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Abstract: This article suggests passive methods for designing Fault-Tolerant 

Control (FTC) for nonlinear uncertain systems with actuator and leak faults. 

To anticipate the Fault-Tolerant Control (FTC) action to overcome the 

actuator and leak faults, two-layer Feed-Forward Back-Propagation Neural 

Network (FFBPNN) and two-layer Cascade Forward Neural Network 

(CFNN) have been used, it will also tolerate external process additive 

disturbances. We employ the passive approach for fault-tolerant control 

using Proportional Integral Derivative (PID) control methodology to create 

a fault-tolerant controller without a fault detection mechanism. Further, we 

use the four residue signal features (i.e., mean, variance, skewness and normalize 

data of residue signal) to train the neural network in this study to tackle the issue 

originating from having less faults and uncertainty from residue signal. To show 

the efficacy of the suggested approach, simulations are run. The measurement of 

the residue signal was done using a healthy and a faulty uncertain non-linear 

system model. A comparison of findings utilizing a state of-the-art control 

methodology provided in (Dutta et al., 2014) was also presented to validate the 

proposed FTC methodology. 

 

Keywords: Actuator Fault, MIMO Uncertain System, Passive Fault Tolerant 

Control, Neural Network 
 

Introduction 

Fault Tolerant Control (FTC) is a research area for 

industrial processes that aims to preserve satisfactory 

control performance and system stability under faulty 

conditions (Patel and Shah, 2018a). The FTC’s major goal 

is to prevent simple defects from becoming catastrophic 

failures, increasing system availability and lowering the 

possibility of a potential hazard (Patel and Shah, 2018a-c; 

2019c). For the past three decades, FTC has been the topic 

of extensive research (Patel and Shah, 2018b; 2019e). 

Many actual industrial applications have resulted from 

this research (Bhandare and Kulkarni, 2015; Bonivento et al., 

2004; Noura et al., 2000; Morse and Ossman, 1990). For 

FTC, there are two primary structured approaches: Active 

FTC and passive FTC (Patel and Shah, 2018d) Passive 

FTC has designed a robust controller for the system based 

on predetermined conditions and magnitude of system 

faults. On the other hand, in an active FTC approach, Fault 

Detection and Diagnosis (FDD) is a key component 

required. FDD has three important functions that begin 

with the detection of faults in the process, then isolation and 

finally identification (Patel and Shah, 2018b; 2019d). The 

appeal of passive FTC algorithms stems from their inherent 

capacity to analyze all types of conceivable design flaws. The 

second major reason is that the operational principles are 

understood and reasonably simple to explain to practitioners, 

which appears to be a significant factor in the introduction of 

a new control scheme in industry. 

Many industrial applications and chemical processes 
require level control processes for a variety of reasons 
(like liquid material handling, storage, transfer, pack-
aging etc.). As a result, a lot of work has gone into 
controlling the Single Input Single Output (SISO) and 
Multi Input Multi Output (MIMO) level control processes 
under various scenarios. Some advanced control 
algorithms have previously been evaluated on benchmark 
SISO and MIMO level control processes with various 
uncertainty (i.e., actuator fault, system component fault, 
sensor fault and process disturbances) (Patel and Shah, 
2019b; 2021a-b; Patel et al., 2021). 

Failure of sensor and system components is a critical 

challenge in the control of SISO and MIMO level control 

processes (Patel and Shah, 2019f). However, a partial 
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failure of the actuator could result in a dangerous 

condition, leading to system instability and the loss of 

control action. This results in a waste of resources such as 

money, time and even people. As a result, we apply 

analytical redundancy in terms of advanced control 

schemes like Passive Fault-Tolerant Controller to 

improve the system’s availability while performing the 

task in the presence of partial failure or fault in the 

actuator (PFTC). As a result, FTC is critical in the event 

of a partial failure of the main actuator. The author of a 

recent paper (Patel and Shah, 2020) employed a hybrid 

control system to build a passive FTC algorithm, 

combining a standard PID controller with a fuzzy logic 

based controller for SISO and MIMO level control 

processes with all conceivable faults. Passive FTC 

algorithms, as mentioned in (Luzar et al., 2014; Chen and 

Mei, 2014), have attained a high level of maturity, 

particularly for linear systems. However, dealing with 

nonlinear systems still presents a number of challenges. 

