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Abstract: Classification of skull fracture is a challenging task for both 

radiologists and researchers. Skull fractures result in broken pieces of bone, 

which can cut into the brain and cause bleeding and other injury types. So it 

is vital to detect and classify the fracture very early. In real world, often 

fractures occur at multiple sites. This makes it harder to detect the fracture 

type where many fracture types might summarize a skull fracture. 

Unfortunately, manual detection of skull fracture and the classification 

process is time-consuming, threatening a patient’s life. Because of the 

emergence of deep learning, this process could be automated. Convolutional 

Neural Networks (CNNs) are the most widely used deep learning models for 

image categorization because they deliver high accuracy and outstanding 

outcomes compared to other models. We propose a new model called 

SkullNetV1 comprising a novel CNN by taking advantage of CNN for feature 

extraction and lazy learning approach which acts as a classifier for classification 

of skull fractures from brain CT images to classify five fracture types. Our 

suggested model achieved a subset accuracy of 88%, an F1 score of 93%, the 

Area Under the Curve (AUC) of 0.89 to 0.98, a Hamming score of 92% and a 

Hamming loss of 0.04 for this seven-class multi-labeled classification.  

 

Keywords: Skull Fracture, Deep Learning, Convolutional Neural Network, 
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Introduction 

In general, CT images and radiology reports provide 

additional information to a physician, making an informed 

decision. The radiologist studies the image and notes the 

findings in the traditional diagnosis procedure and the 

physician then choose a treatment based on the diagnosis. All 

this requires a lot of time. As a severe impact or blow to the 

head may cause a skull fracture, as well as brain injury, it is 

vital to quickly identify what lesion the skull fracture may 

cause to the brain to give the patient proper treatment. If the 

fracture occurs over a major blood vessel, significant 

bleeding may occur inside the brain, so head injury patients 

with skull fracture have far more intracranial hematomas than 

those without fractures (Zaki et al., 2008, Liu et al., 2008). 

Classification is a way to find out the resultant lesion from 

skull fractures. For suspected skull or brain injuries, 

Computed Tomography (CT) has become the standard 

diagnostic method for Acute Care [UK and others]. It is a 

medical imaging technique that incorporates advanced 

x-ray and computer technology. Brain CT scans provides 

more accurate information about brain tissue and structures 

than regular head X-rays, allowing for more information 

about brain injuries and diseases. It is also helpful for people 

who cannot get an MRI if their brains contain metal. The CT 

scans, as opposed to MRI, have a broader availability, are 

easier to use and can analyze unique structures of the brain to 

look for a mass, stroke, bleeding region, or blood vessel 

abnormality. Based on a CT scan, a radiologist 

determines whether there is any skull fracture and to 

which category the fracture belongs. However, the skull 

fracture has the following characteristics on CT scans: 

Fractures commonly appear as narrow slits, fractures 

might be found in various locations and lengths and a 

significant number of fractures are tiny. 
All of those characteristics can make manual 

detection of skull fracture and its classification both 
time-consuming and difficult. As a result, presenting an 
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effective automated skull fracture classification and 
detection system is critical. The automatic detection and 
the classification of skull fractures could aid in the 
detection of other abnormalities in the CT scan brain 
images. Also, many of the hospitals in the world are 
understaffed, which causes delays in evaluating CT scan 
images. In the CQ500 dataset, their three radiologists 
disagreed on many cases if a patient’s skull is fractured or 
normal, let alone deterministically classify if that fracture 
is a calvarial fracture or another fracture. Automatic 
classification could help doctors in an understaffed 
hospital determine more critical patients to give them 
treatment first. There is only one approach as far as our 
knowledge of the automated detection of linear skull 
fracture. No one has automated the classification of 
common skull fractures. These facts provide the 
motivation for this study. Because of the advances of deep 
learning, several improvements in the use of deep learning 
for medical imaging interpretation tasks have been made 
in the past years. We present a novel model, SkullNetV1, 
for automated detection of common five skull fractures 
(i.e., linear, depressed, linear non-depressed, facial, 
comminuted) besides detecting fractured or normal cases 
from CT scan images. These benefits may form a solid 
foundation for content-based medical image retrieval for 
medical training or diagnosis. 

