

 © 2021 Muhammad Ehsan Rana, Eddy Khonica, Wan Nurhayati Wan Ab. Rahman, Masrah Azrifah Azmi Murad and

Rodziah Binti Atan. This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Impact of Design Principles and Patterns on Software

Flexibility: An Experimental Evaluation Using Flexible Point

(FXP)

1,2Muhammad Ehsan Rana, 2Eddy Khonica, 1Wan Nurhayati Wan Ab. Rahman, 1Masrah Azrifah Azmi

Murad and 1Rodziah Binti Atan

1Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, 43400, Serdang, Malaysia
2Faculty of Computing and Technology, Asia Pacific University of Technology and Innovation, Kuala Lumpur, Malaysia

Article history

Received: 24-06-2020

Revised: 13-08-2020

Accepted: 04-09-2020

Corresponding Author:

Wan Nurhayati Wan Ab.

Rahman

Faculty of Computer Science

and Information Technology,

Universiti Putra Malaysia,

43400, Serdang, Malaysia
Email: wnurhayati@upm.edu.my

Abstract: Software flexibility is a crucial factor in designing and developing

software as it reflects its capability to adapt to changes. It is a topic that has

been discussed for a very long time which indicates its importance in

software development. However, it is not easy to produce a flexible software

design. Design principles provide fundamental concepts in designing good

software. On the other hand, design patterns are proven solution to recurring

problem. When used correctly, design principles and patterns can be used to

improve software flexibility. However, it is necessary to evaluate its impact

on software flexibility. For this purpose, this research will conduct an

experiment by developing a simple application using Object-Oriented

Programming (OOP) based on a case study. Based on the requirements of the

case study, two SOLID design principles are chosen such as Single

Responsibility Principle (SRP) and Open Closed Principle (OCP) while

Strategy and Decorator for the patterns from the GoF. Then, Flexible Points

(FXP) is used to measure the differences in software flexibility by comparing

the solutions developed before and after applying design principles and

patterns. This is aimed to prove that the chosen design principles and patterns

have positive impact on software flexibility. Lastly, the result analysis shows

that the use of the chosen design principles and patterns indeed improve the

flexibility of the software. Therefore, the authors highly recommend

adopting design principles and patterns in software development.

Keywords: Software Flexibility, Design Patterns, Design Principles,

Flexible Points (FXP)

Introduction

In today’s software development, it is extremely

important to take software flexibility into system design

consideration. It is a crucial factor among software quality

attributes which focuses on the ability of a software to adapt

to changes (Nelson et al., 1997; Subramaniam and Zulzalil,

2012). The concept of software flexibility was introduced in

1979, but the beginning of most of its literature were

conducted in 1990’s (Shen and Ren, 2006). Most of the

literature review on software flexibility are rather old.

However, till these days, software flexibility is still a must

have quality in software development especially in object-

oriented software projects. The existence of software design
principles and patterns have encouraged the authors to

evaluate its impact on software flexibility.

Shen and Ren (2006) highlighted that it is often unclear

which and when software components require changes and

should remain unchanged. Design principles and patterns

are introduced over the years. The former provides the

fundamental concepts to design a good software (Bräuer et

al., 2018), while the latter provides proven solution to

recurring problems. When used correctly, design principles

and patterns can be used to improve software flexibility.

This is vital because by taking flexibility into account

during early software design can help to ease changes and

save cost (Shen and Ren, 2006; Gorton, 2011). Although

these principles and patterns can be used in producing

more flexible software, but it still lacks an empirical

evaluation on its impact on software flexibility. In

existing literatures, there is yet to have a quantitative

Muhammad Ehsan Rana et al. / Journal of Computer Science 2021, 17 (7): 624.638

DOI: 10.3844/jcssp.2021. 624.638

625

flexibility comparison in object-oriented software with

SOLID design principles and GoF design patterns applied.

For this reason, a simple object-oriented application is

developed using JAVA programming language based on a

case study. The initial implementation will then be

compared to those after design principles and patterns are

implemented. For this research, the design principles

and patterns evaluated are limited to those from SOLID

and Gang of Four (GoF) as these are the key core

design principles and patterns being taught in

academia. Then, the result will be empirically

evaluated using Flexible Point (FXP) to check whether

the chosen design principles and patterns improve

software flexibility. This is the aim of this research.
The next section provides the review on existing

literature on software flexibility, flexibility measurement

techniques, SOLID design principles and GoF design

patterns, followed by the methodology used in this

research. The subsequent sections consist of the case

study, design and implementation of the system. The

remaining sections are namely analysis of the results,

discussion and conclusion respectively.

Software Flexibility

Flexibility has become one of the key concerns in a

software design. Flexibility is defined as “the ease with

which a system or component can be modified for use in

applications or environments other than those for which

it was specifically designed” (IEEE, 1990). Loosely

coupled components are the key factor in ensuring the

flexibility of the system. Software architecture is another

factor which greatly influence software flexibility as it

decides the relationships between one component to one

another (Lassing et al., 1999). In addition, software is

flexible if it can easily adapt to changes during

development or after software deployment (Shen and Ren,

2006). These statements highlight the crucial factors that

must be taken into consideration to produce a flexible

software design.

Zhao (1998) introduced two attributes related software

flexibility such as “system adaptability and system

versatility”. These two attributes basically require the

system to handle changes in a way that it does not affect

existing business operation. Moreover, Nurdiani et al.

(2018) also identified three attributes that are related to

software flexibility such as “properties of change,

flexibility perspectives and flexibility enablers”. These

three attributes are more towards the characteristics of

change that affect software flexibility. Both researchers

are conducting their research from different perspective,

thus it may not be related to each other. However,

software developers can still make use of these attributes

as a reference to further understand software flexibility.

