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Abstract: Predictive analysis is one of current important issues in the 

healthcare context. A lot of patients’ input data can be obtained from their 

Electronic Health Records. In our research, we propose a general architecture 

named Health Prediction Architecture. Initially, we consider that data refer to 

strongly structured health datasets (no free text). Our objectives are related to 

exploring some problems in the prediction context for healthcare. In 

particular, we consider dataset heterogeneity, accuracy together explain 

ability, dataset for benchmarking. After a presentation of Electronic Health 

Record and some useful related standards, we propose our architecture based 

on two principal modules. First module produces features extraction and it 

implements a Convolutional Neural Network or alternatively a Multi-Layer 

Perceptron. Second module produces predictions and it implements 

alternatively one from Graph Convolutional Network, Simplified Graph 

Transduction Game, Nearest Nodes and Classes Graph. We define the 

datasets randomly so to have the possibility to manage data sufficiently 

heterogeneous and useful for a benchmarking, without any privacy problem 

too. In this study, we experiment a first instantiation of the architecture, based 

on Multi-Layer Perceptron as first module and Simplified Graph Transduction 

Game as second module, considering health data related to type 2 diabetes 

risk, generated according to a healthcare rule. We try the architecture by 

slightly increasing both cardinalities of datasets and extracted features. As 

first results of our research, in this study we produce training and testing 

randomized datasets and we obtain a testing accuracy behavior generally 

better than using only Multi-Layer Perceptron (best accuracy with 200 

labelled elements). Our architecture aims to evolve to be used as a general 

solution in healthcare predictions context. We are also interested in studying 

our solution in future works from the explain ability point of view, with 

particular interest in explaining the results in terms of input attributes. 

 

Keywords: Electronic Health Record, FI Nnish Diabetes R Isk S Core, 

Convolutional Neural Network, Multi-Layer Perceptron, Graph 

Convolutional Network, Graph Transduction Game 

 

Introduction 

Patient’s Electronic Health Record (EHR) is the set of 

clinical-health information useful for patient treatment 

(e.g., clinical and laboratory reports, discharge letters, 

emergency reports produced in the hospitals and Patient 

Summary (PS) produced by General Practitioner (GP). 

Data can have two different states: Validated (e.g., 

documents digitally signed by a doctor) or not validated 

(e.g., health data such as pressure, recorded by the patient 

autonomously; in this scenario, typically we talk about 

Personal Health Record (PHR). There are more contexts 

of interest and more points of view. For a patient, we often 

refer to concepts related to health data and documents 
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associated to: (1) Whole hospitalization. (2) Ward (also 

considering more hospitalizations or outpatient episodes 

within the ward itself). (3) GP. (4) Whole hospital 

(considering more episodes on different wards for more 

hospitalizations too). (5) All health data and documents of 

a patient regardless of the structure in which they were 

created. In these contexts, typically Electronic Patient 

Record (EPR), Electronic Medical Record (EMR), EHR, 

PHR acronyms are used with some different meanings. In 

this study, we mainly use EHR term. EHRs is very 

important to contain the history of a patient so as to 

facilitate its care. Important issues related to EHRs, are 

the standardization of both type of documents and 

modalities to access them and the interoperability 

between them. There are different standards in healthcare, 

e.g., Fast Healthcare Interoperability Resources 

(FHIR®)1 and Clinical Document Architecture (CDA®)2. 

Starting from data contained in EHRs, we can use 

different Machine Learning (ML) techniques to increase 

and infer knowledge. As highlighted in Shickel et al. 

(2017), many limitations arises for the research in the field 

of deep EHR learning, in particular: Data heterogeneity, 

lack of common benchmarks, model interpretability. Our 

aim is to define an architecture to overcome some of these 

difficulties too. First, we propose to use structured and 

standard EHRs also for trying to unify patients' 

representation, so to reduce data heterogeneity problem. 

Generally, we could have vector-based representation for 

health codes but reducing free text usage and better 

managing e.g., laboratory tests and vital signs. Predictive 

models improves their accuracies but often without 

considering e.g., the human interpretability equally 

important “…We identify several limitations of current 

research involving topics such as model interpretability, 

data heterogeneity and lack of universal benchmarks …”, 

Shickel et al. (2017). We propose a two components 

architecture in which generally second component could 

be at least slightly simpler from explain ability point of 

view (but improving average accuracy at the same time), 

although we absolutely have to better explore both 

components in future works for this particular issue. 

Moreover, in our first experiment, we use a dataset randomly 

generated according to a clinical rule, so to overcome privacy 

problem about real data and to pursue a method for defining 

common benchmarks based on arbitrary high dataset. First, 

we highlight some related works in the context of prediction 

for healthcare, with particular attention for diabetes 

prediction considered in the experiment explained in this 

study. Then, after introducing some useful concepts (EHR, 

FHIR, CDA), we propose Health Prediction Architecture 

(HPA) based on two principal modules. Starting from 

                                                 
1www.hl7.org/fhir 

structured data in EHR, first module (based on 

Convolutional Neural Network (CNN) or Multi-Layer 

Perceptron (MLP)) extracts features to represent the different 

patients according to a particular health issue. Then, second 

module (based on Graph Convolutional Network (GCN), 

Simplified Graph Transduction Game (SGTG) or Nearest 

Nodes and Classes Graph (NNCG)) makes a prediction on a 

particular patient. We focus our attention in reasoning and 

inferencing from structured health data (no free text), so to 

have an optimal data quality as knowledge dataset. After 

defining our architecture, we propose a first experiment 

based on this instance: MLP and SGTG. Our experimental 

objective is to classify patients at risk of diabetes starting 

from a dataset generated by using random data defined in 

respect to a clinical rule (FI Nnish Diabetes R Isk S Core 

(FINDRISC)). In ML, there are a lot of work on healthcare, 

particularly about diabetes too (e.g., Dagliati et al., 2018). 