Related Works 

Some methods for detecting skull fractures have 

already been introduced. Shao and Zhao (2003) have 

concentrated their efforts on CT brain segmentation for 

automated diagnosis of skull fractures. They have 

proposed a method for segmenting the brain image using 

a region-growing method and then used the entropy 

feature to generate rules for diagnosing skull fractures. This 

approach has shown a high rate of acceptance. However, its 

complexity and performance can both be simplified and 

improved computationally. Zaki et al. (2009) have applied 

the Sobel edge detection approach for the diagnosis of skull 

fractures. Despite the fact that the Sobel edge detection’s 

approach is better for a variety of characteristics, it does 

produce some misshaping lines in some circumstances. It’s 

worth noting that this approach can’t handle huge features. 

The detection of the edges Prewitt is a simple method that is 

based on the gradient magnitude. However, as the gradient 

magnitude drops, the accuracy almost surely diminishes. 

Abubacker et al. (2013) provided a simple and fast automatic 

approach in Digital Imaging and Communications in 

Medicine (DICOM) to extract the skull bone and diagnose the 

fracture utilizing histogram-based thresholding and 

neighboring pixel connection search. This approach’s 

experimental results are consistent, with a high detection rate. 

Chilamkurthy et al. (2018) have created a deep learning 

method for automated detection of intracranial hemorrhage 

and its types (i.e., intraparenchymal, intraventricular, 

subdural, extradural and subarachnoid); calvarial 

fractures, midline shift and mass effect. They showed that 

deep learning algorithms could perform this task with high 

accuracy. Kuang et al. (2020) have proposed a method to 

detect skull fractures more accurately in a short time. The 

proposed method is called Skull R-CNN. Compared to 

previous research on skull fracture detection, Skull R-CNN 

has fewer false positives while maintaining high sensitivity. 

Lee et al. (2020) presented an algorithm for detecting Femur 

fracture from pelvic X-ray images that uses available paired 

image-text training data (meta-training set) to learn features 

from both modalities without an additional hallucination 

network. When using this approach, a novel deep learning 

model is produced to operate only over the single-image 

modality input and outperforms the standard network trained 

only on image data. Thus, the new method transfers 

information commonly extracted from text training data to a 

network that can extract associated information from image 

counterparts. The key steps in the proposed approach include 

image normalization, centroid identification, multi-level 

global segmentation and, skull skeletonization. Yamada et al. 

(2016) developed a novel method to automatically detect 

linear skull fractures by detecting crack lines on head CT 

images. They performed a basic evaluation using two kinds 

of phantoms. Their experiment with a digital phantom 

revealed that a crack line with a width of 0.35 mM could be 

detected. However, all the approaches listed above only 

looked at the local features of the skull fractures. No one 

has classified the common types of skull fracture. Using 

head CT scans, we developed a novel deep learning 

technique to confidently detect and classify common skull 

fractures. In contrast to previous research that focused just 

on detecting skull fractures, our objective is to classify 

skull fractures from images. We introduce SkullNetV1, 

a new model for automated classification of the five 

most common skull fractures (linear, depressed, linear, 

non-depressed, facial and comminuted). 

Dataset 

We collected head CT scan images of 232 patients from 

Medinova Medical Services Ltd. and Ibn Sina Hospital 

Sylhet Limited with their respective permission. Every CT 

scan image was in DICOM format, with 512×512 pixels in 

0.75 mm, 1.0 mM and 5.0 mM slice thickness. CT scan 

images were anonymized automatically. All the collected 232 

CT scans were examined and annotated by the top 

radiologists. First, the radiologists annotated the dataset into 

the fracture and the normal cases. Fractured cases were 

further classified into five classes by the respective 

radiologists. The paired data (174 CT scan images and 

radiology reports) were used as training sets. 