Thus, enabling them to produce a highly flexible software.

Eden and Mens (2006) highlighted that it is not

uncommon for software maintenance cost to exceed its

development cost. This is due to there will be a high cost

to implement a change to software without flexibility

(Shen and Ren, 2006). As a result, it will be very

expensive to maintain the system. However, by having a

more flexible system, the maintenance cost can be greatly

reduced (Gorton, 2011). Flexibility will also help in

delivering high quality and reliable system within the

constraints of cost and time (Abdullah et al., 2015). These

statements basically prove how important flexibility is to

a system as it affects the cost and quality of the system.

Therefore, it is crucial to take flexibility into account in

designing and developing a system.

Flexibility Measurement Techniques

Existing literatures have provided different techniques

to measure software flexibility. Shen and Ren (2006)

introduce a concept called Flexible Point (FXP) to

measure software flexibility in a quantitative manner.

FXP can be defined as “a point or a location in software

which can cause flexible changes to occur, upon which the

external force Fe may apply” (Shen and Ren, 2006). Shen

and Ren (2006) highlighted five steps required to measure

software flexibility using FXP such as:

 Identify flexible points which refer to things that can

cause changes to software

 Calculate the flexible distance for every FXP to

measure software change

 Determine FXP level and calculate flexible force

 Calculate flexible degree for every FXP

 Calculate flexible capacity

Eden and Mens (2006) introduced another method
which takes evolution of software complexity metric into
consideration. It involves the programming paradigms,
architectural styles and design patterns chosen. In their
research, only Visitor and Abstract Factory of the GoF
design patterns are evaluated based on the case study
provided. In their analysis, both patterns do help in
providing better implementation policy when changes
are required. However, the latter is technically worth it
when the number of clients to implement is many.
Despite providing better description on the nature of
software flexibility, this method is not easy to use
(Niu et al., 2011). For this reason, Niu et al. (2011)
introduced another software flexibility measurement
technique using “Second-Order Cone Programming
(SOCP) approach”. The need to consider the
consequences of external operation control force on top of
software deformation size is the reasoning to the use of
SOCP to measure software flexibility (Niu et al., 2011).
The suitability of each technique depends on how
software developers are going to use it.

Muhammad Ehsan Rana et al. / Journal of Computer Science 2021, 17 (7): 624.638

DOI: 10.3844/jcssp.2021. 624.638

626

Table 1: General flexible points (Shen and Ren, 2006)

NO Change requirement NO Change requirement

1 Adjust the value range of data element 6 Add/delete business rules

2 Add/delete items in selection 7 Add calculation formulas

3 Add/delete data element 8 Adjust screen layout

4 Change data element type 9 Change external input interface

5 Modify calculation formulas 10 Change external output interface

Peng et al. (2009) research on software flexibility

measurement using user-oriented approach has also

included the five steps mentioned in (Shen and Ren, 2006)

research along with user’s manipulative capability and

manipulative complexity. In their research, it is

highlighted that FXP is easier to use to measure

software flexibility and participants who are involved

tend to be able to identify various problems related to

software flexibility early. On the other hand, there are

no other researchers who have made use of SOCP

approach in software flexibility related research.

Meaning that the SOCP approach has yet to be fully

proven to be correct. Therefore, this research will

utilize FXP for measuring the flexibility improvement

in the object-oriented application developed before and

after applying design principles and patterns.

Any changes to the requirements that can be satisfied

by the software’s internal adaptive mechanism can be

conveyed using flexible point (Peng et al., 2009). FXP is

also a key indicator and the most basic unit of

measurement of software flexibility (Niu et al., 2011).

Flexible point can be a function, a segment of codes, etc.

where some general points are shown in Table 1. Based

on the FXP, it can be further grouped into levels where

lower FXP will have less changes and less technical while

higher FXP will require more technical changes. This will

be beneficial for software developers as they can use

flexible points to predict the components that will have

the least and most changes.

Impact of Design Principles and Patterns on

Software Flexibility

Software design principles are fundamental concepts that

helps in producing good design quality (Bräuer et al., 2018).

These principles are essential in creating a flexible and

maintainable system. However, many difficulties are faced

to develop software based on the design principles. This is

due to the absence of clear instruction to correctly

implement the principles (Bräuer et al., 2018). As part of

the research scope, only SOLID design principles will be

evaluated in this research. SOLID is an acronym for five

basic design principles such as “Single Responsibility,

Open Closed, Liskov Substitution, Interface Segregation

and Dependency Inversion” principle respectively

(Martin and Martin, 2006). These five principles can be

used as a guideline to develop a reusable and efficient system

which is maintainable and sustainable for long term usage

(Madasu et al., 2015). By incorporating reusability and

maintainability into the software development, it will also

improve the flexibility of the software.

Design pattern can be defined as a tested solution to a

programming problem with known pattern (Holzner,

2006; Walter and Alkhaeir, 2016). The concept of design

patterns defines good practices to design software as

opposed to antipatterns that represent bad practices (Arcelli

and Di Pompeo, 2017). Gamma (1995) introduces GoF

design patterns which has a total of 23 patterns divided into

three categories such as Creational, Structural and

Behavioral. Each pattern has its own intent and

applicability, meaning that not all patterns are suitable to

promote software flexibility. These patterns are set as the

scope of patterns used in this research. Design patterns do

not always improve the quality of the software developed

(Khomh and Gueheneuc, 2018). In addition, lines of codes

are expected to increase significantly by applying design

patterns (Scanniello et al., 2015). However, this does not

pose as a disadvantage as in exchange, it will reduce code

smell as well as improve code comprehensibility (Walter

and Alkhaeir, 2016; Gravino and Risi, 2017). Therefore,

it is necessary to select and apply the right pattern to solve

the problem encountered.