Modeling of nonlinear processes, state estimation and 

fault detection or fault tolerant control continue to be 

problematic (Chen and Mei, 2014; Shen et al., 2017). 

Many passive FTC approaches for SISO/MIMO level 

control systems have been developed to date, including 

PID + type 1 fuzzy logic control, PID + type-2 fuzzy logic 

control, fractional order PID + type-1 fuzzy logic control 

and fractional order PID + type-2 fuzzy logic control 

(Patel and Shah, 2019a; Raval et al., 2021a-b). Without a 

question, neural net-works are the most widely utilized 

models. They are exceedingly adaptable, universal and 

willingly employed in situations when a precise 

mathematical model of the process is unavailable (Chen and 

Mei, 2014). Although neural network-based control is not a 

novel paradigm (Luzar et al., 2014; Chen and Mei, 2014; 

Patel and Shah, 2019a), however, we employed FFBPNN to 

develop PFTC and examined the performance of the MIMO 

uncertain level control system under partial actuator defect 

and additive process disturbances. 

The following are the primary contributions of our 

paper. (1) There is no failure detection method in the fault-

tolerant controller. (2) We create a healthy and faulty 

model for generating the residue signal in the MIMO level 

control process. (3) Determine four parameters to examine 

the residue signal (i.e., mean, variance, skewness and 

normalized data of residue signal). We train the FFBPNN 

and CFNN with this four-parameter data, which produces the 

controller output as an output signal. (4) The external 

disturbances are presumed to be unknown in a real 

application. These uncertainties are taken care by PFTC. 

The following is a synopsis of the paper’s structure. 

Following the introduction, Section II describes the 

MIMO uncertain level control process for which the fault 

tolerant control system was developed. The Passive FTC 

architecture combining FFBPNN and CFNN is then 

proposed in Section III. Section IV shows and discusses 

the simulation results as well as the implementation of 

the proposed strategy, moreover the proposed FTC 

using NN compared with existing FTC using LQR 

(Dutta et al., 2014). Conclusions and future scope are 

presented in the final section. 

Uncertain MIMO Level Control System 

Model 

Uncertain MIMO Level Control System 

The benchmark Two-Tank Level Control System 

(TTLCS) is seen in Fig. 1. It comprises of two cylindrical 

water tanks, one sump tank, a pneumatic control valve and 

an electric pump. Figure 1 depicts the system. The system’s 

controlled variable is the tank’s height, h1 and the 

manipulated variable is the control valve CV’s inlet flow 

control. A tank, a storage vessel and a control valve with a 

positioner, a pump and transducers to measure process 

variables are all part of the system. The tank is designed as a 

horizontally placed cylinder, which brings significant 

nonlinearity into the system’s static characteristic. 

Matlab/Simulink software was used to create the level 

control system laboratory stand. Real data from the physical 

installation was used to successfully verify the simulation 

model. Table 1 gives a detailed overview of the process 

variables. Acronyms CV1, h1, h2, q1 stand for actuator/final 

control element, tank 1 height, tank 2 height and inlet flow 

rate respectively. The simulator has an advantage over real 

processes in that it allows you to test the behavior of the pro-

posed advanced control in the presence of potentially 

erroneous circumstances. Table 2 lists the defects and their 

descriptions. Problems in various aspects of the installation, 

such as actuator and component (leak) faults, are 

proposed. Figure 1 shows the location of the faults. As 

a result of the proposed set of faults, it is possible to 

study the suggested Passive FTC scheme’s fault 

tolerance features in the probable faults. 

The one defect considered in this study is an actuator 

error, in which the final control element does not deliver 

enough regulated variable inlet flow rate (f2), resulting in 

a significant reduction in control performance. The 

second fault is consider in system component which is 

tank bottom leak fault represent situations where the tank 

level reducing drastically by additional outlet flow rate 

(f1) and control valve not coup the faulty situation and 

hence control performance is degraded. 