Diabetes (diabetes mellitus) affects the ability to produce the 

hormone insulin made by the pancreas to help glucose to get 

body cells from food, so to be used as energy. If blood 

glucose level is high, there is hyperglycemia. If a person is 

hyperglycemic and it is not able to regulate its blood glucose 

level, it is diabetic. Type 1 diabetes depends by the immune 

system attacking pancreatic beta cells (these produces 

insulin). Type 2 diabetes depends by insulin resistance. This 

disease makes the metabolism of carbohydrate abnormal and 

raise the levels of glucose in the blood (high blood sugar 

levels over a prolonged period) with consequent symptoms 

(e.g., more thirst, hunger and urination) and complications 

when diabetes is not treated. Therefore, diabetes depends 

mainly on sugar concentration, but it depends also on other 

factors (e.g., age, Body Mass Index (BMI), hereditary 

factor). FINDRISC identifies patients at high risk in the 

context of type 2 diabetes.  

Related Work 

This paragraph briefly presents some documents in 

order to frame the topic of interest also in reference to the 

state of art useful for carrying out our work. We begin with 

general prediction issues in healthcare. Rajkomar et al. 

(2018) exposed a study aimed at predicting health issues 

(mortality, readmission within 30 days, prolonged 

hospitalization and inference of discharge diagnosis). 

That work uses datasets from two university health 

institutions. The used method initially considers that 

health systems maintain patients' EHRs in several formats 

(structured and unstructured, standardized or not) within 

their databases. All available data of each patient are 

encoded in containers based on FHIR specifications. 

Patient’s FHIR resources are placed in temporal order so 

to represent all patient's EHR events. Deep Learning (DL) 

2www.hl7.org/implement/standards/product_brief.cfm?product_id=7 



Alessandra Pieroni et al. / Journal of Computer Science 2021, 17 (9): 762.775 

DOI: 10.3844/jcssp.2021.762.775 

 

764 

model uses this complete history to make any kind of 

prediction. The work has a double contribution. First, 

there is a transformation process defined, which is able to 

take the elements in a patient's EHR as input data to 

produce outputs in the Health Level 7 (HL7®) FHIR 

format, without manual harmonization. Moreover, using 

the data of two hospitals, they demonstrate the effective 

usefulness of DL in a wide range of predictive models. 

The approach considered in the work improve model 

performance and obtains this improvement without the 

manual selection of the variables by an expert. Futoma et al. 

(2015) studied prediction for readmission within 30 days. 

Dataset used is New Zealand National Minimum Dataset 

(New Zealand Ministry of Health) with International 

Classification of Diseases (ICD) and Diagnosis Related 

Group (DRG) codes. Methods used, refer to the following 

models: Logistic Regression (LR), Logistic Regression 

Variable Selection (LRVS), Penalized Logistic Regression 

(PLR), Random Forest (RF), Support Vector Machine 

(SVM) and Deep Neural Network (DNN). Darabi et al. 

(2018) focused on the subject of prediction for patient 

mortality risk, using public dataset Medical Information 

Mart for Intensive Care (MIMIC) III. The methods refer to 

Gradient Boosted Tree (GBT) and DNN. In particular, they 

use data from EHR related to admission phase (demographic 

information and ICD codes). Pham et al. (2017) considered 

personalized predictive medicine. A deep DNN (Deep Care) 

is defined. They start from reading EMRs with previous 

history of diseases. Then they make inferences about current 

medical situation (disease progression) and on intervention 

recommendation. Furthermore, they also consider patient’s 

future situation prediction (future risk prediction) in terms of 

readmission and mortality. The model is based on Recurrent 

Neural Network (RNN) of Long Short Term Memory 

(LSTM) type and is extended, in particular, to manage 

variable size discrete inputs, interactions between medical 

situation and intervention recommendation, irregular timing 

of events. Manual engineering of features is not required. 

Choi et al. (2016) proposed Doctor AI model. It bases on 

RNN and it uses episodes recorded in EHR in order to make 

forecasts for next patients’ episodes. Predictions refer to 

diagnosis, medical prescriptions and time interval between 

current and following episode. Data used refers to codes 

(ICD code, medication code, procedure code). RNN is 

implemented by Gated Recurrent Unit (GRU), an alternative 

to LSTM. Henriques et al. (2014) proposed two predictive 

models considering both temporal and cross-attributes 

dependencies. These models support medical decisions from 

integrated healthcare databases. Huang et al. (2019) had the 

objective to map clinical notes (free text in EHRs) into 

ICD-9 codes. MIMIC-III dataset is used and Natural 

Language Processing (NLP) is based on RNN and CNN. The 

methodology considers three phases: Data preprocessing, 

features extraction, model training and testing. DL models 

are 1D convolution layer (Conv1D), LSTM and GRU. 