Furthermore, most object-oriented software projects

are using object-oriented principles and reusable design

patterns to solve common recurring design problem (Oruc

et al., 2016; Thabasum and Sundar, 2012). With the use

of design patterns, it is highly likely to result in a better

and more maintainable system (Marouane et al., 2018; Yu

et al., 2018). Moreover, design patterns also ease system

modeling and improve the development process quality

(Marouane et al., 2018). Not only will it improve the

quality of the system, but it also allows developers to have

a rapid understanding on the software design, thus making

maintenance easier (Yu et al., 2018). As a result, the

flexibility and maintainability of the system can be

improved significantly. Due to these reasons, design

patterns are still very popular in today’s software

development as it encourages flexibility, maintainability

and reusability (Zhang et al., 2014; Lano et al., 2018).

Design Principles Chosen for this Research

In this research, the authors choose two SOLID

principles that will be used in the experiments based on its

characteristics to produce extensible and reusable software

Muhammad Ehsan Rana et al. / Journal of Computer Science 2021, 17 (7): 624.638

DOI: 10.3844/jcssp.2021. 624.638

627

components which would result in promoting software

flexibility. The chosen design principles are as follows.

Single Responsibility Principle (SRP)

Martin and Martin (2006) explained SRP as “a class

should have only one reason to change”. Meaning that a

single class must have one and only one responsibility.

Sticking to this rule of thumb will prevent the software

from having tightly coupled components as well as

promoting clear responsibility. Thus, SRP can improve

the flexibility of the system

Open Closed Principle (OCP)

“OCP is defined as software entities (classes, modules,

functions, etc.) should be open for extension but closed for

modification” (Martin and Martin, 2006). The former

refers to the ability to extend a module based on new

requirements, while the latter refers to no changes should

be applied to the source upon extending the module. As a

result, existing modules/components do not require

recompilation and retest when an extension is added.

Thus, this highly improves the flexibility of the software.

Design Patterns Chosen for this Research

It must be emphasized that wrongly used pattern may

impact the quality of the software negatively (Zhu and

Bayley, 2015). Therefore, not all patterns will be suitable

for improving software flexibility. Based on the case

study requirements and evaluation on the patterns’

intent and applicability towards software flexibility,

the authors choose two GoF design patterns which will

be used in the experiments such as.

Strategy

Strategy pattern is one of the behavioral patterns from

the GoF design patterns. The intention of this pattern is to

“define a family of algorithms, encapsulate each one and

make them interchangeable” (Gamma, 1995). This

pattern is an alternative to inheritance, it breaks down

volatile codes, encapsulates them as objects and uses them

when needed (Holzner, 2006). This pattern resembles

OCP where it is based on extensibility and reusability to

promote software flexibility. No modification to existing

classes is required, thus making the software flexible to

changes. As a result, the flexibility of the software can be

improved significantly.

Decorator

This pattern is a structural pattern from the GoF design

patterns. It is intended to “attach additional

responsibilities to an object dynamically and provide a

flexible alternative to subclassing for extending

functionality” (Gamma, 1995). As highlighted that

decorator provides additional responsibilities, but those

responsibilities can be removed when it is no longer

required. In other words, adding or removing

responsibilities will not affect the core modules, thus

making the software flexible.

Methodology

There are many existing literatures conducted on

software flexibility and design patterns from 1990’s

onwards. The years of study in this research will include

literatures from 1990 to most recent. This is because

software flexibility is an old topic which has very limited

literatures from recent years. As a result, the authors

would have to include these old references regarding

software flexibility. However, design patterns seem to

have more research interest as there are more and more

related journal papers written. The authors will refer to

existing researches as part of this research. This is to

ensure that the literature review conducted is up to date.

Furthermore, this research uses quantitative research

approach as flexible point is selected to measure software

flexibility improvement in the OO application developed

based on the case study. The application will first be

developed using OOP language which is JAVA without

applying any design principles and patterns. Then, adding

design principles for the second comparison and adding

design patterns for the final comparison. Only certain

principles and patterns are chosen due to its suitability

with the requirements of the case study. It is more accurate

to measure the differences through experiment using FXP.

The findings obtained from these experiments will then be

used to justify whether the selected design principles and

patterns have a positive impact on software flexibility.

Design and Implementation

To show the improvement in software flexibility,

the authors consider the following case study which is

implemented using JAVA. The design and

implementation are focused on three parts such as

simpler solution (without any design principles and

patterns), after applying design principles and after

applying design patterns.

Scenario/Case Study

Pyro Ice Cream Ordering System (PICOS) is an

application that enables customer to order and customize

ice cream based on the available toppings provided.

Toppings are optional, customer can order ice cream

without any topping. The toppings are provided by

vendor, thus PICOS will not cover any modification to

topping information. However, PICOS can be used by the

Admin to update ice cream price and description. This

system only accepts one customer at one time. A customer

can only make a single order on one type of ice cream at

any one time. Furthermore, PICOS provide a feature for

Muhammad Ehsan Rana et al. / Journal of Computer Science 2021, 17 (7): 624.638

DOI: 10.3844/jcssp.2021. 624.638

628

customer to get ice cream recommendation such as

random and most popular ice cream. The Admin of the

system can update ice cream information, complete order

and view report. The report feature only covers orders that

are already completed.

Overall System Design

Figure 1 shows the Use Case diagram of PICOS

system. There are two actors/users of the system such

as Customer and Admin. Customer can order ice cream,

add/remove topping and get ice cream

recommendation. On the other hand, Admin can update

ice cream info, complete order and view report. PICOS

system does not keep track of customer information.

