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Abstract: The approaches associated with software defect prediction are 

used to reduce the time and cost of discovering software defects in source 

code and to improve the software quality in the organizations. There are two 

approaches to reveal the software defects in the source code. The first 

approach is concentrated on the traditional features such as lines of code, 

code complexity, etc. However, these features fail to extract the semantics of 

the source code. The second one is concentrated on revealing these 

semantics. This paper presents a Systematic Literature Review (SLR) of 

software defect prediction using deep learning models. This SLR is focused 

on identifying the studies that use the semantics of the source code for 

improving defect prediction. This SLR aims to analyze the used datasets, models 

and frameworks. Also, identifying the evaluation metrics to ensure their 

applicability in software defect prediction. IEEE Xplore, Scopus and Web of 

Science digital libraries were used to select the suitable primary studies. Forty 

(40) primary studies were selected that published by 15 December 2020 for 

analysis based on the quality criteria. The project levels that applied in the studies 

were: Within-project 52.5%, cross-project 17.5% and both within-project and 

cross-project 30%. The datasets used were: Promise dataset 68.18% and other 

datasets 31.82%. The most used deep learning model in the primary studies was: 

Convolutional Neural Network (CNN) by 35%. The most used evaluation 

metrics were: F-measure and Area Under the Curve (AUC). Software defect 

prediction using deep learning models is still a valuable topic and requires much 

research studies to enhance the performance of the defect prediction. 
 

Keywords: Systematic Literature Review, Software Defect Prediction, Deep 

Learning, Semantics, Abstract Syntax Tree 
 

Introduction 

Proactive software testing plays a crucial role in the 

software development life cycle to find more defects 

earlier (Olsen, 2019). If the defects are discovered earlier 

through the prediction process, then the quality of 

software will be enhanced effectively. So, software defect 

prediction is becoming a popular research area in the field 

of software engineering. 

Software defect prediction (Lin et al., 2018) is a 

process of predicting the software defects that occur in the 

source code by using historical information such as code 

complexity. It consists of four phases: The first phase is to 

collect and label the data to defective and clean files. There 

are different datasets for the experiments such as PROMISE 

and NASA repositories. The second step is to collect the key 

features of these files. The third phase is to build and train the 

model. In order to evaluate the performance of the proposed 

model, evaluation metrics can be used such as F-measure, 

AUC, etc. Then, the classifier will predict if the new data is 

defective or clean (Yang et al., 2015). 

Software defect prediction is classified into Within-

Project Defect Prediction (WPDP) and Cross-Project 

Defect Prediction (CPDP) (Tong et al., 2018). In WPDP, 

the collected data are retrieved from the releases in the 

same project. In CPDP, the collected data are retrieved 

from different projects.  

There are some studies that have been conducted in 

software defect prediction. Wahono (2015) presents a 

systematic literature review of software defect prediction. 

The main goal of this study is to identify and analyze the 
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datasets, methods and frameworks that used in software 

defect prediction between 2000 and 2013. This study 

analyzes the studies in software defect prediction based 

on statistical and machine learning models. However, this 

study does not include the evaluation metrics to evaluate the 

performance of the models. Also, it does not cover deep 

leaning models. Hosseini et al. (2017) also present an SLR 

to identify the metrics, models, data approaches, datasets and 

associated performances for CPDP. The results show that 

CPDP can achieve a good performance compared to WPDP, 

when enhancing the factors that impact the performance of 

the models. 

Unlike these research studies, this SLR concentrates 

on identifying, analyzing and evaluating the datasets, 

models, frameworks and evaluation metrics used in 

software defect prediction using deep learning models. 

Therefore, it can be a good guide to obtain the suitable 

datasets, models and evaluation metrics that can be used 

in the future experiments. 

The rest of the paper is organized as follows: 

Section II describes the SLR methodology. Section III 

presents the results of applying the quality criteria to 

the selected primary studies. Section IV presents the 

discussion of this SLR. Section V presents and 

summarizes the conclusion of this SLR. 

Methodology 

In order to conduct a deep analysis of software defect 

prediction, a Systematic Literature Review (SLR) was 

selected in this research. SLR collects the data from 

selected research studies to systematically deduce the 

results. SLR evaluates all the empirical research evidence 

to answer specific research questions (Torres-Carrión et al., 

2018). It uses explicit criteria for deciding which studies 

will be included or excluded. This helps to minimize the 

authors' bias. SLR process consists of three phases (Okoli, 

2015): Planning, conducting and reporting the literature 

review. In the planning phase, a review protocol is 

developed. It defines the research questions, search 

strategy, inclusion and exclusion criteria for selecting 

relevant studies. Quality assessment, data extraction 

and data synthesis are applied to the selected primary 

studies in the conducting phase. The results are 

presented in the reporting phase of the literature 

review. SLR steps are shown in Fig. 1. 