Methodology 

DICOM image processing requires more computing 

power than JPG image processing, which we didn’t have, 
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so all DICOM images were converted to JPG format. The 

image size was reduced to 200x200 pixels to save 

memory and speed up the training process. Pixel data was 

rescaled by dividing with maximum pixel value. 

We consider this study as a multi-label classification 

problem to determine what types of fracture exist in a CT scan 

image, in addition to whether the CT scan image is fractured 

or not. Thus, each patient’s CT scan picture slices were multi-

labeled with zero or one in a CSV file. A NumPy array was 

created from the CSV file to encode the label data. 

The goal of multi-label image classification is to 

extract all of an image’s semantic classifications. Given an 

image I, the final prediction lk of the k-th class 

corresponding to I is formulated by 

 

( )  I( I |  w ), 1,···,k k kl p k K=  
 (1) 

 
where pk (I|w) signifies the posterior probability of image 

I, including the kth class, as estimated by a model with 

parameters w. The number of labels given is K and the 

confidence threshold for the kth class is τk. I(p > τ) is an 

indicator function that returns 1 when p is greater than zero 

and 0 otherwise. The last label indication is lk, which 

implies that if lk = 1, then the kth class is present in the 

image and if lk = 0, it is not. 
The major goal of this phase is to extract characteristics 

from a CT scan image that will be sent into a classifier, which 
will categorize the CT image into one or more classes. A 
baseline model was created as the feature extractor that 
consisted of 8 convolutional layers with modest 3x3 filters 
followed by a max-pooling layer, with the number of filters 
doubling with each consecutive block. Each block has two 
convolutional layers with three filters, as well as Leaky ReLU 
activation at 0.001 learning rate and He weight initialization 
with the same padding, guaranteeing that the output feature 
maps are the same width and height. After that, a        
max-pooling layer with a 3x3 kernel was added. There are 
four of these blocks, each containing 32, 64, 128 and 256 
filters. The final pooling layer’s output was flattened to a one- 
dimensional vector to compute the Euclidean distance. The 
architecture, layer and number of parameters of our 
baseline CNN are given in Table 1. 

Binary Relevance, Classifier Chains and Label Power set 

are three notable approaches to convert multi-label problems 

into single-label problems. Binary relevance treats each label 

as a separate single class classification; however, because 

each target variable is treated independently, it ignores label 

correlation. The first classifier in a Classifier Chain is trained 

just on the input data and then each subsequent classifier is 

trained on the input space as well as all prior classifiers in the 

chain; this overcomes the issue Binary Relevance has. 

Classifier Chains, on the other hand, will perform poorly if 

there is no label correlation. Label Power set transforms the 

problem into a multi-class problem by training a single multi-

class classifier on all unique label combinations discovered 

in the training data. The Label Power set approach is 

arguably the finest of the three; the one problem is that as 

the training data grows, the number of classes grows as 

well. As a result, the model’s complexity grows, which 

would result in lower accuracy. 

We did not use any of these classifiers as our intention is 

to compare the Euclidean distance of the test image with all 

the images in the training set without transforming the 

problem into different subsets of problems. Then we check 

the image for which we got the minimum Euclidean distance 

and then the classifier predicts the most frequent labels. 