Zhao et al. (2019) proposed an alternative approach for 

predicting cardiovascular diseases in respect to classical 

techniques based on risk factors and selection of 

interesting data. They use ML and DL techniques starting 

from EHR data and genetic data too. Data refer to 109490 

patients. Experiments are done first considering only EHR 

data and after with both EHR and genetic data. Models 

used are LR, RF, GBT, CNN and RNN with LSTM units. 

Performances are compared with standard approaches 

used in routine clinical practice. There are better results 

compared to standard approaches. Even better results 

emerge when using genetic data together EHR data. Now, 

we present some works about prediction in the context of 

diabetes. Contreras et al. (2018) reviewed Artificial 

Intelligence (AI) techniques related to diabetes, selecting 

141 articles. Initially they explore AI techniques 

considering three issues: Learning from knowledge, 

exploration and discovery of knowledge, reasoning from 

knowledge. For the first issue they initially remember 

some types of techniques: Artificial Neural Network 

(ANN), SVM, RF, Evolutionary Algorithm (EA), DL, 

Naïve Bayes (NB), Decision Tree (DT) and regression 

algorithms. Then, they summarize their results 

considering the following categories: Blood glucose 

control strategies; blood glucose prediction; detection of 

adverse glycemic events; insulin bolus calculators and 

advisory systems; risk and patient personalization; 

detection of meals, exercise and faults; lifestyle and daily-

life support in diabetes management. In conclusion, they 

evidence a growth of research in AI for prediction and 

prevention issues related to diabetes. Swapna et al. (2018) 

studied a methodology to classify diabetic and normal Heart 

Rate Variability (HRV) signals by using deep learning. HRV 

signals come from Electro Cardio Gram (ECG) signals. The 

architecture has three principal modules: CNN, LSTM and 

SVM. CNN module is composed by 5 CNN layers and each 

layer have a max pooling. LSTM has 70 memory blocks and 

there is a dropout 0.1 to remove randomly neurons. SVM is 

used for final classification from features extracted by CNN 

and LSTM modules. It uses Radial Basis Function (RBF) 

kernel. For the experiments, they use Graphics Processing 

Unit (GPU) with Tensor Flow, Keras and Scikit-learn. The 

architecture proposed is useful to help the diabetes diagnosis 

using ECG signals, with an accuracy of 95.7%. Miotto et al. 

(2016) proposed “deep patient”, a framework to model 

patients by general features obtained automatically from an 

EHR dataset using DL. They use data from Mount Sinai data 

warehouse. EHRs are processed in an unsupervised method 

with a DNN based on Stacked Denoising Autoencoder 

(SDA) architecture. The framework can be used for different 

predictions, also related to diabetes diseases. For patients in 

the dataset, they keep some demographic data, diagnosis 

(ICD-9 codes), medications, procedures, lab tests and clinical 
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notes (free text). SDA architecture is used to obtain patient 

representation starting from 704857 patients in the dataset. 

For prediction about probability that a patient will have a 

particular disease, they use RF (100 trees for classifier). 

Sisodia et al. (2018) used DT, SVM and NB to predict 

diabetes at an early stage. Dataset derives from University of 

California, Irvine (UCI) repository. They measure 

performance by precision, accuracy, F-measure, recall and 

Receiver Operating Curve (ROC). For the experiment, they 

use Waikato Environment for Knowledge Analysis 

(WEKA) tool. Highest accuracy is for NB algorithm. 

Kavakiotis and Tsave (2017) presented a review of ML and 

data mining for diabetes issue about diabetic complications, 

genetic background and environment, healthcare and 

management and (most popular) prediction and diagnosis. 

They show that 85% of ML algorithms used are supervised 

algorithms and 15% unsupervised. SVM outcomes the most 

used and with better results. Mercaldo et al. (2017) studied a 

method to classify patients affected by diabetes using 

Hoeffding Tree (HT) algorithm, also known as Very Fast 

Decision Tree (VFDT) algorithm. The aim is to classify 

diabetes patients by the minimum features number to obtain 

a solution useful in real scenarios. They consider a set of 

characteristics based on World Health Organization (WHO) 

criteria. In particular, they consider a vector with the 

following attributes: Number of times pregnant, plasma 

glucose concentration at 2 h in an oral glucose tolerance test, 

diastolic blood pressure, triceps skin fold thickness, 2 h 

serum insulin, BMI, diabetes pedigree function, age. The 

study bases on UCI repository, as usual. By classification, 

they verify if features selected are representative to choice if 

a patient has diabetes or not. They use the following ML 

classification algorithms: J48, MLP, HT, JRip, Bayesian 

Network (BN) and RF. Classification is executed with 

WEKA tool. They obtain a precision of 0.757 and a recall of 

0.762. Erdem et al. (2012) introduced Graph Transduction 

Game (GTG) as a different game-theoretic idea for the 

problem of graph transduction. In the following, in our work 

we use and describe GTG for the components of our interest. 

This problem is defined as a multi-player non-cooperative 

game and the players are the samples that have to decide their 

belonging classes. In the experiments done in Erdem et al. 

(2012), they consider also Diabetes dataset from UCI while 

evaluating the behavior of GTG in respect to other methods. 

Electronic Health Record 

EHRs contain data that could come from multiple 

health facilities. We can access these data in accordance with 

privacy consent rules established by the patient himself too. 