A. Phase One: Planning the Literature Review 

In the review protocol, the first step is to identify the 

purpose of the research. Then, research questions are 

formed to support the objective of the SLR. Then, the data 

are extracted based on the identified inclusion and 

exclusion criteria.  

Research Questions 

The objective of this SLR is to summarize, analyze 
and assess the empirical evidence regarding the datasets, 
models, frameworks and evaluation metrics used in the 
context of WPDP and CPDP. In WPDP, the training set 
and test set are retrieved from the same project. In CPDP, 
the training set and test set are retrieved from different 
projects, where the model is trained by a training set from 
one project and the test set is validated from another 
project. We define six Research Questions (RQs) to 
achieve the goal of this SLR. The research questions are 
developed based on the Population, Intervention, 
Comparison, Outcomes and Context (PICOC) (Sabir et al., 
2019) criteria. Table 1 shows the PICOC criteria of this 
SLR. Then, the research questions are developed and 
evaluated based on the PICOC criteria. Table 2 shows the 
research questions and the description of each question. 

 
Table 1: PICOC Criteria 

Population Datasets, Software projects, open-source projects, Software applications. 

Intervention Software defect prediction, software fault prediction, datasets, models, frameworks, evaluation metrics. 

Comparison Not Available. 

Outcomes Performance of software defect prediction models. 

Context Public and private datasets. 

 
Table 2: Research Questions 

ID Research question Description 

RQ1 Which kind of project level is the most used for Identify the kind of project-level, either WPDP or CPDP. 

 software defect prediction?  

RQ2 What is the type of datasets that is the most used for Identify the datasets commonly used in software defect prediction. 

 software defect prediction?  

RQ3 What are the models of deep learning that are used Identify the most used models in software defect prediction. 

 for software defect prediction?  

RQ4 What are the evaluation metrics that are used for Identify the evaluation metrics used in software defect prediction. 

 software defect prediction?  

RQ5 What are the frameworks used in software defect prediction? Identify the frameworks used in software defect prediction. 

RQ6 What is the number of publications in software Identify the number of publications in software defect  

 defect prediction over the years? prediction each year. 
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Search Strategy 

Search strategy, including search string and relevant 

repositories. The aim of the search strategy is to find all 

relevant studies that support the research questions. We 

apply the following steps to develop the search string. First, 

essential search terms are identified. Second, the synonyms 

of search terms are identified. Third, a combination of logical 

operators ANDs and ORs are used in the search process.  

The following search string is used: 

 

(("Deep Learning" OR "Recurrent Neural 

Network" OR "Convolutional Neural Network" 

OR "Deep Belief Network" OR "Long Short-

Term Memory" OR "Autoencoder" OR 

"Deep Reinforcement Learning" OR 

"Generative Adversarial Network") AND 

("Abstract Syntax Tree*" OR "AST*" OR 

"Semantic*") AND ("Software" AND 

("Defect" OR "Fault") AND "Prediction")) 

 

Choosing suitable repositories is considered a vital 

point of SLR to increase the retrieval of highly relevant 

studies. The most popular repositories are considered 

relevant in software engineering and have the opportunity 

to deal with complex search queries. The selected digital 

libraries are: 

 

 IEEE Xplore  

 Scopus  

 Web of Science 

 

The studies are retrieved by using title, abstract and 

keyword. The result of the studies in all digital libraries 

are merged, then the duplicated studies are removed. We 

select all the studies that were published by 15 December 

2020. The studies are limited to publications of journals 

and conferences. 

Inclusion and Exclusion Criteria 

According to SLR, we should define a set of rules for 

choosing the most relevant studies. The inclusion and 

exclusion criteria are applied for selecting the primary 

studies. Table 3 shows the details of the inclusion and 

exclusion criteria. 

B. Phase Two: Conducting the Literature Review 

Select Primary Studies 

Figure 2 shows the overview of identified and 

remained studies after each step in the search process. In 

total, 90 primary studies are retrieved from the selected 

repositories based on the defined search string. After 

removing the duplicated studies, 44 have remained. Then 

the irrelevant studies are discarded based on reading the 

details of each study; four studies are discarded, leaving 

40 primary studies to be evaluated in this SLR.  

Quality Assessment 

The quality assessment ensures the efficiency of the 

studies and the eligibility for applying software defect 

prediction models. The quality assessment is focused on 

extracting the studies that have sufficient information for 

answering the predefined research questions. We have 

defined a set of quality criteria to be applied to the 

selected primary studies. The quality criteria are shown 

in Table 4. Each quality criteria must be answered using 

the options "Yes" or "No". The answer "Yes" represents 

value 1 and "No" represents value 0. We accumulate the 

values of all answers for each primary study. The sum is 

shown in Table 5. The primary study that reaches a sum 

lower than 80% will be excluded. After applying quality 

assessment on 40 primary studies, all 40 studies are 

included for the data extraction. 