ML-KNN Szymański and Kajdanowicz´ (2017) suits 

our purpose, which is an upgraded version of KNN. To 

improve performance, it uses the maximum a posteriori 

principle to label a new instance after finding the k nearest 

neighbors in the training data. Since ML-KNN operates on 

sparse matrices internally using SciPy sparse matrix 

library, it is highly memory-efficient. 
In order to train the ML-KNN, the extracted features from 

CNN and label data were used as input. ML-KNN is known 
as a lazy learning algorithm because it does not learn anything 
in the training period. The lazy learning approach involved 
determining the most similar samples to each new query to be 
predicted from the entire training data set. Once a selection of 
training patterns has been chosen, the classification model is 
learned with that subset and used to categorize the new query. 
The value of k in ML-KNN, which is the number of 
neighbors of each input instance to consider, was set to 3. It’s 
a work with an imbalanced number of labels in a multi-label 
classification system. Because there are so many classes to 
predict, the notion of positive and negative words and 
associated terms are calculated for each kind in a one vs. rest 
way and then the overall levels are averaged. As a result, we 
chose F1 scores to evaluate all models. 

TP = True Positive, TN = True Negative, FP = False 

positive, FN = False Negative 
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Accuracy, Precision, Recall and AUC score were also 

added besides the F1 score. 

Experimental Environments 

Ubuntu 20.04.2 LTS was utilized as the operating 

system. The AMD Ryzen Thread ripper 1950X 16-Core 

Processor was used. The primary memory was 32 GB and 
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the graphics cards were two GeForce RTX 2080 Ti with 

11 GB RAM each. TensorFlow 2.5.0rc2 was used as the 

deep learning framework. 

Experimental Results 

The dataset was randomized and then divided into three 

parts: 60% Training, 20% validation and 20% testing. 

Four transfer learning-based CNN models, an original 

Alex Net model and our baseline CNN was trained to 

check their performance. 

Binary Cross-Entropy Loss of Every CNN Model 

From the Fig. 4, 5, 6, 7, 8, 9; it is clear that apart from 
our baseline CNN, every other CNN model shows major 
overfitting behavior. Table 2 further clarifies our 
argument. Table 2 shows a comparison of the most well-
known CNN models and our suggested model’s classification 
performance in terms of AUC and micro average F1 score. 
From Table 2 it is clear that our proposed model, SkullNetV1 
beats other models by a large margin. 

Average Precision graph is shown in Fig. 10 to show 
the area under the precision-recall curve from the proposed 

model. The weighted mean of precision reached at each 
threshold, with the increase in recall from the preceding 
threshold used as the weight, describes a precision-recall 
curve as Average Precision. 

Precision-Recall curve of all classes computed by our 
model is shown in Fig. 11 to evaluate our proposed 
model’s output quality. 

To further check our proposed model’s performance 
per class wise, Table 3 presents a summary of 
classification performance results in terms of precision, 
recall, F1 score, ROC AUC score and Specificity. It also 
includes our proposed model’s score over all classes 
across the testing dataset. 

Even though the dataset has an uneven label distribution 
(Fig. 1), our strategy outperforms state-of-the-art CNN 
models on the dataset, where SkullNetV1 learns substantially 
better than InceptionResNetV2 (InceptionResNetV2 is the 
next best model according to Micro Average F1 score); 
SkullNetV1 achieved an overall accuracy of 0.88 and a Micro 
average F1 score of 0.93 in this seven-class multi-label task. 
The SkullNetV1 showed good performance for all the 
performance metrics. Not only that, but our SkullNetV1 
model outperformed the competition across the board. 