The system parameter uncertainty pu consider in the 

two-tank level control system in terms of mathematical 

modeling inaccuracy, the variation of time constant τ 

parameter from 0 to +/- 10% and system gain k variation 

of 0 to +/- 10%. Also one fault consider in this study 

which is partial actuator failure in which the final control 

element is not provide sufficient amount of manipulated 

variable inlet flow rate (q1) hence control performance is 

degraded drastically. 
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Fig. 1: Graphic illustration of the benchmark two-tank level process Raval et al. (2021a) 

 
Table 1: Conditions of process variables Raval et al. (2021a) 

Variable Specification Range 

A1 and A2 Area of tank 1 and tank 2 0.0270 m2 

q1 Inlet flow rate 0.000162 m3/sec 

γ1 Discharge coefficient of tank 1 6.3795 

γ2 Discharge coefficient of tank 2 1.614 

γ12 Discharge coefficient of coupling valve 4.372 

 

Table 2: Provisions of faulty circumstances in the benchmark two-tank level process 

Faulty Description Type Nature Size/Unit 

f2 Actuator faulty in CV1 Multiplicative Abrupt 0-40% 

f1 Leak faulty in Tank 2 Additive Abrupt 0-40% 

d Process disturbances Additive Abrupt 0-40% 

 

Two-Tank Level Control System Mathematical 

Modeling 

The Mass-Balance Equation and the Bernoulli 

Equation are used to model the TTLCS mathematically. 

In any event, the liquid input, liquid exit and tank 

interaction can all be used to represent the rate of change 

in the volume of liquid present within the tank (Patel and 

Shah, 2018c). Numerically: 

 

1
1 1 1 12o

dh
A q q q

dt
    (1) 

 

2
2 12 2

dh
A q q

dt
   (2) 

 

According to Bernoulli’s Equation, the flow rates 

(Patel and Shah, 2018c) q01, q12 and q2 are given by, 

 

1 1 1oq h  (3) 

2 2 2q h  (4) 

 

12 12 1 2q h h   (5) 

 

Table 1 shows the operational parameters and 

system parameters for a bench-mark two-tank level 

control system. 

Proposed Methodology for Passive FTC 

Data generation layer, pre-processing layer, training 

layer and control output prediction layer are the four steps 

of the proposed approach for Passive Fault Tolerant 

Control (PFTC). Figure 2 depicts the proposed 

methodology, which is further detailed in the subsections. 

The operations in the proposed approach are divided into 

four stages: (1) Data creation, which creates residue 

signals from healthy and flawed TTLCS models. The second 

stage is pre-processing of the data generated in the first stage 

(data generating layer). In this step, four statistical data are 

created, including mean, variance, skewness and normalized 
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data and it is the indirect features parameters of the defective 

circumstances in the system. 

The suggested PFTC scheme’s third stage involves 

training the neural network, which can be done with data 

generated during the second (pre-processing) data stage. 

The fourth and final stage is critical for incorporating all 

uncertainties into the TTLCS process while maintaining 

stable control performance. 

Data Generation Layer 

The residue (r) signal verses manipulated 

variable/control valve opening signal data for this study is 

acquired in the data generation layer. 

Data was generated using contextual information such 

as a faulty TTLCS model-2 and a healthy mathematical 

model-1 of the TTLCS uncertain level control system, as 

well as a faulty TTLCS model-2 and a healthy mathematical 

TTLCS model-1 of the uncertain level control system. 

Consider intermittent actuator (fa) fault, system component 

(fsys) fault, additive process disturbances (d) and system 

parameter uncertainty (pu) ware for data production in faulty 

TTLCS level control model-2. In (Raval et al., 2021a) 

presents a mathematical model of a TTLCS process that 

includes and excludes fault. The data generation system is 

depicted in Fig. 3 as a conceptual diagram. 

For the purpose of data creation, fault magnitude is 

considered (+/- 0 to 40%) and system uncertainty is 

considered (+/- 0 to 10%). Total 10000 data ware 

generated for distinct residual signals from the data 

production layer, with appropriate various 10000 vales 

generated for manipulated variable/control output signals in 

distinct 10 simulations. This data can be used for feed data 

for next level/layer (pre-processing layer). The data ware 

generated for the different four uncertainties into TTLCS two 

faults, one process disturbances and system modeling. 

