, Improved-RED (I-RED) AQM
algorithm is suggested as an improvement over RED
algorithm. I-RED deploys a combination of a nonlinear
(quadratic) with a linear packet dropping functions in

Samuel Oluwatosin Hassan et al. / Journal of Computer Science 2022, 18 (3): 130.137

DOI: 10.3844/jcssp.2022.130.137

136

order to distinguish between two traffic load situations
namely, light and heavy. Simulations conducted in ns-3
using a small buffer size capacity shows that I-RED
evidently performed better than NLRED in terms of
average queue size and a comparable throughput
performance metrics both at light and heavy traffic load
scenarios. Going forward, we intend to implement the
proposed I-RED algorithm in Linux kernel (which will in
turn be embedded in a software router) and compare its
performance with other AQM algorithms on a real network.

Acknowledgement

We would like to sincerely appreciate the anonymous

reviewers for their comments which has improved the work.

Author’s Contributions

Samuel Oluwatosin Hassan: Problem formulation,
mathematical modeling, literature review, and editing.

Adewole Usman Rufai: Literature review,

writing and supervision

Samson Ojo Ogunlere: Literature review and

simulkation

Olujimi Daniel Alao: Writing and mathematical

modeling

Lukman Adebayo Ogundele: Literature review and

supervision

Michael Olugbenga Agbaje: Simulation data

analysis

Aderonke Adelola Adegbenjo: Mathematical

modeling and writing

Shade Oluwakemi Kuyoro: Literature review,

writing and formatting

Ethics

This article is an original research paper. There are no

conflict of interest and no ethical issues that may arise

after the publication of this manuscript.

References

Abdel-Jaber, H. (2020). An exponential active queue

management method based on random early detection.

Journal of Computer Networks and Communications,

2020. doi.org/10.1155/2020/8090468

Abdel-jaber, H., Shehab, A., Barakat, M., & RASHAD, M.

(2019). IGRED: An Improved Gentle Random Early

Detection Method for Management of Congested

Networks. Journal of Interconnection Networks, 19(02),

1950004. doi.org/10.1142/S021926591950004X

Abdulkareem, M., Akil, K., Kalakech, A., & Kadry, S.

(2015). Efred: Enhancement of fair random early

detection algorithm. International Journal of

Communications, Network and System Sciences,

8(07), 282. doi.org/10.4236/ijcns.2015.87028

Abu-Shareha, A. A. (2019). Controlling Delay at the

Router Buffer Using Modified Random Early

Detection. Int. J. Comput. Netw. Commun, 11, 63-75.

doi.org/10.5121/ijcnc.2019.11604

Adamu, A., Surajo, Y., & Jafar, M. T. (2021) SARED: A

Self-Adaptive Active Queue Management Scheme

for Improving Quality of Service in Network

Systems. Computer Science, 22(2).

doi.org/10.7494/csci.2021.22.2.4020

Adamu, A., Shorgin, V., Melnikov, S., & Gaidamaka, Y.

(2020, September). Flexible Random Early Detection

Algorithm for Queue Management in Routers. In

International Conference on Distributed Computer and

Communication Networks (pp. 196-208). Springer,

Cham. doi.org/10.1007/978-981-10-3773-3_62

Anjum, F. M., & Tassiulas, L. (1999). Balanced-RED: An

algorithm to achieve fairness in the Internet. Maryland

univ college park inst for systems research.

https://apps.dtic.mil/sti/citations/ADA439654

Aweya, J., Ouellette, M., & Montuno, D. Y. (2001). A

control theoretic approach to active queue

management. Computer networks, 36(2-3), 203-235.

doi.org/10.1016/S1389-1286 (00)00206-1

Brandauer, C., Iannaccone, G., Diot, C., Ziegler, T.,

Fdida, S., & May, M. (2001, July). Comparison of tail

drop and active queue management performance for

bulk-data and web-like internet traffic. In

Proceedings. Sixth IEEE Symposium on Computers

and Communications (pp. 122-129). IEEE.

doi.org/10.1109/ISCC.2001.935364

Schepper, K., Bondarenko, O., Tsang, I. J., & Briscoe, B.

(2016, December). Pi2: A linearized aqm for both

classic and scalable tcp. In Proceedings of the 12th

International on Conference on emerging

Networking EXperiments and Technologies (pp.

105-119). doi.org/10.1145/2999572.2999578

Durresi, A., Barolli, L., Sridharan, M., Chellappan, S., &

Jain, R. (2006). Load Early Detection (LED): A

Congestion Control Algorithm Based on Routers'

Traffic Load. IPSJ Digital Courier, 2, 94-107.

doi.org/10.2197/ipsjdc.2.94

Floyd, S. (2000). Recommendation on using the gentle

variant of RED. www. icir. org/floyd/red/gentle.

html. https://ci.nii.ac.jp/naid/10017501130/

Floyd, S., & Jacobson, V. (1993). Random early detection

gateways for congestion avoidance. IEEE/ACM

Transactions on networking, 1(4), 397-413.

doi.org/10.1109/90.251892

Hamadneh, N., Obiedat, M., Qawasmeh, A., & Bsoul, M.