Data Extraction 

The purpose of data extraction is to extract the data 

from the primary studies to answer the predefined 

research questions. The data extraction consists of three 

steps: The first step is concentrated on general 

information about the studies such as authors, publication 

title, publication type and publication year. The second 

step is focused on the implementation of software defect 

prediction models such as kinds of projects, datasets, 

models, frameworks and evaluation metrics. The third 

step extracts information about the empirical study and 

the final results of the models. Table 6 shows the 

characteristics that are used to answer the research 

questions. Table 7 shows the relationship between the 

primary studies and research questions, it checks if the 

selected studies answer the research questions or not. 
 
Table 3: Inclusion and Exclusion Criteria 

Inclusion criteria 

 Studies present an empirical study. 

 Studies compare the performance of models. 

 Studies concentrate on predicting defects that exist in a specific area of source code. 

 Studies that published either in journals or conferences. 

Exclusion criteria 

 Studies are not related to deep learning models. 

 Studies are not discussing semantics and syntactics of source code. 

 Studies are not written in English. 



Ahmed Bahaa et al./ Journal of Computer Science 2021, 17 (5): 490.510 

DOI: 10.3844/jcssp.2021.490.510 

 

493 

Table 4: Quality criteria  

ID Quality criteria Description 

Q1 Is the source of the used datasets clearly reported? The source of datasets must be stated.  

Q2 Is the prediction model trained and tested on a different type of data? The model must be trained by the training set and tested by the test set. 

Q3 Are the static code metrics clearly reported? It is essential that static code metrics must be  

  explicitly identified, such as lines of code, code complexity, etc. 

Q4 Is the deep learning model clearly reported? The deep learning model (e.g., Deep Belief Network,  

  Recurrent Neural Network, etc.) must be clearly stated in the study. 

Q5 Is the model applied to both within-project and cross-project? The performance of the model must be reported in  

  within-project and cross-project. 

Q6 Are the evaluation metrics used clearly mentioned? The metrics (e.g., F-measure, AUC, etc.) that evaluate  

  the model must be reported.  

Q7 Are the predictive values of the evaluation metrics clearly reported? The predictive values of the evaluation metrics must  

  be clearly represented in numbers. 

 