Thus, customer does not require to login to the system.

However, the system does keep track of order

information to generate a sales report.

Figure 2 and 3 shows the workflow of PICOS system

using Activity diagram for Customer and Admin

respectively. Customer has two options such as order ice

cream with or without topping and get ice cream

recommendation. Once logged on, admin can perform

three functions such as update ice cream info, complete

order and view report.

Fig. 1: Use case diagram

Fig. 2: Activity diagram - customer

Display

menu
Display order

recorded

Add or remove

topping

Select ice cream

Confirm order

Get

recommendation

[No]

[Yes]

S
y

st
em

C

u
st

o
m

er

Add topping Remove topping

«extend»

«extend»

Order ice cream Update ice cream info

Get recommendation Complete order

Admin Customer

«include»

View report View order

Muhammad Ehsan Rana et al. / Journal of Computer Science 2021, 17 (7): 624.638

DOI: 10.3844/jcssp.2021. 624.638

629

Fig. 3: Activity diagram - admin

Fig. 4: Customer - order ice cream

Fig. 5: Customer - get recommendation

Prompt for

credential

Display

menu

Update ice

cream info

Login
Complete

order

View report

A
d
m

in

S
y
st

em

Muhammad Ehsan Rana et al. / Journal of Computer Science 2021, 17 (7): 624.638

DOI: 10.3844/jcssp.2021. 624.638

630

Fig. 6: Admin - update ice cream info

Fig. 7: Class diagram - initial design

+readAlllceCreams()

+readAlllncompleteOrders()
+readAllToppings()

+readOrderToppings()

+updatelceCream()

+saveOrder()
+saveOrderToppings()

+completeOrders()

+getlceCreamReport()

+getToppingReport

DatabaseManager

Customer

+order()

+requestRecommendation()

Order

-orderNo: int

-iceCream: iceCream
-quantity: int

-isServed: boolean

-updatedDate: Timestamp

+process()

+complete()
AdminPage

-admin: admin

-iceCreamList: List<IceCream>

-orderList: List<Order>

+display()
+verifyCredential()

-update_btnConfirmActionPerformed()

-order_btnCompleteActionPerformed()

-generateReportSummary()

+display()

MenuPage

CustomerPage

-newCustomer: Customer

-iceCreamList: List<IceCream>

+dis play()

-btnConfirmActionPerformed()

-btnGetRecommendationActionPerformed()

Main

+main()

+getCurrenTimeStamp()

Admin

-admin: Admin

+getlnstance()
+updateInfo

+completeOrder()

IceCream

+calculatePrice()

+suggestRandomRecommendation()
+suggestMostPopularRecommendation()

+setlsChocolate()

+setlsVanilla()
+setlsMocha()

+setHasPralineSundaeTopping()

+setHasCaramelPopcornTopping()

+setHasCrunchyPeanutTopping()

-setTopping()

1 1

1

1
1

1

1

1

1 1

1

Muhammad Ehsan Rana et al. / Journal of Computer Science 2021, 17 (7): 624.638

DOI: 10.3844/jcssp.2021. 624.638

631

Fig. 8: Class diagram - after applying design principles

Using Simpler Solution

Figure 7 shows the initial design of PICOS system

using Class diagram. Hereafter, all class name and method

name will be written in italic. There is a total of 9 classes

where the main classes are IceCream, Customer, Order,

Admin and DatabaseManager. The remaining classes are

GUI related and the main point of execution of the system.

After Applying Design Principles

Figure 8 shows the refined Class diagram after applying
two SOLID design principles such as SRP and OCP. SRP is

added by separating recommendation and topping from
IceCream class. This resulting in more classes but offer
greater flexibility as certain changes will only be applied to
the right class. For instance, changes to the implementation
of recommendation will only impact Recommendation class.
On the other hand, OCP results in separating each type of ice
cream into a child class of the parent IceCream class. This
design promotes reusability and extensibility as the child
class can reuse its parent attributes and methods.
Extensibility in the sense that if a new type of ice cream is to
be added, a new child class extending IceCream class can be
added without affecting existing implementation.

+readAlllceCreams()

+readAlllncompleteOrders()
+readAllToppings()

+readOrderToppings()

+updatelceCream()

+saveOrder()
+saveOrderToppings()

+completeOrders()

+getlceCreamReport()

+getToppingReport

DatabaseManager

Customer

+order()

+requestRecommendation()

Order

-orderNo: int

-iceCream: iceCream

-quantity: int
-isServed: Boolean

-updatedDate: Timestamp

+process()

+complete()

Recommendation

-iceCream: iceCream

+recommendRandom()

+recommendMostPopular()

-setTopping()

AdminPage

-admin: admin

-iceCreamList: List<IceCream>

-orderList: List<Order>

+display()

+verifyCredential()
-update_btnConfirmActionPerformed()

-order_btnCompleteActionPerformed()

-generateReportSummary()

+display()

MenuPage

CustomerPage

-newCustomer: Customer
-iceCreamList: List<IceCream>

-selectedlceCream: IceCream

+display()

-btnConfirmActionPerformed()

-btnGetRecommendationActionPerformed()

Admin

-admin: Admin
+getlnstance()

+updateInfo

+completeOrder()

Main

+main()

+getlceCream()

+getTopping()

+getCurrenTimeStamp()

-id: int

-name: String

-price: float

-description: String

Topping

-id: int
-name: String

-price: float

-description: String
-updatedDate: Timestamp

-toppings: List<Integer>

«abstract»

IceCream

#calculatePrice()

#addTopping()