For data and documents contained in EHR, we can consider 

two types of problems about standardization point of view: 

Structuring for clinical health documents and use of standard 

codes within the documents themselves. Generally, we have 

to consider that, although the tendency is to structure 

information as much as possible, it is necessary to assume 

that in EHR both structured and unstructured data can coexist 

together. In this study, we focus mainly on predictions 

starting from consolidated data and therefore we consider 

structured data and not free text. We suppose to consider 

EHRs e.g., simply based on structured but not standardized 

data or, even better, based on data respecting FHIR or CDA 

Release 2 (CDAR 2) formats. 

HL7 FHIR standard was defined with the idea to have a 

lot of useful features: Easy to develop and with minimum 

constraints for the necessary tools, semantically robust, 

friendly for developers, with artifacts that should be clear and 

intuitive and which should be able to be validated 

automatically. It uses common formats and tools and 

web-based technologies for specifications. Furthermore, 

FHIR refers to modern technologies in the web context (e.g., 

hypertext Transfer Protocol (http), extensible Markup 

Language (XML) and JavaScript Object Notation (JSON)). 

Online specifications consider most formats: Unified 

Modeling Language™ (UML®) diagrams, XML, JSON and 

Turtle. The most important concepts of FHIR are essentially 

the following: Resource, extension, datatype, profile and 

bundle. A resource is the smallest unit useful for data 

exchange in an interoperability context. There are different 

categories of resources including for example medication, 

diagnostic, workflow management. Different resources are 

associated within categories. Examples of resources are the 

following: Patient, Encounter, Medication, Observation, 

Procedure, Composition and Condition. Each resource 

consists of several elements, each of which has a datatype. 

The format of a resource turns out to be understandable for a 

clinician, even if the specification is for a developer. FHIR 

considers all aspects of interoperability in the health context 

(e.g., clinical, administrative, research aspects) and supports 

interoperability through four paradigms (Representational 

State Transfer (REST), messaging, document, service). To 

define the correct use of resources in different contexts, there 

are the profiles. See, e.g., Pais et al. (2017) where they 

develop a data model of wellness data using FHIR standard. 

Patients produce their own wellness data using smart 

phones and portable devices, enriching their PHR and 

EHR. FHIR support interoperability. They consider blood 

glucose, blood pressure and BMI data as they relate to 

diseases such as diabetes and hypertension. 

CDA is useful to define the specifications of health 

clinical documents in XML format. It uses HL 7 

Reference Information Model (RIM) and local or 

controlled vocabularies (using, e.g., ICD, Systematized 

Nomenclature of Medicine - Clinical Terms (SNOMED® 

CT), Logical Observation Identifiers Names and Codes 

LOINC®). With CDAR 2 it is possible to increase 

interoperability by binding both structure and content of the 

document. Many scenarios involving CDA documents refer 

to repositories and registries. Document repository is the 
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archive of health clinical documents for patients. Registry 

maintains links to the documents stored in different 

repositories. For example, we can query a registry to 

retrieve the list of documents associated with a patient. 

Then we can access the various documents by querying 

the repositories containing these documents. For 

example, repositories could belong to health facilities 

while the index could belong to a regional or national 

level. Typically, the registry maintains the address of 

document for its repository, identification metadata 

(e.g., patient code, healthcare facility and episode) and 

document type (e.g., discharge letter, laboratory report, 

radiology report). CDAR 2 document is an XML 

document with particular rules based on the health 

clinical context. It is essentially readable. However, at 

the application level it uses a user-oriented layout. This 

is possible by using a style sheet (e.g., for 

transformation to Portable Document Format (PDF)). 

A CDAR 2 document consists of a header and a body. 

CDAR 2 validation levels are three. At level one, the 

validation concerns the requirements as described for 

CDAR 2 specification. At level two, the validation is 

for a bound version of the CDAR 2 specifications (e.g., 

if we have an implementation guide defined for a 

particular type of document in a specific national 

context) and in this case, we usually have mandatory 

sections. At level three, the situation is similar to that 

of level two but the mandatory choices are higher as 

they refer to entries in terms of vocabularies or act 

codes (e.g., an act could be a procedure or a clinical 

observation). Some examples of implementation 

guides are the following: International PS (IPS), 

laboratory medicine report, radiology report, hospital 

discharge letter. Different types of documents emerge, 

related to different health topics and regional variants. 

e.g., already Paterson et al. (2002) presented a 

prototype using CDA in the context of discharge 

summaries, while Liang et al. (2003) studied design 

and implementation issues for a database to use for 

efficiently retrieving data from CDA documents. 

Although in this study we consider a first experiment 

with a limited number of input attributes, in Table 1 we 

present an example of a hypothetical richer structured input 

data (format, including dimensions) when considering 

possible patients’ EHRs with attributes corresponding to 

FHIR resources attributes. Similar considerations could be 

done considering attributes possibly defined from CDA 2 

standard documents or considering other types of EHR 

(standard or not). For a detail of attributes/sub-attributes and 

format types in this example, refer to 3. Of course, we can 

have more instances for one single resource for the same 

patient (e.g.: Observations corresponding to blood tests). 

                                                 
3www.hl7.org/fhir 
4https://www.hl7.org/fhir/clinicalsummary-module.html 
5https://www.hl7.org/fhir/diagnostics-module.html 

Health Prediction Architecture 

Our HPA has two main modules (features extraction 

and prediction) as described in the Fig. 1 (1 = Known 

classification patients; 2 = Unknown classification 

patients; 3 = Features extracted for known 

classification patients; 4 = Features extracted for 

unknown classification patients; 5 = Classification 

predictions for unknown classification patients). For 

each module, only one sub-module is used for the 

considered prediction activity. 