Table 5: Results of quality criteria for the primary studies 

Study  Q1 Q2 Q3 Q4 Q5 Q6 Q7 Sum 

St1 (Deng et al., 2020a) 1 1 1 1 0 1 1 6 

St2 (Cai et al., 2019) 1 1 1 1 0 1 1 6 

St3 (Sheng et al., 2020) 1 1 1 1 0 1 1 6 

St4 (Meilong et al., 2020) 1 1 1 1 0 1 1 6 

St5 (Humphreys and Dam, 2019) 1 1 1 1 0 1 1 6 

St6 (Pan et al., 2019) 1 1 1 1 0 1 1 6 

St7 (Phan et al., 2018a) 1 1 1 1 0 1 1 6 

St8 (Wang et al., 2016) 1 1 1 1 1 1 1 7 

St9 (Nivetha and Kavitha, 2019) 1 1 1 1 0 1 1 6 

St10 (Phan and Le Nguyen, 2017) 1 1 1 1 0 1 1 6 

St11 (Phan et al., 2017) 1 1 1 1 0 1 1 6 

St12 (Li et al., 2019) 1 1 1 1 0 1 1 6 

St13 (Qiu et al., 2019a) 1 1 1 1 0 1 1 6 

St14 (Wang et al., 2018) 1 1 1 1 1 1 1 7 

St15 (Fan et al., 2019a) 1 1 1 1 0 1 1 6 

St16 (Chen et al., 2019) 1 1 1 1 0 1 1 6 

St17 (Zhou et al., 2019) 1 1 1 1 0 1 1 6 

St18 (Phan et al., 2018b) 1 1 1 1 0 1 1 6 

St19 (Wen et al., 2018) 1 1 1 1 0 1 1 6 

St20 (Huo et al., 2018) 1 1 1 1 1 1 1 7 

St21 (Dam et al., 2019) 1 1 1 1 1 1 0 6 

St22 (Shi et al., 2020) 1 1 1 1 1 1 1 7 

St23 (Liang et al., 2019) 1 1 1 1 1 1 1 7 

St24 (Fan et al., 2019b) 1 1 1 1 0 1 1 6 

St25 (Li et al., 2017) 1 1 1 1 0 1 1 6 

St26 (Deng et al., 2020b) 1 1 1 1 0 1 1 6 

St27 (Zhang and Wu, 2020) 1 1 1 1 0 1 1 6 

St28 (Tian and Tian, 2020) 1 1 1 1 1 1 1 7 

St29 (Zhu et al., 2020a) 1 1 1 1 1 1 1 7 

St30 (Fan et al., 2018) 1 1 1 1 0 1 1 6 

St31 (Zhang et al., 2018a) 1 1 1 1 0 1 1 6 

St32 (Qiu et al., 2019b) 1 1 1 1 0 1 1 6 

St33 (Wang and Lu, 2020) 1 1 1 1 1 1 1 7 

St34 (Chen et al., 2020) 1 1 1 1 1 1 1 7 

St35 (Zhu et al., 2020b) 1 1 1 1 0 1 1 6 

St36 (Zhang et al., 2020) 1 1 1 1 0 1 1 6 

St37 (Dong et al., 2018) 1 1 1 1 1 1 1 7 

St38 (Zhou and Lu, 2020) 1 1 1 1 0 1 1 6 

St39 (Shi et al., 2021) 1 1 1 1 1 1 1 7 

St40 (Hoang et al., 2020) 1 1 1 1 0 1 1 6 
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Table 6: Data extraction characteristics mapped to research 

questions 

Characteristic Research question 

Authors, publication title, type, year General 

Project levels RQ1 

Datasets RQ2 

Deep learning models RQ3 

Evaluation metrics RQ4 

Frameworks RQ5 

Progress of publications RQ6 

 

Table 7: The relationship between the primary studies and 

research questions 

Study  RQ1 RQ2 RQ3 RQ4 RQ5 RQ6 

St1 √ √ √ √ √ √ 

St2 √ √ √ √ √ √ 

St3 √ √ √ √ √ √ 

St4 √ √ √ √ √ √ 

St5 √ √ √ √ √ √ 

St6 √ √ √ √ √ √ 

St7 √ √ √ √ √ √ 

St8 √ √ √ √ √ √ 

St9 √ √ √ √ √ √ 

St10 √ √ √ √ √ √ 

St11 √ √ √ √ √ √ 

St12 √ √ √ √ √ √ 

St13 √ √ √ √ √ √ 

St14 √ √ √ √ √ √ 

St15 √ √ √ √ √ √ 

St16 √ √ √ √ √ √ 

St17 √ √ √ √ √ √ 

St18 √ √ √ √ √ √ 

St19 √ √ √ √ √ √ 

St20 √ √ √ √ √ √ 

St21 √ √ √ √ √ √ 

St22 √ √ √ √ √ √ 

St23 √ √ √ √ √ √ 

St24 √ √ √ √ √ √ 

St25 √ √ √ √ √ √ 

St26 √ √ √ √ √ √ 

St27 √ √ √ √ √ √ 

St28 √ √ √ √ √ √ 

St29 √ √ √ √ √ √ 

St30 √ √ √ √ √ √ 

St31 √ √ √ √ √ √ 

St32 √ √ √ √ √ √ 

St33 √ √ √ √ √ √ 

St34 √ √ √ √ √ √ 

St35 √ √ √ √ √ √ 

St36 √ √ √ √ √ √ 

St37 √ √ √ √ √ √ 

St38 √ √ √ √ √ √ 

St39 √ √ √ √ √ √ 

St40 √ √ √ √ √ √ 

 
 
Fig. 1: SLR steps 
 

 
 
Fig. 2: Selection of relevant studies 
 

Data Synthesis 

The goal of data synthesis is to collect the data together 

from the selected primary studies to answer the research 

questions, with the aim of aggregating the evidence 

(Huang et al., 2018). There are many types of strategies 

to synthesize the data. Meta-analysis is used when the 

studies are homogeneous. Therefore, it cannot be applied 

in this SLR because the primary studies discuss different 

Select repositories 

Enter search string 

Retrieve initial list of 

primary studies 

Exclude duplicated studies 

Exclude irrelevant studies 

Retrieve the final list of 

primary studies 

IEEE Xplore (24) 

Scopus (39) 

Web of Science (27) 

Review protocol 

Select primary studies 

Quality assessment 

Data extraction 

Data synthesis 

Results 

Reporting phase 

Conducting phase 

Planning phase 

Initial list of studies: 90 

Duplicated studies: 46 

Irrelevant studies: 4 

Final list of studies: 40 
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deep learning models, datasets, frameworks and evaluation 

metrics. So, we use the narrative synthesis strategy. In 

narrative synthesis, visualization of the results is presented 

with the support of adding text to explain the context. In this 

SLR, the data are presented in a manner compatible with the 

research questions. The results of the primary studies are 

presented by using tables, bar charts, pie charts and column 

charts. The results are shown in section III. 

Phase Three: Results  

A. Project Levels 

Project level has two kinds: Within-project and cross-

project. Within-project means both of the training set and 

test set are retrieved from the same project (i.e., Project 

A). While cross-project means training set and test set are 

retrieved from different projects (i.e., Project A, Project 

B) where the model is trained by training set from Project 

A and test set is retrieved from Project B.  