#removeTopping()

ChocolatelceCream

+calculatePrice() +calculatePrice() +calculatePrice()

VanillalceCream MochalceCream

1

1

1

11

1

1

1

1

1 1

Muhammad Ehsan Rana et al. / Journal of Computer Science 2021, 17 (7): 624.638

DOI: 10.3844/jcssp.2021. 624.638

632

Fig. 9: Class diagram - after applying design patterns

After Applying Design Patterns

Two design patterns (i.e., Strategy and Decorator) are

applied to the earlier design which can be seen in Figure

9. The former is applied to Recommendation class where

each type of recommendation is now made as derived

class of the super class. This results in more classes but

offers greater flexibility in which new type of

recommendation can be added without affecting existing

implementation. On the other hand, decorator pattern is

applied on the scenario where ice cream can have

topping(s). This pattern is very suitable as it provides

additional features on top of having ice cream. If topping

is no longer required, the entire decorator can be removed

without impacting ice cream related classes.

System Screenshots

Figure 4 shows the user interface of Order ice cream

feature. It allows customer to order ice cream with or

without toppings. Figure 5 shows the get recommendation

feature which automatically selects the ice cream for the

user. Figure 6 displays the Admin page where there are

three tabs representing three functionalities. The first tab is

to update ice cream info. The next tabs are to complete

order and view report respectively.

Analysis of the Results

FXP level varies depending on the software

manipulators (e.g., users, developers, etc.) where it can be

DatabaseManager

Order

+readAlllceCreams()
+readAlllncompleteOrders()

+readAllToppings()

+readOrderToppings()
+updatelceCream()

+saveOrder()

+saveOrderToppings()

+completeOrders()
+getlceCreamReport()

+getToppingReport

-orderNo: int

-iceCream: iceCream
-quantity: int

-isServed: Boolean

-updatedDate: Timestamp

+process()

+complete()

AdminPage

-admin: admin

-iceCreamList: List<IceCream>

-orderList: List<Order>

+display()

+verifyCredential()

-update_btnConfirmActionPerformed()
-order_btnCompleteActionPerformed()

-generateReportSummary()

+display()

MenuPage

CustomerPage

-newCustomer: Customer

-selectedlceCream: IceCream

+display()

-btnConfirmActionPerformed()

-btnGetRecommendationActionPerformed()

Admin

-admin: Admin
+getlnstance()

+updateInfo

+completeOrder()

Customer

+order()

+requestRecommendation()

Main

-allToppings: List<Topping>

+main()
+getlceCream()

+getTopping()

+getCurrenTimeStamp()

-id: int

-name: String
-price: float

-description: String

Topping

-id: int

-name: String
-price: float

-description: String

-updatedDate: Timestamp

-toppinglds: Set<Integer>
RandomRecommendation

«abstract»

IceCream

«abstract»

Recommendation

-iceCream: IceCream

+recommend

+recommend()

-setTopping()

MostPopularRecommendation

+recommend() #calculatePrice()

1

ChocolatelceCream

+calculatePrice() +calculatePrice() +calculatePrice()

VanillalceCream MochalceCream
«abstract»

ToppingDecorator

+getlceCreamld()

+calculatePrice()

+getToppinglds()

PralineSundae

-iceCream: IceCream -iceCream: IceCream -iceCream: IceCream

CaramelPopcorn CrunchyPeanut

+getlceCreamld()
+calculatePrice()

+getToppinglds()

+getlceCreamld()

+calculatePrice()

+getToppinglds()

+getlceCreamld()

+calculatePrice()

+getToppinglds()

1

1

1 1

1

1 1

1

1

0

Muhammad Ehsan Rana et al. / Journal of Computer Science 2021, 17 (7): 624.638

DOI: 10.3844/jcssp.2021. 624.638

633

categorized into Low-level User (LU), High-level User

(HU) and Developer-level User (DU) (Shen and Ren,

2006). In PICOS system, the type of changes cannot be

made by user, therefore all sort of changes requires

developer involvement, thus limiting FXP level to DU.

This kind of changes normally involves code change or

reconfiguration (Shen and Ren, 2006). In addition, FXP

based on DU can be categorized into three levels based

on the technical complexity such as DUFXP1,

DUFXP2 and DUFXP3 from low to high respectively

(Shen and Ren, 2006). The flexible force for each level

can be seen in Table 2.

FXP Identification

Table 3 shows the possible requirement changes to

PICOS system which is the identification of the FXP. All the

predicted changes refer to adding new type of item for ice

cream, topping and recommendation. Therefore, the

flexibility calculation will be based on these three changes.

Flexible Distance Calculation

The size of software change caused by a FXP is known
as the flexible distance which can be measured using
function points (Shen and Ren, 2006). Flexible distance
calculation is based on Unadjusted Function Points
(UFP) as the main consideration is about the change
size (Shen and Ren, 2006). Function Point Analysis
(FPA) is very popular in measuring the productivity of
software (Vickers, 2014). There are five required
components to calculate the function points such as
“External Input (EI), External Output (EO), External
Enquiries (EQ), Internal Logical File (ILF) and External
Interface File (EIF)” (Vickers, 2014). Then, the sum of
these five components form the UFP.

Table 4 provides the justification in determining the

type and complexity. As identified from the source codes,

three classes (IceCream, Order and CustomerPage)

need to be changed upon having the requirement to add

new ice cream. Furthermore, the function complexity

and weightage for each category to calculate the total

UFP are taken from (de Freitas Junior et al., 2015).

There will be three sets of calculation such as for the

simpler solution, after applying design principles and

after applying design patterns.