CNN component (Fig. 2) has the following layers: 

CONV 2D, batch normalization, activation (“relu”), max 

pooling 2D, flatten, dense, batch normalization, activation 

(“relu”), dropout, dense (this layer produces features 

extraction), batch normalization, activation (“relu”), 

dropout, dense, activation(“softmax”).  

 

Table 1: Example of input data extracted from a hypothetical EHR 

with attributes based on FHIR resources attributes 

Module Resource Format 

Clinical Allergy intolerance see 4 

 Condition (problem) 

 Procedure 

 Family member history 

 Care plan 

 Goal 

 Care team 

 Clinical impression 

 Adverse event 

 Detected issue 

Diagnostics Observation see 5 

 Diagnostic report 

 Service request 

 Media 

 Imaging study 

 Molecular sequence 

 Specimen 

 Body structure 

Medications Medication request see 6 

 Medication dispense 

 Medication administration 

 Medication statement 

 Medication 

 Medication knowledge 

 Immunization 

 Immunization evaluation 

 Immunization recommendation 

Workflow Referrals (service request) see 7 

(clinical process) Orders (nutrition order, 

 vision prescription) 

 Device request 

 Supply request 

6https://www.hl7.org/fhir/medications-module.html 
7https://www.hl7.org/fhir/workflow-module.html 
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Fig. 1: HPA 

 

 

 
Fig. 2: CNN component 

 

In this scenario, as already considered in other 

contexts (e.g., Sharma et al. (2019), we try to use a CNN 

with non-image data. A simple possible hypothesis for the 

dimensions of our virtual “image” refers to the 

dimensions width*depth*number of channels: (1) width = 

(n+m+1), where (a) n: Number of fixed clinical test 

components of interest (e.g., we consider White Blood 

Cells (WBC) and not Complete Blood Count (CBC)), (b) 

m: Number of fixed diagnosis considered for 

inpatient/outpatient visit or discharge, (c) 1: Gender and 

age range; (2) depth = k, number of the last results 

considered for the clinical test or the diagnosis (i.e., index 

1 is for last value and index k is for k-th last value) for (a) 

and (b) scenarios and number of gender and age range 

couples identified, for (c) scenario; (3) number of 

channels = h, number of health facilities considered for 

patient data (e.g., h = 2 to consider two health facilities). 

We consider CNN regardless of the (high or low) number 

of inputs, so as to emphasize anyway the particular use of 

this forced representation for structured data. 

MLP component has the following layers: Dense, 

batch normalization, activation (“relu”), dropout, dense, 

batch normalization, activation (“relu”), dropout, dense (this 

layer produces features extraction), batch normalization, 

activation (“relu”), dropout, dense, activation (“softmax”). In 

this scenario, we consider that each single clinical data is 

simply an input for our network. 

Prediction layer of our architecture needs to evaluate 

the distances (or similarities) between two data elements 

(we also use the term node distinguishing between 

labelled node/element and unlabeled node/element), 

where each node/element includes its features extracted 

from first layer. Generally, we will consider different 

distances/similarities (Euclidean, Cosine, Gaussian kernel 
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with Euclidean, Gaussian kernel with Cosine) and for 

each distance/similarity we will define two variants (with 

features correlations weights and without features 

correlations weights). Feature correlation describes how 

much important the particular feature is for the prediction 

over all training nodes. Therefore, in distance definition 

we can consider also this value. 

About GCN component, Kipf and Welling (2016) 

studied the problem of classifying nodes in a graph where 

only few nodes have their specific known labels associated. 

They propose a new approach for this semi-supervised 

classification problem. We use a derived implementation8. In 

particular, we use GCN Layer and Net classes. This is the 

mathematical model of GCN: 

 

     
1 1

1 2 2l l l
H D AD H W

   
  

 
 (1) 

 

𝐻(𝑙)is the 𝑙𝑡ℎlayer of the network, W(l) is the weight 

matrix of lth layer, D is the matrix of the graph A, is the 

adjacency matrix of the graph and  is the function for 

the non-linearity. H(0) is the input shape. We can consider 

more layers and the last layer establishes the dimension of 

the feature vector for each output node. GCN determines 

the new representation of node n, by changing 1

nh with 

linear operation followed by non-linearity: 
 

 1

n n nh f W h  (2) 

 
To build the initial graph, we define this simple 

algorithm: 
 
for i in range (0, number of nodes): 

 for j in range (i, number of nodes): 

 if similarity[i][j]>precision Similarity: 

 add edges (i, j) and (j, i) to the graph 
 

We normalize similarity (between 0 and 1), therefore 

precision Similarity is a fixed value between 0 and 1 

(typically greater than 0.5). Each node has the features 

extracted by CNN or MLP component. After training of our 

GCN, we evaluate the accuracy of predictions made on 

testing dataset represented again by features extracted before. 

About SGTG component, we must refer to Erdem et al. 