Pre-Processing Layer 

In this layer, data has been pre-processed in order to 

make it smooth for further pro-cessing. Different 

smoothing filter can be used for this purpose, such as 

moving aver-age, loess, lowess, Rloess, Rlowess, 

Savitsky-Golay and so forth. In this study, we have used 

the moving average method which is a very significant 

data smoothing filter used by various authors (Fayaz and 

Kim, 2018) for data smoothing. Equation (6) is the 

mathematical representation of moving average filter: 

 

   
1

0

1 M

j

y i X i j
M





   (6) 

 

In this equation, x [] is the input, y [] is the output and 

M is the number of points used in the moving average. In 

the pre-processing layer, first, we have calculated the 

statistical moments and concatenated with original data. The 

data-set comprises four parameters as input; mean (P1), 

variance (P2), skewness (P3) and normalized (P4) and one 

parameter as output; namely control output/manipulated 

variable signal (M1). The statistical moments, namely mean, 

variance, skewness and normalized (Fayaz and Kim, 2018) 

can be calculated using Eq. (7-10): 
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where, µ, σ, S, xnew represent, respectively. Pi represents 

values of arithmetic mean of the data (P1), standard 

deviation of the data (P2), skewness of the data (P3) and 

normalized data (P4) of residue signal (r). Values, i = 1,2 

to 4, xnew represent the output normalized value, x indicate 

the current value, xmin represents the minimum value in the 

set and xmax indicates maximum value (Fayaz and Kim, 

2018). (M1) denotes the additional control NN output 

which used for FTC control action apart from 

conventional PID control under faulty situations. 

Training Layer 

One of the most commonly used ANN models for 

regression is ANN. NNs are now being used by 

researchers to analyze various types of regression 

problems in a variety of circumstances. The Feed Forward 

Back-Propagation Neural Network (FFBPNN) and 

Cascade Feedback Neural Network (CFNN) are the ANN 

models used in the proposed work, as illustrated in Fig. 4 

with original, normalized data and data with statistical 

moments. Normalized data and statistical moment’s data 

are fed into the neural network as inputs. As indicated in 

the accompanying figures, we employed one parameter as 

inputs: Arithmetic mean of residue signal data (P1), 

standard deviation of data (P2), skewness of data (P3), 

normalized data (P4) and one output control valve 

opening/manipulated variable (M1). A prominent artificial 

neural network model for estimation and prediction is the 

ANN model combined with the error propagation 

algorithm (FFBPNN) (Gonzalez and Zamarreno, 2005). 

In most cases, it contains three layers: An input layer, a 

hidden layer and an output layer. 
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Fig. 2: Suggested approach for PFTC Raval et al. (2021b) 

 

 
 

Fig. 3: Data generation system for two-tank uncertain level control system model Raval et al. (2021b) 
 

 
 

Fig. 4: Structure of ANN model for four inputs Raval et al. (2021b) 
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The following are the detailed mathematical formulations 

of the artificial neural network, which were extracted from 

Reference (Gibbs et al., 2006). The following Eq. (11) can 

be used to compute the hidden layer value: 

 
1

1

1 exp 1
n

j i i

i

x w





  
     

  


 (11) 

 

where, ϑj represents node j in the hidden layer, xj 

represents node I the input layer and the weight between 

nodes are represented by wij. The output layer node value 

can be calculated by (12): 
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1
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j

i ij

j

y x w





  
      

  
  (12) 

 

where, y represents the output layer node (In this research, 

we have taken only one output node, multiple nodes can 

be used). Error E between observed and computed data 

can be calculated as (13): 

 

   
2

0.5Error E d y 
 (13) 

 

where, d represents the observed data propagation from 

the output layer and a hidden layer that is represented in 

Eq. (14) and (15) respectively: 

 

  1y d y y   
 (14) 

 

   11 , 1,......y j j y jd y w j J      
 (15) 

 

The following values (16-17) can be used to change 

the weights of the hidden and output layers, as well as the 

input and hidden layer: 

 

, 1,......, , 1,......,ij y jw i I j J    
 (16) 

 

, 1,......,n

ij y jw j J   
 (17) 

 

where, α represents learning rate, additionally momentum 

can be measured using Eq. (18) and (19): 

 
1

1 , 1,......,n n

ij y j jw w j J         (18) 

 
1

1 , 1,......, , 1,......,n n

ij y j jw w i I j J          (19) 

 

where, n indicates iterations of error back-propagation; 

and β represents momentum constant. The training 

process in the flat region of the error surface and avoids 

fluctuations in the weights are accelerated by using this 

momentum method. Different types of activation 

functions can be employed in different layers of ANN, 

such as linear, tan-sigmoid, logarithmic sigmoid, sigmoid 

and so on. We employed the tan-sigmoid function in the 

hidden layer and a linear function in the out-put layer in 

the suggested study. The tan-sigmoid function is chosen 

in the hidden layer because it is the most appropriate 

activation function and its performance is deemed 

superior than that of other activation functions. Similarly, 

we employed the linear function on the output layer 

because we were dealing with a regression situation and 

wanted to employ a linear function. Equations (20) and 

(21) represent the linear and sigmoid functions 

numerically, respectively (Geem and Roper, 2009): 
 

   X x linear x  (20) 
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Implementation and Results 

After the text edit has been completed, the paper is 

ready for the template. Duplicate the template file by 

using the Save As command. In this newly created file, 

highlight all of the contents and import your prepared text 

file. You are now ready to style your paper. 