In Within-Project Defect Prediction (WPDP), there 

are two versions (pre, post) of the same project. Pre 

version is used for training set and post version is used 

for test set. In Cross-Project Defect Prediction (CPDP), 

there are two different projects (source project, target 

project). Source project is used for training set and 

target project is used for test set.  

Figure 3 shows the kind of project-level, either within-

project or cross-project, that implemented in the selected 

primary studies. Within project was applied to 21 primary 

studies, while 12 studies used both of within-project and 

cross-project and only 7 studies applied cross-project.  

For example, St8 used PROMISE dataset. It applied both 

of WPDP and CPDP. For WPDP, Ant (1.5 and 1.6) were 

selected. Ant 1.5 was chosen as training set and Ant 1.6 was 

chosen as test set. For CPDP, Ant 1.6 and Camel 1.4 were 

selected. Ant 1.6 as training set and Camel 1.4 as test set. 

For all the Forty primary studies, the percentage of each 

kind of project-level is shown in Fig. 4. Within-project 

was applied in most of the primary studies. However, 

some models achieved good performance in within-

project and bad results with cross-project. To check the 

performance of the model, it should be applied for 

within-project and cross-project. 

B. Datasets 

Dataset is a data collection that is used to train and test 

machine learning and deep learning models. In this SLR, 40 

primary studies are analyzed to find which dataset is used in 

them. Table 8 shows the details of the datasets used for each 

study. After that, for each dataset, we calculate the number 

of the primary studies that applied it. There are public and 

private datasets that used in software defect prediction. There 

is no standard dataset to be used in the models, because each 

organization has its own dataset. Therefore, the public 

datasets are the best choice for researchers to build their 

models. However, public datasets may have some issues 

such as lack of data quality. For example, there are two 

versions of PROMISE (Ferenc et al., 2018) dataset. 

Simplified PROMISE Source Code (SPSC) and PROMISE 

Source Code (PSC). Pan et al. (2019) worked on PROMISE 

dataset and built the SPSC. The difference in the datasets will 

affect the evaluation of the proposed models. 

As shown in Fig. 5, most of the studies use one 

dataset and few studies use two datasets. And also, 

PROMISE dataset is mostly used in software defect 

prediction. PROMISE was used in 30 primary studies. It 

is a public repository. It contains the following projects: 

Ant, Camel, Forrest, Ivy, Jedit, Log4j, Lucene, Pbeans, 

Poi, Synapse, Velocity, Xalan and Xerces. It is used for 

many purposes. For example: Jedit is a text editor 

designed for programmers to help them. Poi is a Java 

library used to access Microsoft format files. And Xalan 

is a library used to transform XML documents. NASA 

dataset was used in two primary studies. It is a public 

repository. In St35 and St36, KC2, MC1, PC1 and PC2 

projects were selected from NASA dataset. AEEM 

dataset was used in only one primary study, it includes 

Eclipse and Apache. The other studies used the 

following datasets: Open-source projects, GitHub 

projects, Codeforces projects, CodeChef projects 

android projects, C# projects and OJ system projects. All 

the selected datasets in the primary studies are public 

datasets, because they are available for all researchers. 

Figure 6 shows the percentage of the PROMISE dataset 

and other datasets that are used in the primary studies. 

To apply the datasets in the proposed models, 

researchers select the datasets, then the projects are 

chosen. The datasets contain the traditional features and 

defect data of source files in each project. Each project 

includes project name, project versions, average number 

of source files and average defect rate. The first step is 

to label the data to be defective or clean for each file. 

The second step is to collect the traditional features of 

these files. The third step is to build the model. Finally, 

trained models are used to predict if the new instance is 

defective or clean. 

C. Models 

Recently, deep learning has emerged as a powerful model 

to improve the effectiveness of software defect prediction. 

Deep Learning (DL) models are Deep Neural Network 

(DNN), Deep Belief Network (DBN), Convolutional Neural 

Network (CNN), Recurrent Neural Network (RNN), 

Bidirectional Recurrent Neural Network (Bi-RNN), 

Long Short-Term Memory (LSTM), Bidirectional 

Long Short-Term Memory (Bi-LSTM), Attention 

Mechanism (AM) and Autoencoder (AE). DL models 

performs better results for software defect prediction. 

In DL models, huge data are used to train the models. This 
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data will enhance the performance of the proposed models. 

Moreover, DL models can extract the semantics of the 

source code effectively. And this helps to predict the 

software defects before the execution of the software. 

And also, DL models reduce the time and cost of 

detecting the software defects in the source code. In 

this SLR, there are 40 primary studies that use deep 

learning models. Table 9 shows which deep learning 

model is used in each study. Figure 7 shows the number 

of the studies for each DL model. The percentage of 

each model is shown in Fig. 8. 