(2012) and we can simply refer to other works useful 

for our context, e.g., Schiavinato (2014) and Urbani 

(2018). Initially, refer to the cited works also for the 

Discrete-Replicator-Dynamics algorithm subsequently 

used in our work to implement the SGTG component. In 

ML there are semi-supervised approaches for labelling 

(give labels to a set of objects). In graph modelling, the 

objects are nodes and the weights over the edges are 

similarity measures between nodes. Here, it is of interest 

                                                 
8 https://docs.dgl.ai/tutorials/models/1_gnn/1_gcn.html 

to consider Graph Transduction method. The most 

important assumption is the cluster assumption, which 

corresponds to the behavior of individuals to bind with 

similar individuals. In a graph transduction model, there 

are a set of objects (nodes) with their own features, a subset 

of these nodes are already labelled and the other subset is not 

labelled. There is an adjacency matrix W containing the 

similarities between each couple of nodes. The idea for 

Graph Transduction is to estimate a consistent labelling for 

all nodes, starting from the cluster assumption. By GTG, it is 

possible to define Graph transduction problem as a non-

cooperative game. Objects (nodes of graph) are the players 

of a normal form game. Ideally, labels are the pure strategies. 

A player, which plays a pure strategy, declare his labelling. 

The idea is that for a player its payoff is high if the chosen 

label is the one chosen by similar players. However, to relax 

this formulation of the problem, it is necessary to consider 

mixed strategies. Strategies are mixed for unlabeled nodes, 

while are pure and defined for labelled nodes. To define 

payoff functions, it is assumed that interactions are only for 

couples of players. The solution of this game is a Nash 

equilibrium. After obtaining this equilibrium, then for each 

player it is chosen as pure strategy (label) the one with the 

highest probability in the mixed strategy. In our context, the 

player is a patient represented by its features extracted from 

CNN or MLP. The mixed strategy profile contains the 

probabilities over patients’ classification and corresponds to 

the players’ choices to maximize their payoff. We achieve a 

high payoff when the player choices a mixed strategy such 

that the corresponding similar patient choices are similar. We 

define a simplified version of GTG, named SGTG, 

essentially adjusting the similarity matrix as follows (only for 

pairs of testing, unlabeled, nodes): 

 

for i in range (0, number of testing nodes): 

 for j in range (i, number of testing nodes): 

 if W[i][j]>precision Similarity: 

  W[i][j]=1.0 

  W[j][i]=1.0 

 else: 

  W[i][j]=0.0 

  W[j][i]=0.0 

 

We normalize similarity (between 0 and 1), therefore 

precision Similarity is a fixed value between 0 and 1 

(typically greater than 0.5). After initialization of mixed 

strategies X (unlabeled nodes: 1/m for each possible label, 

where m is the number of possible labels; labelled node: 

1 for the right label, 0 otherwise), the implementation 

of prediction algorithm (SGTG derived from 

GTG/Discrete-Replicator-Dynamics) is the following: 

for t in range (0, int (number of testing nodes**(1/2))): 

 for i in range (0, number of testing nodes): 
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 S = 0 

 for j in range (0, number of all nodes): 

 for h in range (0, m): 

 S+ = X[i][h]*W[i][j]*X[j][h] 

 for h in range (0, m): 

 S1 = 0 

 for j in range (0, number of all nodes): 

 S1+ = W[i][j]*X[j][h] 

 X[i][h] = X[i][h]*S1/S 

 

For replicator dynamics, its fixed points are Nash 

equilibrium. The simplified algorithm starts from the 

operator used to have a discretization for time (𝑡 ∈ 𝑁): 

 

       

  
  

1
,

th

i i it t

i i t

i

u e x
x h x h

u x


  (3) 

 
In this formula, u is the payoff function of all players, 

x is the mixed strategy profile. For more details, see 

Erdem et al. (2012) too.  

After execution of this code, we evaluate the accuracy 

of predictions obtained for initially unlabeled nodes, 

simply considering argmax. 

We define NNCG algorithm as a strong simplification 

of GTG algorithm. In particular, for each unlabeled node 

we consider a similarity array containing the similarities 

between the particular unlabeled node and all labelled 

nodes. Considering to have the same number of known 

nodes for each possible labels, we simply determine the 

label for an unknown node as follows: 
 
S1 = [0.0 for i in range (0, m)] 

S1Temp = [0.0 for i in range (0, m)] 

for i in range (0, training Nodes Numbers[n]): 

 for h in range (0, m): 

 if h==X [i]: 

 S1Temp[h]+=W[i] 

break 
 

When classes are ordered (e.g.: Diabetes risk levels), 

we adopt an adding code as follows to consider similarity 

between labels too: 
 
for h in range (0, m): 

 for z in range (0, m): 

 S1[h]+ = S1Temp[h]*(1-abs(z-h)/m) 
 

After execution of this code, we evaluate the accuracy 

of predictions obtained for initially unlabeled nodes, 

simply considering argmax. 

In Fig. 3, we present a graph representation example 

valid for both GCN and SGTG from a general conceptual 

point of view. Notice that the arc is present if the 

                                                 
9https://colab.research.google.com/ 

similarity is sufficiently high between two nodes. Node n 

is highly similar to an unlabeled node and to two labelled 

nodes not similar between them (and belonging to different 

classes). In Fig. 4, we present an example for NNCG. In this 

case, we have an edge for all couples of labelled and 

unlabeled nodes, but the weight of each edge depends on the 

similarity between the two nodes. Here, we are not interested 

in similarity between two unlabeled nodes. 