Table 5 shows the impact of the code changes required

to add new type of ice cream where File Type Reference

(FTR) = 3 and Data Element Type (DET) = 11. As a

result, the complexity of this EI is high. Whereas for ILF,

the Record Element Type (RET) = 1 (ice cream table in

database) and DET = 1 (insert new record), thus the

complexity is low. Similarly, EQ has 2 FTR

(CustomerPage and DatabaseManager class) and 2 DET

(read records from ice cream table in database and

convert result set to ice cream object). As a result, EQ

has low complexity. EO has only 1 FTR which is

CustomerPage class and 3 DET (displays radio button,

price and description), thus EO complexity is low. The

remaining calculation hereafter works the same way

which can be seen in Table 6 to 13.
The add code extension in Table 8 basically add a new

class extending the abstract IceCream class as well as
adding new radio button and its event to CustomerPage
class. Thus, FTR = 2 and DET = 3, resulting in low
complexity for the EI. The same goes to Table 12 and 13.
After applying design patterns, add new type of topping
has FTR = 2 and DET = 3, while add new type of
recommendation has FTR = 2 and DET = 2. Both results
in low complexity for the EI.

Table 2: FXP level force value (Shen and Ren, 2006)

Flexible point level Flexible force value Manipulation

SAFXP 0 No need user’s manipulation

LUFXP 10 Simple function manipulation

HUFXP 20 Complex function and business manipulation

DUFXP1 30 Low technical manipulation

DUFXP2 40 Average technical manipulation

DUFXP3 50 High technical manipulation

Table 3: Possible changes to PICOS

NO Change requirement

1 Add new type of ice cream for order

2 Add new type of topping for order

3 Add new type of ice cream recommendation

Table 4: Function point components - simpler solution - add new type of ice cream

Activity Type Complexity UFP

Add code changes to IceCream, Order and CustomerPage class EI High 6

Add new record to ice cream table ILF Low 7

Read record from database EQ Low 3

Display new ice cream info EO Low 4

Total 20

Muhammad Ehsan Rana et al. / Journal of Computer Science 2021, 17 (7): 624.638

DOI: 10.3844/jcssp.2021. 624.638

634

Table 5: EI complexity justification

Class name Changes DET

IceCream Add new Boolean attribute, getter method and setter method.
 Modify calculatePrice() method, suggestRandomRecommendation(), setTopping() method. 6
Order Modify process() method. 1
CustomerPage Add new radio button and its event.
 Modify initComponents(), btnConfirmActionPerformed() method. 4

Table 6: Function point components - simpler solution - add new type of topping

Activity Type Complexity UFP

Add code changes to IceCream, Order, CustomerPage, AdminPage class EI High 6
Add new record to topping table ILF Low 7
Read record from database EQ Low 3
Display new topping info EO Low 4
Total 20

Table 7: Function Point Components - Simpler Solution - Add New Type of Recommendation

Activity Type Complexity UFP

Add code changes to IceCream, Customer, CustomerPage class EI High 6
Display recommended ice cream with topping(s) if any EO Low 4
Total 10

Table 8: Function point components - after applying design principles - add new type of ice cream

Activity Type Complexity UFP

Add code extension EI Low 3
Add new record to ice cream table ILF Low 7
Read record from database EQ Low 3
Display new ice cream info EO Low 4
Total 17

Table 9: Function point components - after applying design principles - add new type of topping

Activity Type Complexity UFP

Add code changes to CustomerPage, AdminPage class EI Medium 4
Add new record to topping table ILF Low 7
Read record from database EQ Low 3
Display new topping info EO Low 4
Total 18

Table 10: Function point components - after applying design principles - add new type of recommendation

Activity Type Complexity UFP

Add code changes to Recommendation, Customer, CustomerPage class EI Medium 4
Display recommended ice cream with topping(s) if any EO Medium 4
Total 8

Table 11: Function point components - after applying design patterns - add new type of ice cream

Activity Type Complexity UFP

Add code extension EI Low 3
Add new record to ice cream table ILF Low 7
Read record from database EQ Low 3
Display new ice cream info EO Low 4
Total 17

Table 12: Function point components - after applying design patterns - add new type of topping

Activity Type Complexity UFP

Add code extension EI Low 3
Add new record to topping table ILF Low 7
Read record from database EQ Low 3
Display new topping info EO Low 4
Total 17

Muhammad Ehsan Rana et al. / Journal of Computer Science 2021, 17 (7): 624.638

DOI: 10.3844/jcssp.2021. 624.638

635

Table 13: Function point components - after applying design patterns - add new type of recommendation

Activity Type Complexity UFP

Add code extension EI Low 3

Display recommended ice cream with topping(s) if any EO Low 4

Total 7

Table 14: Flexible degree calculation - simpler solution

Requirement Ki calculation Result

Add new type of ice cream 20/(1+50) 0.39

Add new type of topping 20/(1+50) 0.39

Add new type of recommendation 10/(1+50) 0.20

Table 15: Flexible degree calculation – after applying design principles

Requirement Ki Calculation Result

Add new type of ice cream 17/(1+30) 0.55

Add new type of topping 18/(1+40) 0.44

Add new type of recommendation 8/(1+40) 0.20

Flexible Force Calculation

The minimum external force required to cause

software change in a FXP is known as the flexible force

(Shen and Ren, 2006). The implementation using simpler

solution requires high technical manipulation as the

developer needs to understand the existing structure of the

codes and make changes accordingly. On the other hand,

after applying design principles, the implementation

effort to make code changes can be reduced. Finally,

applying design patterns mostly reduce implementation

effort by extending the codes instead of modifying it.