DNN (Samir et al., 2019) and DBN (Yuan et al., 2020) 

outperform machine learning models. They use a neural 

network with multi-levels. The levels consist of an input 

layer, many hidden layers and an output layer. Semantic 

features are extracted from source code. Then the 

extracted features will be used to build the model. CNN 

(Dahou et al., 2019) achieves better performance than 

DNN and DBN. CNN uses convolutions and pooling in 

order to produce feature maps and reduce the 

dimensionality of the output. This will help to extract 

semantic features of Abstract Syntax Tree (AST) tokens 

more effectively. Recently, RNN (Staudemeyer et al., 

2019) and its types achieve good results over the years. 

RNN is a sequential model. It uses a neural network with 

internal memory to track the states of every input in the 

network. RNN passes information through the forward 

direction, while Bi-RNN passes information in both 

forward and backward directions. LSTM is a special type 

of RNN. It contains a cell for memory to track the 

information of long-term dependencies. Bi-LSTM 

consists of two independent LSTM. It passes the 

information through forward and backward directions. 

Attention Mechanism (Li and Liu, 2018) is a sequential 

model. It concentrates on the importance of each node of 

the sequence by determining the weight of each node. It 

sets a high weight for the important data to enhance defect 

prediction. Attention Mechanism is used with other DL 

models such as Bi-LSTM and RNN. It achieves better 

results when it is used alone and also when it combines 

with Bi-LSTM or RNN. The recent deep learning model 

is the Autoencoder (Zhu et al., 2019). It copies the data 

from the input to the output. It encodes the input values 

then decodes the encoded values. It extracts the most 

robust features by minimizing the reconstruction error 

between the input and output. 

After analyzing the primary studies, we find that the 

most used DL model in the primary studies is CNN. CNN 

extracts semantics of source code more effectively. It can 

capture the best feature representation of source code. In 

addition, it captures more defect feature information from 

source code. Moreover, the time and accuracy of the used 

classifiers will be enhanced. CNN has the ability to 

decrease the classification error between source and target 

projects. Furthermore, it generates more semantic features 

when code comments are embedded. 

D. Evaluation Metrics 

Evaluation metrics are used to evaluate the 

performance of machine learning and deep learning 

models. Main metrics (Li et al., 2018; 

Tantithamthavorn et al., 2018) are Precision, Recall, F-

measure and Area Under the Curve (AUC). We compared 

the performance of the primary studies based on F-

measure and/or AUC because most of the studies applied 

them. When comparing the proposed models with the 

other selected baseline models, most of the studies applied 

one evaluation metric (F-measure or AUC) and few 

studies applied both metrics (F-measure and AUC). F-

measure displays the trade-off between the performances 

of the classifier. AUC measures the entire area under the 

entire Receiver Operating Characteristic (ROC) curve. 

The used metrics for within-project and cross-project are 

shown in Table 10. For a fair comparison, we selected 

the studies that apply F-measure together. Then the 

studies that apply AUC were chosen together. Some 

studies are excluded (highlighted in blue color); 

because St7 and St13 applied other evaluation metrics. 

The values in St21 were not presented in a clear way 

and St40 applied different metrics on the used tasks. 

The highest values of F-measure for within-project 

and cross-project are shown in Figs. 9 and 10, 

respectively. The best F-measure for within-projects is 

0.809, where the study St36 builds a deep learning model 

that uses Autoencoder. At the same time, the best F-

measure for cross-projects is 0.736, where the study 

St22 builds a deep learning model that applies 

Attention Mechanism. The highest values of AUC for 

within-project and cross-project are shown in Fig. 11 

and 12, respectively. The best AUC for within-projects 

is 0.892, where the study St19 builds a model that 

applies RNN. Additionally, the best AUC for cross-

projects is 0.7, where the study St37 builds a deep 

learning model that uses DNN.  

 

 
 
Fig. 3: Kinds of project level 
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Fig. 4: The percentage of each project level 
 

 
 

Fig. 5: Number of studies for each project in the datasets 

 

 

 
Fig. 6: The percentage of the used datasets 
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Fig. 7: Number of studies for each DL model 

 

 

 
Fig. 8: Percentage of each DL model 

 

 
 

Fig. 9: F-measure for within-projects 
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Fig. 10: F-measure for cross-projects 
 

 
 

Fig. 11: AUC for within-projects 
 

 
 

Fig. 12: AUC for cross-projects 
 

 
 

Fig. 13: The distribution of the studies over years 
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Table 8: The used datasets in the primary studies 

Study Dataset 

St1 Camel, Forrest, Ivy, Jedit, Log4j, Lucene, Poi, Synapse, Velocity, Xalan, Xerces 