First Experiment 

We are doing different experiments with possible 

instantiations of our architecture, initially considering as 

dataset a simple version of XML documents or simpler 

data too. More generally, as methodology for our research 

we have operated essentially with these tasks: 

 

1) Define features extraction module (sub-modules) as 

variant from literature 

2) Define prediction module (sub-modules) as variant 

from literature 

3) Loop 

o Instance the architecture 

o Test the architecture 

o Redefine module instantiation parameters according 

to testing results until stable and satisfactory results 

 

In this study, we present a first simple experiment 

based on the instantiation of MLP for features extractions 

module and SGTG for prediction module. In this experiment 

we generate randomly an EHR limited to the useful clinical 

data and without a FHIR or CDAR 2 (or simply XML) 

representation. Useful clinical data refers to diabetes 

patients’ classification problem. In particular, we have to 

identify patients at different risk level in the context of type 

2 diabetes. We consider accuracy for our evaluation, but 

using a different definition due to the ordered labels for this 

particular problem. For this experiment, we use Collaborator 

9 as environment to execute our code, selecting Python™ 3 

and using GPU as runtime environment.  

About FINDRISC, it usually comprises the following 

eight items: Age (years) (A), Body Mass Index (BMI, weight 

(kg)/height squared (m2)) (B), Waist circumference (W) 

(differentiating for Gender (G)), Use of blood pressure 

medication (U), History of high blood glucose (H), Physical 

activity expressed in hours/week (P), Daily consumption of 

vegetables, fruits or berries (D), Family history of diabetes 

(F). We use a derivate algorithm10 to produce our training 

and testing datasets. All input data are normalized to [0,1] 

and are balanced in respect to the diabetes risk. The 

maximum achievable score is 26 and there are five risk levels 

in respect to score: Very low (0-3), low (4-8), moderate 

(9-12), high (13-20) and very high (21-26). 

10https://www.mdcalc.com/findrisc-finnish-diabetes-risk-score 
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Fig. 3: Graph representation for GCN and SGTG 

 

 
 

Fig. 4: Graph representation for NNCG 

 

Considering the possibility to order the labels values, 

we establish the definition of accuracy, named accuracy’, 

to evaluate our model: 

 

 
  arg max

1,...,

1

1

1

PLi j RLi

j mnp

i m

accuracy
np







 
 
  
  



 (4) 

 

Where: 

 

 np: Total number of predictions (unlabeled nodes) 

 RL: Right label for i node 

 PLi (j): Risk j level prediction for i node 

 m: Number of possible labels (in our study, m = 5) 

 

For our experiment, we consider the following 

datasets, all equally distributed in term of possible 

labels/risk levels (we generate randomly datasets using 

FINDRISC clinical rule): 

1) Testing dataset: It is the same during all the experiment 

and it contains 400 nodes (unlabeled patients) 

2) Training dataset: It is generated for each value of 

number of nodes (labeled patients) and for each value 

of extracted features number 

 

In particular: (1) We consider these possible labelled 

nodes numbers: 100, 125, 150, 175, 200; (2) we consider 

these possible extracted features numbers: 25, 30, 35. Our 

interest is related to a scenario for which testing dataset is 

greater than training dataset. Moreover, initially we consider 

relatively low cardinality for the considered population. In 

Table 2, we present data distribution for all datasets. Mean 

and standard deviation have been truncated from the third 

decimal digit. FINDIRSC parameters have been normalized 

in the range [0,1]. FINDRISC parameters are: 

 

 0 = gender 

 1 = age 

 2 = body Mass Index 

 3 = waist Circumference 

 4 = blood Pressure Medication 

 5 = blood Glucose 
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 6 = physical activity 

 7 = daily vegetables 

 8 = family history 

 

For second layer, as similarity measure, in this first 

experiment we choose simply Euclidean distance without 

features correlations weights. We also normalize the values 

(W is the adjacency, distance/similarity, matrix for nodes): 

 

 

 

2

, ,

,
2

, , ,

1

max

i f j f

i j

i j f i j j f

f F F
w

F F


 






 (5) 

 

In this experiment, we instantiate MLP as follows: (1) 

Number of units for first dense layer: 1280; (2) Number 

of units for second dense layer: 160; (3) Number of units 

for third dense layer: Equals to the number of extracted 

features; (4) number of units for fourth dense layer: 5; (5) 

dropout parameter: 0.25. Input shape for first dense layer has 

dimension 9, corresponding to the number of clinical 

attributes related to FINDRISC clinical rule. We use Adam 

optimizer with learning rate equals to 0.01, compiling with 

sparse categorical cross entropy for loss and accuracy as 

metrics. We fit our model using 1000 epochs, 0.2 as 

validation split, 100 as batch size. For SGTG, we instantiate 

precision Similarity parameter with the value of 0.75. 

In Table 3 and Fig. 4, 5, 6, we present the results. 

We can see that generally the behavior of HPA is 

slightly better than MLP alone. By a simple analysis of 

results, we can see that we have the best results of 

accuracy (both for HPA and only MLP) with a training 

dataset of 200 elements (the maximum number of 

elements) and with 25 extracted features (the minimum 

number of extracted features). Moreover, only 25 and 30 

extracted features scenarios, have and increment of 

accuracy from MLP to HPA in all cases. 

Medium execution times for training and prediction 

(for MLP we consider both training and prediction 

together, while for SGTG we have only prediction) are: 

 

1) MLP = 41.67 sec (min = 17, max = 60) 

2) SGTG = 34.67 sec (min = 28, max = 41) 

 

SGTG has a relatively good response time for 

prediction in this experiment, but we have to consider that 

the number of nodes is not high and, simplifying, the cost 

is about O(n5/2), usually high. 