(2019). HRED, an active queue management

algorithm for TCP congestion control. Recent Patents

on Computer Science, 12(3), 212-217.

doi.org/10.2174/2213275912666181205155828

Samuel Oluwatosin Hassan et al. / Journal of Computer Science 2022, 18 (3): 130.137

DOI: 10.3844/jcssp.2022.130.137

137

Ismail, A. H., El-Sayed, A., Elsaghir, Z., & Morsi, I. Z.

(2014). Enhanced random early detection (ENRED).

International Journal of Computer Applications,

92(9). doi.org/10.1155/2011/87234, 2011

Jain, V., Mittal, V., Shravya, K. S., & Tahiliani, M. P.

(2018). Implementation and validation of BLUE

and PI queue disciplines in ns-3. Simulation

Modelling Practice and Theory, 84, 19-37.

doi.org/10.1016/j.simpat.2018.01.002

Jamali, S., Alipasandi, N., & Alipasandi, B. (2014). An

improvement over random early detection algorithm:

A self-tuning approach. Journal of Electrical and

Computer Engineering Innovations (JECEI), 2(2),

57-61. https://jecei.sru.ac.ir/article_242.html

Kachhad, K., & Lathigara, A. (2018). ModRED:

Modified RED an efficient congestion control

algorithm for wireless networks. International

Research Journal of Engineering and Technology

(IRJET), 5(5), 1879-1884.

Koo, J., Song, B., Chung, K., Lee, H., & Kahng, H.

(2001). MRED: A new approach to random early

detection. Proceedings 15th International Conference on

Information Networking (pp. 347-352). IEEE.

https://ieeexplore.ieee.org/abstract/document/905450

Pan, R., Natarajan, P., Piglione, C., Prabhu, M. S.,

Subramanian, V., Baker, F., & VerSteeg, B. (2013,

July). PIE: A lightweight control scheme to address

the bufferbloat problem. In 2013 IEEE 14th

international conference on high performance

switching and routing (HPSR) (pp. 148-155). IEEE.

https://ieeexplore.ieee.org/abstract/document/6602305

Patel, C. M. (2013, July). URED: Upper threshold RED

an efficient congestion control algorithm. In 2013

Fourth International Conference on Computing,

Communications and Networking Technologies

(ICCCNT) (pp. 1-5). IEEE.

 doi.org/10.1109/ICCCNT.2013.6726469

Paul, A. K., Kawakami, H., Tachibana, A., & Hasegawa,

T. (2016, May). An AQM based congestion control

for eNB RLC in 4G/LTE network. In 2016 IEEE

Canadian Conference on Electrical and Computer

Engineering (CCECE) (pp. 1-5). IEEE.

 doi.org/10.1109/CCECE.2016.7726792

Prabhavat, S., Varakulsiripunth, R., & Noppanakeepong,

S. (2002, November). Throughput improvement on

RED mechanism. In The 8th International Conference

on Communication Systems, 2002. ICCS 2002. (Vol. 1,

pp. 599-603). IEEE.

 https://ieeexplore.ieee.org/abstract/document/1182545

Ryoo, I., & Yang, M. (2006). A state dependent RED: An

enhanced active queue management scheme for real-

time internet services. IEICE transactions on

communications, 89(2), 614-617.

 doi.org/10.1093/ietcom/e89-b.2.614

Su, Y., Huang, L., & Feng, C. (2018). QRED: A Q-

learning-based active queue management scheme.

Journal of Internet Technology, 19(4), 1169-1178.

https://jit.ndhu.edu.tw/article/view/1734

Zheng, B., and Atiquzzaman, M. (2000, November).

DSRED: An active queue management scheme for

next generation networks. In 25th Annual IEEE

Conference on Local Computer Networks LCN 2000

(pp. 242-251).

Zhang, J., Xu, W. and Wang, L. (2011). An improved

adaptive queue management algorithm based on

nonlinear smoothing. Elsevier, 15, 2369-2373.

Zhang, Y., Ma, J., Wang, Y., & Xu, C. (2012). MRED: an

improved nonlinear RED algorithm. In International

Conference Proceedings on Computer and Automation

Engineering (ICCAE 2011) (Vol. 44, pp. 6-11).

Zhou, K., Yeung, K. L., & Li, V. O. (2006). Nonlinear

RED: A simple yet efficient active queue

management scheme. Computer Networks, 50(18),

3784-3794. doi.org/10.1016/j.comnet.2006.04.007