St2 Ant, Camel, Ivy, Log4j, Lucene, Synapse, Velocity, Xalan, Xerces 

St3 Camel, Forrest, Ivy, Log4j, Lucene, Poi, Synapse, Velocity, Xalan, Xerces 

St4 Camel, Lucene, Poi, Synapse, Xalan, Xerces 

St5 Ant, Camel, Ivy, Jedit, Log4j, Lucene, Poi, Synapse, Xalan, Xerces 

St6 Ant, Camel, Ivy, Jedit, Log4j, Lucene, Pbeans, Poi, Synapse, Velocity, Xalan, Xerces 

St7 Projects retrieved from a Pedagogical Programming Open Judge (OJ) system 

St8 Ant, Camel, Jedit, Log4j, Lucene, Xalan, Xerces, Ivy, Synapse, Poi 

St9 C# projects 

St10 CodeChef projects 

St11 CodeChef projects 

St12 Ant, Camel, Jedit, Log4j, Lucene, Poi, Synapse, Velocity, Xalan, Xerces 

St13 Ant, Camel, Ivy, Log4j, Lucene, Synapse, Velocity, Xalan, Xerces 

St14 Ant, Camel, Ivy, Jedit, Log4j, Lucene, Poi, Synapse, Xalan, Xerces 

St15 Camel, Jedit, Lucene, Poi, Synapse, Xalan, Xerces 

St16 Ant, Camel, Jedit, Log4j, Lucene, Poi, Synapse, Velocity, Xalan, Xerces 

St17 Codeforces projects 

St18 CodeChef projects 

St19 Ant, Camel, Ivy, Jedit, Log4j, Lucene, Poi, Synapse, Xalan, Xerces 

St20 Camel, Ivy, Log4j, Lucene, Poi, Synapse, Xalan, Xerces 

St21 Ant, Camel, Ivy, Jedit, Log4j, Lucene, Poi, Synapse, Xalan, Xerces 

St22 Ant, Camel, Ivy, Jedit, Log4j, Lucene, Poi, Synapse, Xalan, Xerces 

St23 Camel, Jedit, Log4j, Lucene, Poi, Synapse, Xalan, Xerces, GitHub projects 

St24 Camel, Jedit, Lucene, Poi, Synapse, Xalan, Xerces 

St25 Camel, Jedit, Lucene, Poi, Synapse, Xalan, Xerces 

St26 Camel, Jedit, Lucene, Log4j, Poi, Xalan, Xerces 

St27 Camel, Jedit, Lucene, Poi, Synapse, Xalan, Xerces 

St28 Ant, Camel, Ivy, Jedit, Log4j, Lucene, Poi, Synapse, Xalan, Xerces 

St29 Open-source projects 

St30 Android projects 

St31 Ant, Camel, Ivy, Jedit, Log4j, Lucene, Pbeans, Poi, Synapse, Velocity, Xalan, Xerces 

St32 Camel, Forrest, Ivy, Log4j, Lucene, Poi, Synapse, Velocity, Xalan, Xerces 

St33 Ant, Camel, Ivy, Jedit, Lucene, Poi, Synapse, Velocity, Xalan, Xerces 

St34 Ant, Camel, Ivy, Jedit, Log4j, Lucene, Poi, Synapse, Xalan, Xerces 

St35 Ant, Camel, Ivy, Jedit, Poi, Synapse, Xalan, Xerces, NASA projects 

St36 Ant, Ivy, Jedit, Poi, Xerces, NASA projects 

St37 Android projects 

St38 Jedit, Log4j, Lucene, Poi, Synapse, Velocity, Xalan, Xerces 

St39 Ant, Camel, Ivy, Jedit, Log4j, Lucene, Poi, Synapse, Xalan, Xerces, AEEEM projects 

St40 Open-source projects 

 

Table 9: DL models for each primary study 

DL model Study 

AM St5, St22, St27, St34, St40 

AM and Bi-LSTM St16, St17 

AM and RNN  St15, St24 

Autoencoder St33, St36 

Autoencoder and CNN St29 

Autoencoder and DNN St35 

CNN St1, St2, St3, St4, St6, St7, St10,St11, St13, St18, St20, St25, St32, St39 

DBN St8, St14, St30 

DNN St37 

LSTM or Bi-LSTM St12, St21, St23, St26, St38 

RNN or Bi-RNN St9, St19, St28, St31 
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Table 10: F-measure and AUC for each primary study 

 F-measure  AUC 

 ------------------------------------------------------ ------------------------------------------------------ 