 
Table 1: Architecture, layer, parameters of our baseline CNN 

SL No. Layer Activation shape Activation size Parameters 

1. Input Layer (200,200,3) 120000 0 
2. CONV2d_1(filter_shape = 3, 
 stride = 1, num_filters = 32) (200,200,32) 1280000 896 
3. CONV2d_2(filter_shape = 3, 
 stride = 1, num_filters = 32) (200,200,32) 1280000 9248 
4. MaxPooling2d_1 (100,100,32) 320000 0 
5. CONV2d_3(filter_shape = 3, 
 stride = 1, num_filters = 64) (100,100,64) 640000 18496 
6. CONV2d_4(filter_shape = 3, 
 stride = 1, num_filters = 64) (100,100,64) 640000 36928 
7. MaxPooling2d_2 (50,50,64) 160000 0 
8. CONV2d_5(filter_shape = 3, 
 stride = 1, num_filters = 128) (50,50,128) 320000 73856 
9 CONV2d_6(filter_shape = 3, 
 stride = 1, num_filters = 128) (50,50,128) 320000 147584 
10. MaxPooling2d_3 (25, 25, 128) 80000  
11. CONV2d_7(filter_shape = 3, 
 stride = 1, num_filters = 256) (25, 25, 256) 160000 295168 
12. CONV2d_8(filter_shape = 3, 
 stride = 1, num_filters = 256) (25, 25, 256) 160000 590080 
13. MaxPooling2d_4 (12, 12, 256) 36864 0 
14. Flatten (36864)  0 
 Total params 1172256 
 
Table 2: Results from multiple models on the testing dataset 

 Measure 
Model ---------------------------------------------------------------------------- 
 AUC F1 score 

InceptionV3 0.83 0.63 
Alex Net 0.77 0.6 
ResNet50 0.82 0.62 
Efficient Net 0.84 0.62 
InceptionResNetV2 0.85 0.65 
Baseline CNN (ours) 0.9 0.75 

SkullNetV1 (proposed model) 0.94 0.93 
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Table 3: Class wise score of the proposed model 

 Labels Precision Recall F1 score ROC AUC Specificity 

 Fracture 0.98 0.98 0.98 0.98 0.92 
 Not fractured 0.97 0.97 0.97 0.98 0.98 
 Linear fracture 0.97 0.83 0.90 0.91 0.99 
 Depressed fracture 0.91 0.92 0.91 0.94 0.95 
 Linear non-depressed 0.92 0.79 0.85 0.89 0.98 
 Fracture facial fracture 0.97 0.82 0.89 0.91 0.99 
 Comminuted Fracture 0.93 0.85 0.89 0.92 0.98 
Micro avg  0.96 0.91 0.93 0.94 0.96 
Macro avg  0.95 0.88 0.91 0.93 0.94 
Weighted avg  0.96 0.91 0.93 0.94 0.93 
Samples avg  0.96 0.93 0.94 0.95 
  Score of SkullNetV1 over all classes 
Subset Accuracy   0.88 
F1 score   0.93 
Hamming Score   0.92 
Hamming Loss   0.04 
ROC AUC   0.94 
 
Table 4: Comparative performance of published model vs. proposed model 

Paper Objective Score, metric Dataset 

Shao and Zhao Automatically detect if 100%, accuracy Training dataset = 100 images, testing 

(2003) the skull is fractured or not  dataset = 100 images 
Zaki et al. (2009) Segment fractured skull  95%, Normalized 3004 normal and 28 original 

 from 2D-CT brain image Recall rate fracture cases 

Yamada et al. (2016) Detection of Linear skull 80% accuracy for a crack 3D CT scan 
 fracture line of width 1.05 mm 

Chilamkurthy et al. Detection of multiple Hemorrhage 91.11%, AUC 313318 slices of 
(2018) and skull fracture of only calvarial.  head CT scans 

Lee et al. (2020) Detection of femur Fracture 86.78%, accuracy Training dataset = 459 cases, 

   testing dataset = 227 cases 
Kuang et al. (2020) Faster detection of skull  80%, precision 45 CT scan comprising of 

 fracture more accurately recall score 872 slices 

Ours Classification of five common 93%, F1-score Training dataset = 174 cases (24153 CT scan slices), 
 non-exclusive skull fractures  testing dataset = 54 cases (8051 CT scan slices) 
 

 
 

Fig. 1: Data characteristics. Number of CT images and radiology reports for training and testing the system. 
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Fig. 2: Multi labeled skull fracture classification pipeline 

 

 
 

Fig. 3: Proposed architecture of feature extractor 
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Fig. 4: InceptionV3 
 

 
 

Fig. 5: AlexNet 
 

 
 