Implementation Setup 

All of the proposed approach’s implementations were 

carried out on an Intel Core i5 PC running Windows 7 

with MATLAB R2010a version 7.10.0.499. In most 

cases, input features are critical to the success of any 

machine learning algorithm. As a result, the arithmetic 

mean of the data (P1), standard deviation of the data (P2), 

skewness of the data (P3) and normalized data (P4) were 

given as inputs to the feed forward back propagation with 

the error correcting neural network in this study. Because 

the FFBPNN is a supervised machine learning technique, 

it’s best to divide the data into precise training and testing 

ratios. We separated the data into distinct training and testing 

ratios since we were predicting control output for distinct 

failure situations in a TTLCS uncertain level control system 

in this study. Equations (22) and (23) can be used to separate 

the data into training and testing categories: 
 

600s kT P   (22) 

 

r k sT M T   (23) 

 
where, Ts, Tr, Mk represent testing data, training data, total 

number of running simulation data (complete data set) 

respectively and Pk represents single rune simulation base 

data. In the proposed work the k values are 1, 2, 3...10. 
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Possible variations of neurons in the hidden layer with 

input and output layers were tested and the best-suited 

combination of some neurons in the hidden layer (10,5) 

with an input layer and output layer was chosen, as 

illustrated in Fig. 5 from the ANN toolbox in MATLAB 

MathWorks Inc.: Natick (2013). 

A second set of simulations was run with normalized 

data and 5 neurons in the hidden layer, five neurons in the 

input layer and one neuron in the output layer, as shown 

in Fig. 5 and 6, which were taken from the ANN toolbox 

in MATLAB MathWorks Inc.: Natick (2013). The second 

type of NN used in simulation presented in Fig. 6 is CFNN, 

in this the learning algorithm is same as for FFBPNN which 

is presented in above section, only the structure of the NN is 

changed remaining all the settings are same. 

We employed four types of data in the proposed study: 

Residue signal data (P1), standard deviation of data (P2), 

skewness of data (P3), normalized data (P4), The data is 

derived from a MATLAB simulation and is divided 

into three categories: Training data, validation data and 

test data, with a ratio of 75:15:10. The mean square 

error is used to calculate the performance graph. For 

the buried layers, there are two and five neurons, 

respectively. The input layer has five nodes that 

characterize the input features, while the output layer 

has four nodes that characterize the target (output) 

classes. In the output, the activation function is pure 

linear (by default). The appropriate activation function 

in the hidden layers will be determined in this study by 

assessing the MSE of performance graphs, response 

graphs, regression co-efficient values and so on and the 

tan sigmoid function will be discovered. 

The MSE of performance graph for tan sigmoid 

function activation functions for two neural networks is 

shown in Fig. 7 and 8. The tan sigmoid function and 

FFBPNN with 10 neurons in hidden layer 1 and 5 neurons 

in hidden layer 2 have a performance error of 0.070425, 

while the performance error for CFNN with 10 neu-rons 

in hidden layer 1 and 5 neurons in hidden layer 2 is 

0.11259, So FFBPNN is the finest ANN. 

As demonstrated in Fig. 9 and 10, a regression plot is 

another crucial aspect for verifying network performance. 

The desired value of Regression co-efficient (R) is equal 

to 1 for the best fitting of data by this network and any 

value approaching 0 is entirely unacceptable. The 

relationship between input and output parameters is 

represented by the Regression plot (Gonzalez and 

Zamarreno, 2005), which is given by the equation: 

 

.out put learning rate target bias     (24) 

 

It is obvious from the regression plot that the 

regression plot for the ANN with configurations 1 and 2 

has a value of R of 1. 