Therefore, the flexible force for each implementation

varies depending on its technical manipulation. The

flexible point level for Developer-level User (DU) can be

categorized into three such as DUFXP1, DUFXP2 and

DUFXP3 in which it represents low, average and high

technical manipulation respectively (Shen and Ren,

2006). Therefore, the flexible force for each

implementation respectively will be 50 for simpler

solution as it requires higher technical knowledge. After

applying design principles, the flexible force is 30 for the

first FXP and 40 for second and third FXP. Lastly, after

applying design patterns, most changes are to add code

extension. Thus, only low technical manipulation required

which gives a flexible force of 30 (Shen and Ren, 2006).

Flexible Degree Calculation

Table 14 to 16 shows the flexible degree calculation for

the simpler solution, after applying design principles and

after applying design patterns respectively. The values

calculated are the used to calculate the flexible capacity.

Flexible Capacity Calculation

Table 17 provides the flexible capacity calculation for

the three implementations.

Table 16: Flexible degree calculation-after applying design patterns

Requirement Ki calculation Result

Add new type of ice cream 17/(1+30) 0.55

Add new type of topping 17/(1+30) 0.55

Add new type of recommendation 7/(1+30) 0.23

Table 17: Flexible capacity calculation

 Flexible capacity

Implementation calculation Result

Simpler solution 0.39+0.39+0.20 0.98

After applying design principles 0.55+0.44+0.20 1.19

After applying design patterns 0.55+0.55+0.23 1.33

Discussion

It can be clearly seen in Figure 10 and 11 that both

design principles and design patterns have improved

the software flexibility of PICOS system. It has

reduced a lot of implementation effort to implement the

same type of changes which is shown by the degree of

flexibility. After applying the chosen design principles

(i.e., SRP and OCP), it is much easier to add new ice

cream and new topping to the system, thus making the

system more flexible to such changes. The system

design has become more reusable and extensible as

compared to its initial design. However, for add new

recommendation, there is just slight difference where

its flexible degree value is 0.2 after converted to the

nearest 2 decimal points.

On the other hand, the chosen design patterns (i.e.,

Strategy and Decorator) are only applied to add topping

and recommendation requirements. This is the reason

behind it has the same flexibility degree with its

previous two implementations. However, it boosts the

degree of flexibility to the other two flexible points

which proves that the chosen patterns have

Muhammad Ehsan Rana et al. / Journal of Computer Science 2021, 17 (7): 624.638

DOI: 10.3844/jcssp.2021. 624.638

636

significantly improved the flexibility of the system.

This experiment has proven that the use of the chosen

design principles (i.e., SRP and OCP) and patterns (i.e.

Strategy and Decorator) has positive impact on

software flexibility for application developed using

OOP. Therefore, the use of design principles and

patterns is highly recommended to produce highly

flexible object-oriented software.

Fig. 10: Flexibility degree comparison

Fig. 11: Flexible capacity comparison

Conclusion

The main contribution of this research is to conduct an

experiment to prove that the use of design principles and

patterns can improve software flexibility of an application

developed using OOP. Applying the chosen principles

(i.e., SRP and OCP) and patterns (i.e., Strategy and

Decorator) on the application developed have made the

software design much more flexible to changes which

can be seen from the results of this study. Changes can

be added as extension rather than modifying existing

components. This will significantly reduce the cost, time

and effort to implement the changes. It will also ease

maintenance in the long run. Therefore, the authors

highly recommend the use of design principles and

patterns in object-oriented software development. For

future works, the authors would like to recommend

researchers who are interested in this topic to conduct

these experiments on programming paradigm other than

OOP as well as utilizing different design principles and

patterns used in this research to measure software

flexibility or other quality attribute. In addition, similar

experiments could also be made for different quality

attributes.

Author’s Contributions

Muhammad Ehsan Rana: Conducting Research and

revised outcomes and documentation.

Eddy Khonica: Conducting experiment to measure

flexibility improvement using Flexible Point (FXP) based

on the chosen design principles and patterns.

Wan Nurhayati Wan Ab. Rahman: Supervising the

research by providing suggestions as well as continuously

reviewing the manuscript.

Masrah Azrifah Azmi Murad: Reviewing and

correcting the final manuscript.

Rodziah Binti Atan: Reviewing and correcting the

final manuscript.

Ethics

The corresponding author confirms that all the other

authors have read and approved the manuscript and no

ethical issues involved.

References

Abdullah, D., Khan, M. H., & Srivastava, R. (2015).

Flexibility: A Key Factor to Testability. International

Journal of Software Engineering & Applications

(IJSEA), 6(1).

Arcelli, D., & Di Pompeo, D. (2017, January). Applying

Design Patterns to Remove Software Performance

Antipatterns: A Preliminary Approach. In ANT/SEIT

(pp. 521-528).

Flexibility degree comparison

0.6

0.5

0.4

0.3

0.2

0.1

0

Add ice cream (Ki) Add

recommendation

(Ki)

Add topping (Ki)

Simpler solution

After applying design principles

After applying design patterns

Flexible capacity comparison

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Simpler solution

After applying design principles

After applying design patterns

Flexible capacity

Muhammad Ehsan Rana et al. / Journal of Computer Science 2021, 17 (7): 624.638

DOI: 10.3844/jcssp.2021. 624.638

637

Bräuer, J., Plösch, R., Saft, M., & Körner, C. (2018).

Measuring object-oriented design principles: The

results of focus group-based research. Journal of

Systems and Software, 140, 74-90.

de Freitas Junior, M., Fantinato, M., & Sun, V. (2015).

Improvements to the function point analysis method:

A systematic literature review. IEEE Transactions on

Engineering Management, 62(4), 495-506.