Fig. 6: ResNet50 
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Fig. 7: EfficientNet 
 

 
 

Fig. 8: InceptionResNetV2 
 

 
 

Fig. 9: Baseline CNN (ours) 
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Fig. 10: Average Precision graph over all classes 

 

 

 

Fig. 11: Precision-recall curve of all classes 
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Fig. 12: ROC curves of the algorithm on the dataset 
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Fig. 13: Confusion matrix obtained for seven-class multi-label classification 

 

The Area Under the Curve (AUC) of SkullNetV1 is 

between 0.89 and 0.98 (Fig. 12), which is quite 

promising. A summary of prediction results from the 

testing dataset by each class has been shown with 

Confusion Matrix in Fig. 13. 

Discussion 

Radiology reports were used as ground labels in 

this study to increase classification performance over 

CT scan pictures alone and deep learning 

architectures with supervised learning were proposed 

for incorporating auxiliary data during training. The 

proposed method was successful in classifying a head 

CT scan image based on the type of skull fracture. A 

good deal of artificial intelligence-based research has 

been done to categorize a head CT picture as fractured 

or normal, but none have been done to further classify 

that image based on fracture type until this study. To 

clarify this, Table 4 shows a comparison with existing 

published reference models vs. our proposed work. 

Despite having fewer image data, our model 

performed really well. Our SkullNetV1 took only 

around 10 min to be trained, whereas other models 

took over 35 min, which indicates our model’s time 

complexity is better than other mentioned models. 

When a larger training set is available, a larger model 

performs better. As a result, the number of layers we 

should use is determined by our data, the size of the 

dataset and the level of detail in our data. However, 

this does not imply that the more layers we have, the 

better. He et al. (2016) conducted a fascinating 

experiment in the original Res Net paper, they found 

that stacking more and more layers harmed the 

model’s performance. By adding more layers, more 

parameters are introduced and the dataset may be too 

small to efficiently train these parameters. If the 

objective is simple and the data is limited, training it 

on a large complicated network will cause it to learn 

too much, resulting in overfitting. ResNet50 is a 

deeply layered CNN with 48 Conv layers. 

Alex Net, on the other hand, is not a deeply 

layered model. In our experiment, we implemented 

the Alex Net model proposed in the original paper by 

Krizhevsky et al. (2012), which is made up of 5 Conv 

layers starting with an 11x11 kernel. A 121-pixel 

square receptive field can be achieved with an 11x11 

kernel. A 5x5 kernel size, on the other hand, has a 

receptive field of 25 pixels in a square. This means 

that the kernel size of 11 will be able to incorporate 

more information during each dot product. However, 

the larger the kernel size does not necessarily mean 

the better it is, because, in our dataset, too many 

parameters lead to overfitting. This is what’s going 

on with Res Net 50, Alex Net and other well-known 

models we’ve implemented. While these models 

perform well in large datasets and are extremely well 

trained in the "ImageNet" dataset, they struggle in 

small datasets. A small, imbalanced multi-label 

medical dataset has been used in our study. Due to the 

fact that "ImageNet" does not contain medical 

images, these larger models performed poorly in our 

dataset, prompting us to create our own baseline CNN 

with only 8 convolutional layers, which extracts features 

from our small dataset more effectively than notable 

transfer learning-based models, as shown in Fig. 9. 

However, regardless of experimenting by tuning 

several hyperparameters of our baseline CNN, it still 

shows minor overfitting. This is most likely because 

our multi-label medical dataset is imbalanced and has 

a relatively low amount of images than a CNN would 

require. To overcome this, we developed our 

proposed model by substituting the dense layers of 

our baseline CNN with ML-KNN for the 

classification task. Our proposed model outperformed 

ResNet50, Alex Net and other prominent models 

because of this lazy learning approach combined with 

our baseline CNN. The extracted features of images 

by CNN were fed into a lazy learning-based classifier 

to classify the new data points based on the similarity 

measure of the earlier stored data points, which is a 

good strategy when the dataset is small. When a new 
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test image comes it checks its similarity with earlier 

stored data. The findings of this study show that our 

architecture might increase medical image classification 

performance with high accuracy and F1 score. 