As we can see, already in this first experiment of the 

architecture, we obtained a better accuracy then using 

only MLP and we established a method of testing based 

on randomized controlled datasets, so to better evaluate 

the model. 

Table 2: Data distribution for all datasets 

Number of Findrisc  Standard 

elements parameter Mean deviation 

400 0 0.49 0.49 

400 1 0.50 0.30 

400 2 0.51 0.32 

400 3 0.44 0.29 

400 4 0.47 0.49 

400 5 0.53 0.49 

400 6 0.50 0.31 

400 7 0.52 0.49 

400 8 0.60 0.40 

100 0 0.53 0.49 

100 1 0.51 0.30 

100 2 0.49 0.28 

100 3 0.50 0.29 

100 4 0.54 0.49 

100 5 0.53 0.49 

100 6 0.49 0.33 

100 7 0.52 0.49 

100 8 0.56 0.42 

125 0 0.52 0.49 

125 1 0.49 0.28 

125 2 0.48 0.33 

125 3 0.46 0.30 

125 4 0.50 0.49 

125 5 0.49 0.49 

125 6 0.50 0.33 

125 7 0.55 0.49 

125 8 0.59 0.39 

150 0 0.53 0.49 

150 1 0.50 0.29 

150 2 0.50 0.32 

150 3 0.48 0.30 

150 4 0.49 0.49 

150 5 0.53 0.49 

150 6 0.51 0.31 

150 7 0.58 0.49 

150 8 0.63 0.39 

175 0 0.44 0.49 

175 1 0.49 0.30 

175 2 0.50 0.31 

175 3 0.44 0.31 

175 4 0.43 0.49 

175 5 0.57 0.49 

175 6 0.52 0.33 

175 7 0.56 0.49 

175 8 0.58 0.41 

200 0 0.54 0.49 

200 1 0.48 0.29 

200 2 0.49 0.29 

200 3 0.46 0.29 

200 4 0.52 0.49 

200 5 0.56 0.49 

200 6 0.53 0.31 

200 7 0.48 0.49 

200 8 0.56 0.39 
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Table 3: Accuracy’ results for testing (unlabeled) datasets 

Number of labelled elements Number of extracted features MLP accuracy’ HPA accuracy’ 

100 25 0.865625 0.878750 

100 30 0.863125 0.870625 

100 35 0.861875 0.876875 

125 25 0.883125 0.887500 

125 30 0.885625 0.889375 

125 35 0.886875 0.886875 

150 25 0.896875 0.901250 

150 30 0.896875 0.903750 

150 35 0.896875 0.898125 

175 25 0.883750 0.896875 

175 30 0.891875 0.900625 

175 35 0.894375 0.902500 

200 25 0.913125 0.917500 

200 30 0.906250 0.912500 

200 35 0.908750 0.908125 

 

 
 

Fig. 4: Accuracy' vs training data Set cardinality (number of features extracted = 25) 

 

 

 
Fig. 5: Accuracy' vs training data Set cardinality (number of features extracted = 30) 
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Fig. 6: Accuracy' vs training data set cardinality (number of features extracted = 35) 

 

Conclusion 

In this study, we proposed a general architecture 

named HPA which is composed of two principal modules. 

First module, based alternatively on CNN or MLP, 

produces features extraction to represent nodes. Second 

module, based alternatively on GCN, SGTG or NNCG, 

produces predictions for nodes. The context of interest 

belongs to healthcare for patient classification using 

structured health data. We presented EHR and some 

related standards (FHIR and CDAR 2). We propose our 

architecture to manage some issues (dataset 

heterogeneity, accuracy but considering explain ability 

too, dataset for benchmarking). We are interested in 

structured data and for this reason we are interested in 

FHIR and CDAR 2 too, so to evaluate more standardized 

dataset. In this study, we also implemented a particular 

instance of our architecture as example test. In particular, 

we considered the problem of patient classification for 

diabetes: (1) According to a clinical rule (FINDRISC), we 

produced a balanced set of labelled and unlabeled diabetes 

patients as initial dataset for our test; (2) we defined and 

trained a MLP to extract features for our nodes; (3) we 

implemented SGTG to do predictions about diabetes risk 

using Euclidean distance for similarity matrix and using 

Discrete-Replicator-Dynamics algorithm with some 

variants. We obtained some results in term of accuracy’ 

(variant of accuracy definition) comparing MLP 

predictions with HPA predictions. In future work, we are 

interested in presenting new instances of our HPA, trying 

to optimize accuracy and showing the results of other 

current and future experiments. In particular, we also want 

to verify the best solutions according to the number of 

dataset elements (training and testing), comparing GCN, 

SGTG and NNCG results and considering CNN and 

MLP. We are also interested in evaluating the behavior 

according to the use of different similarity/distance 

definitions. We want to evaluate the behavior of HPA 

with known datasets. We have to consider training dataset 

with few patients in respect to testing dataset and evaluate 

the behavior when considering high amount of data. 

Moreover, we are also interested in evaluating HPA as 

explainable in term of input variables (patient 

parameters), using Deep Taylor decomposition too (e.g., 

Montavon et al. (2017). The initial idea is to define a first 

explainable layer specific for prediction sub-modules and 

a second explanation layer specific for features extraction 

sub-modules. Especially for each prediction sub-modules, 

it could be necessary to define a particular solution based 

on the theory related to the considered sub-module. 

Subsequently, Deep Taylor decomposition could be 

mainly used e.g., for features extraction sub-modules. 
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