Eden, A. H., & Mens, T. (2006). Measuring software

flexibility. IEE Proceedings-Software, 153(3),

113-125.

Gamma, E. (1995). Design patterns: elements of reusable

object-oriented software. Pearson Education India.

Gorton, I. (2011). Software quality attributes. In Essential

Software Architecture (pp. 23-38). Springer, Berlin,

Heidelberg.

Gravino, C., & Risi, M. (2017, August). How the use

of design patterns affects the quality of software

systems: a preliminary investigation. In 2017 43rd

Euromicro Conference on Software Engineering and

Advanced Applications (SEAA) (pp. 274-277). IEEE.

Holzner, S. (2006). Design patterns for dummies. John

Wiley & Sons.

IEEE. (1990). IEEE Standard Glossary of Software

Engineering Terminology. Office, 121990(1).

Khomh, F., & Guéhéneuc, Y. G. (2018, March). Design

patterns impact on software quality: Where are the

theories?. In 2018 IEEE 25th International

Conference on Software Analysis, Evolution and

Reengineering (SANER) (pp. 15-25). IEEE.

Lano, K., Kolahdouz-Rahimi, S., Yassipour-Tehrani, S.,

& Sharbaf, M. (2018). A survey of model

transformation design patterns in practice. Journal of

Systems and Software, 140, 48-73.

Lassing, N., Rijsenbrij, D., & Vliet, H. (1999). The

goal of software architecture analysis: Confidence

building or risk assessment. In Proceedings of First

BeNeLux conference on software architecture (pp.

47-57).

Madasu, V. K., Venna, T. V. S. N., & Eltaieb, T. (2015).

SOLID Principles in Software Architecture and

Introduction to RESM Concept in OOP. Journal of

Multidisciplinary Engineering Science and

Technology, 2(2), 1–3.

Marouane, H., Duvallet, C., Makni, A., Bouaziz, R., &

Sadeg, B. (2018). An UML profile for representing

real-time design patterns. Journal of King Saud

University-Computer and Information Sciences,

30(4), 478-497.

Martin, R. C., & Martin, M. (2006). Agile principles,

patterns and practices in C# (Robert C. Martin).

Prentice Hall PTR.

Nelson, K. M., Nelson, H. J., & Ghods, M. (1997,

January). Technology flexibility: conceptualization,

validation and measurement. In Proceedings of the

Thirtieth Hawaii International Conference on System

Sciences (Vol. 3, pp. 76-87). IEEE.

Niu, J., Shen, L., & Zheng, Q. (2011, August). A

Measurement Method of Software Flexibility Based

on SOCP. In International Conference on Computer

Science, Environment, Ecoinformatics and

Education (pp. 260-266). Springer, Berlin,

Heidelberg.

Nurdiani, I., Börstler, J., & Fricker, S. A. (2018).

Literature review of flexibility attributes: A

flexibility framework for software developing

organization. Journal of Software: Evolution and

Process, 30(9), e1937.

Oruc, M., Akal, F., & Sever, H. (2016, April). Detecting

design patterns in object-oriented design models by

using a graph mining approach. In 2016 4th

International Conference in Software Engineering

Research and Innovation (CONISOFT) (pp. 115-

121). IEEE.

Peng, S., Shen, L., Liu, H., & Li, F. (2009, March).

User-oriented measurement of software flexibility.

In 2009 WRI World Congress on Computer

Science and Information Engineering (Vol. 7, pp.

629-633). IEEE.

Scanniello, G., Gravino, C., Risi, M., Tortora, G., &

Dodero, G. (2015). Documenting design-pattern

instances: A family of experiments on source-code

comprehensibility. ACM Transactions on Software

Engineering and Methodology (TOSEM), 24(3), 1-35.

Shen, L., & Ren, S. (2006). Analysis and measurement of

software flexibility based on flexible points.

Published in the Proceedings of Smef–2006.

Subramaniam, H., & Zulzalil, H. (2012). Software quality

assessment using flexibility: A systematic literature

review. International Review on Computers and

Software, 7(5).

Thabasum, S. S., & Sundar, M. (2012). A survey on

software design pattern tools for pattern selection

and implementation. International Journal of

Computer Science & Communication Networks

(IJCSCN).

Vickers, P. (2014). An introduction to function point

analysis. Northumbria University.

https://pdfs.semanticscholar.org/5bed/ab771d97252

9bab804bca0a5ce88512df102.pdf

Walter, B., & Alkhaeir, T. (2016). The relationship

between design patterns and code smells: An

exploratory study. Information and Software

Technology, 74, 127-142.

https://pdfs.semanticscholar.org/5bed/ab771d972529bab804bca0a5ce88512df102.pdf
https://pdfs.semanticscholar.org/5bed/ab771d972529bab804bca0a5ce88512df102.pdf

Muhammad Ehsan Rana et al. / Journal of Computer Science 2021, 17 (7): 624.638

DOI: 10.3844/jcssp.2021. 624.638

638

Yu, D., Zhang, P., Yang, J., Chen, Z., Liu, C., & Chen, J.

(2018). Efficiently detecting structural design pattern

instances based on ordered sequences. Journal of

Systems and Software, 142, 35-56.

Zhang, C., Wang, F., Xu, R., Li, X., & Yang, Y. (2014,

May). A quantitative analysis of survey data for

software design patterns. In Proceedings of the 2014

3rd International Workshop on Evidential

Assessment of Software Technologies (pp. 48-55).

Zhao, L. (1998). Intelligent agents for flexible workflow

systems. AMCIS 1998 Proceedings, 82.

Zhu, H., & Bayley, I. (2015). On the composability of

design patterns. IEEE Transactions on Software

Engineering, 41(11), 1138-1152.