Although our small dataset is accurate, there are 

fewer images of Linear Non-Depressed Fracture. 

Hence our baseline CNN combined with ML-KNN 

did not perform very well on this fracture type 

compared to other fractures, demonstrating that even 

with auxiliary data, training with a small dataset is 

difficult. As our proposed model consists of our 

baseline CNN which uses ML-KNN, the large 

memory requirement to store the training dataset is 

one of the drawbacks. The cost of calculating the 

Euclidian distance by our proposed model between 

the new point and each existing point is high which 

could degrade the performance of the algorithm if the 

dataset gets very larger. Understanding how a DNN 

produces predictions is a hot topic in medical 

research. It could persuade clinicians that the results 

are accurate, even if the model used an inaccurate 

area of the image instead of the genuine lesion site to 

generate the answer. CT scan images and radiology 

reports were used for training and CT scan images 

were used for testing in this study. The fracture types 

predicted from images by the SkullNetV1 were then 

visualized (Fig. 14 and 15). 

Our model correctly predicted the fracture type in 

Fig. 14 and 15 shows how our model failed to identify 

the correct fracture type. 

However, using radiology data as supplementary 

information to classify different skull fractures has never 

been done before. We started by classifying skull 

fractures and comparing them to other state-of-the-art 

CNN models. Although the SkullNetV1 performed well, 

the current study included some limitations. We had to 

exclude Basilar fracture, the most severe and rare type of 

skull fracture because CT scan images of this fracture 

were unavailable. The dataset was highly imbalanced. 

The GAN and ML-SMOTE algorithm could solve this 

problem. The deep Generative Adversarial Network 

(GAN) is used for data augmentation to combat data 

shortages and overfitting. It’s a method of training an 

image generator model with an image discriminator 

model using large, unlabeled datasets. ML-SMOTE is 

one of the most well-known resampling algorithms which 

is used to create synthetic samples combining the features 

of samples from the minority classes with interpolation 

techniques. More data from Linear Non-Depressed 

Fracture could help us overcome our relatively poor 

performance in the detection of this fracture. As the 

experimental setup required a lot of computational power, 

different optimization strategies could be adopted to 

reduce the needed computational power. 

 

 

 

Fig. 14: Correct predictions 



Md Moniruzzaman Emon et al. / Journal of Computer Science 2022, 18 (3): 116.129 

DOI: 10.3844/jcssp.2022.116.129 

 

128 

 
 

Fig. 15: Wrong predictions 
 

Conclusion 

We developed a novel deep learning algorithm to 

automatically identify and classify skull fractures using 

head CT images. The proposed method for 

autonomously extracting relevant features from skull 

CT scans is rapid and reliable and training those features 

with a supervised learning algorithm is identical to the 

clinician’s decision-making process. Compared to 

earlier studies on only skull fracture detection, our goal 

was to categorize skull fractures from images. Our 

model classifies skull fracture images trained with 

limited data. Advantages of our approach include 

simplicity and effective use of limited training data. 

For this seven-class multi-labeled classification, our 

recommended model has a subset accuracy of 88 

percent, an F1 score of 93 percent, an AUC of 0.89 to 

0.98, a Hamming score of 92 percent and a Hamming 

loss of 0.04. We hope that by applying our method to 

head CT images, we will automate the triage process 

of head CT scans. Our approach could help 

radiologists work more efficiently. This technique 

proved to have a promising future in applying 

medical image diagnosis in providing second 

opinions to doctors or radiologists. One of our 

significant areas of concentration for future study is 

the continuous improvement of the algorithm. Several 

enhancements might be made, such as the addition of 

GAN and the ML-SMOTE algorithm to balance the 

multi-label dataset. 
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