 

 
 

Fig. 5: Artificial Neural Network (ANN) configuration with FFBPNN MathWorks Inc.: Natick (2013) 

 

 
 

Fig. 6: Artificial Neural Network (ANN) configuration with CFNN MathWorks Inc.: Natick (2013) 
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Fig. 7: The Performance graphs for FFBPNN with Tan-Sigmoid function and ANN configuration 

 

 
 

Fig. 8: The Performance graphs for CFNN with Tan-Sigmoid function and ANN configuration 
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Fig. 9: Regression (R) plots for the FFBPNN with ANN configuration 
 

 
 

Fig. 10: Regression (R) plots for the CFNN with ANN configuration 
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uncertain level control system that is subjected to actuator, 

leak and additive process disturbances. Its robustness is 

further tested with system parameter uncertainty. 

Figure 11 shows a passive FTC scheme for a TTLCS 

uncertain system, in which a traditional PID controller is 

used in conjunction with an ANN to avoid system 

parameter uncertainty and faulty situations. 

The Proportional Integral Derivative (PID) control 

settings are taken as following (Patel and Shah, 2018b): 

 

0.35, 0.04 0.15p i dK K and K    

 

where, Kp is proportional gain, Ki is integral gain and Kd 

derivative gain of the PID controller. 

Figure 12-14 demonstrate simulation results for a 

TTLCS process with an actuator, a system component 

(leak) and process disturbances, respectively. The blue 

color lines in the result figures indicate FTC’s response 

using FFBPNN, whereas the black color lines show 

FTC’s response using CFNN. The bold yellow line 

shows the control response of FTC using LQR prosed 

in (Dutta et al., 2014). 

From observing the response of the proposed control 

scheme on TTLCS uncertain level control system, it is 

clearly reflects the effectiveness of the proposed scheme 

under the system parameter uncertainty, actuator and 

system component (leak) faults. In Table 3 quantitative 

analysis presented in terms of Integral Absolute Error 

(IAE) and Integral Square Error (ISE). The test 1 results 

carried out subject to actuator fault, test 2 results carried 

out subject to leak fault and system parameter uncertainty 

and test 3 results carried out subject to additive process 

disturbances and system parameter uncertainty. Also the 

PFTC with FFBPNN configuration is most efficient and 

more sensitive to the actuator and leak faults with system 

parameter uncertainty as compare to PFTC with CFNN 

configuration. However, the proposed passive FTC using 

two different NN are superior as compared to FTC scheme 

using LQR proposed in (Dutta et al., 2014). 

 

 
 

Fig. 11: Passive FTC scheme for TTLCS uncertain level control system 

 

 

 

Fig. 12: The response of proposed control scheme with intermittent actuator fault and system parameter uncertainty 
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Fig. 13: The response of proposed control scheme with additive system component (leak) fault and system parameter uncertainty 

 

 

 

Fig. 14: The response of proposed control scheme with additive process disturbances and system parameter uncertainty 
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Test 3 PFTC using FFBPNN configuration 0.7829 1.2411 

 PFTC using CFNN proposed in (Dutta et al., 2014) 1.0241 1.4911 
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Conclusion and Future Work 

The research proposes a new control technique for 

two-tank uncertain level control systems called Passive 

Fault Tolerant Control, which combines a machine 

learning method with a traditional PID controller. 

Under system parameter ambiguity and unpredicted 

defective situations, control action prediction and 

modelling has always been a difficult issue. A robust 

and more flexible control method for predicting control 

action and taking appropriate control action in two-tank 

level control system uncertain level control systems has 

been developed in this study to address the difficulty.  

For actuator, system component (leak) failures and 

system parameter uncertainty, the prediction was 

carried out with FFBPNN and CFNN using normalized 

data and data with statistical moments of control 

output/manipulated variable in TTLCS uncertain level 

control system. We tested the FFBPNN/CFNN plus 

PID controller on a TTLCS uncertain system with an 

actuator defect and unknown system parameters and 

the findings show that PFTC with CFNN configuration 

outperforms PFTC with CFNN configuration. Different 

statistical measurements have been used to assess the 

performance of the system’s algorithms (IAE, ISE). 

Furthermore, the suggested PFTC system with NNs 

was compared to the state-of-the-art control method 

offered in (Dutta et al., 2014) and the results clearly 

show that the suggested PFTC scheme outperforms the 

control system described in (Dutta et al., 2014). 

However, more data must be tested on the model and 

the findings must be compared to those of other 

algorithms, which will be the focus of future research. 
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