Study Within-project Cross-project Within-project Cross-project 

St1 - 0.494 - - 

St2 - - - 0.616 

St3 - 0.527 - 0.618 

St4 0.560 - - - 

St5 0.666 - 0.745 - 

St6 0.618 - - - 

St7 - - - - 

St8 0.641 0.568 - - 

St9 0.374 - 0.686 - 

St10 0.741 - 0.795 - 

St11 - - 0.793 - 

St12 - - - 0.583 

St13 - - - - 

St14 0.641 0.539 - - 

St15 0.582 - - - 

St16 - - - 0.601 

St17 0.795 - - - 

St18 0.731 - 0.793 - 

St19 0.657 - 0.892 - 

St20 0.669 0.616 - - 

St21 - - - - 

St22 0.766 0.736 - - 

St23 0.533 0.262 - - 

St24 0.564 - 0.738 - 

St25 0.608 - - - 

St26 0.521 - - - 

St27 0.626 - - - 

St28 0.590 0.548 - - 

St29 0.802 0.709 - - 

St30 - - 0.780 - 

St31 0.374 - 0.686 - 

St32 - 0.532 - - 

St33 0.539 0.503 - - 

St34 0.642 0.618 - - 

St35 0.796 - - - 

St36 0.809 - - - 

St37 - - 0.859 0.700 

St38 - - 0.637 - 

St39 0.587 0.561 - - 

St40 - - - - 

 

E. Frameworks 

Previous studies focused on traditional features such as 

code complexity, etc. However, these features failed to 

capture the semantics of source code. In this SLR, 40 primary 

studies are included. So, all the developed frameworks are 

analyzed based on the used deep learning model. Wang et al. 

(2016) introduced the DBN model to automatically extract 

semantic features of source code. Then fed them into the 

classifier to predict the defective code for both WPDP and 

CPDP. Edit Distance Similarity Computation algorithm was 

applied to identify the distances among token sequences. 

Also, Closest List Noise Identification (CLNI) was applied 

to remove the incorrectly labeled data. The framework was 

compared with PROMISE features and AST features for 

WPDP. For CPDP, it was compared with TCA+ (Nam et al., 

2013). TCA+ is an extended Transfer Component Analysis 

(TCA). The proposed framework improved the WPDP by 

14.7, 11.5 and 14.2% in Precision, Recall and F-measure, 

respectively, compared to traditional features. For CPDP, it 

improved by 8.9% in F-measure compared to TCA+. Also, 

they worked on their study (Wang et al., 2016) and proposed 

the enhanced DBN model (Wang et al., 2018) to learn the 

semantic features from both source code and code 

changes. The same framework was used with the same 

evaluation metrics, but a new metric was added called 

PofB20 (Jiang et al., 2013), to measure the percentage of 

defects by reviewing the top 20 of code lines. The 

proposed framework achieved better PofB20 than both 

TCA+ and the baseline. 
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However, existing studies on software defect 
prediction were limited to source code. So, Dong et al. 
(2018) proposed the DNN model to extract semantic 
features for Android projects that is called Smali2vec. 
DNN was used to build a supervised-learning model for 
the defect prediction. Based on that, Smali2vec 
improved WPDP by 85.98% in AUC and improved 
CPDP by 70%. Also, Fan et al. (2018) proposed the 
DBN model that applied on Android projects but it 
extracted both of functional and semantic features to 
improve the accuracy of the prediction. 

In most studies, CNN achieved better performance than 

DBN and DNN, since it could capture context and semantics 

more effectively. To benefit from the hand-crafted features, 

(Li et al., 2017) proposed the Defect Prediction via 

Convolutional Neural Network (DP-CNN). They combined 

the hand-crafted features with semantic features generated 

from AST to extract the best feature representation of source 

code. The combined features were used as input to Logistic 

Regression (LR) (Felix and Lee, 2020) classifier. Then the 

probability for each source code file was produced to predict 

if the file was defective or clean. To handle the imbalanced 

data, the defective files was duplicated many times to reach 

a balanced dataset. The framework was compared with the 

following baselines: DBN, traditional features method, 

DBN+ (an improved version of DBN proposed by them), the 

semantic features were combined with the traditional 

features) and CNN (CNN-learned features were fed to the 

classifier without combining traditional features). The 

proposed framework improved the selected baseline models 

by 12% on average of F-measure.  
Pan et al. (2019) built their work depending on Li et al. 

(2017), they enhanced the capability of extracting global 
patterns and enhanced the model for better generalization. 
The framework was applied on the Simplified 
PROMISE Source Code (SPSC) dataset and PROMISE 
Source Code (PSC) dataset. SPSC dataset was smaller 
than the PSC dataset. For SPSC, the results showed that 
the proposed framework improved the existing CNN 
model by 2.2% on average of F-measure. For PSC, the 
results showed that the proposed framework improved 
the F-measure by 6%, the G-measure (Herbold et al., 
2017) by 5% and Matthews Correlation Coefficient 
(MCC) (Boughorbel et al., 2017) by 2%. 

Meilong et al. (2020) focused on learning more defect 
feature information from source code. The performance of 
the model increased when the filter length was 10 andthe 

optimal number of filters was 20. Furthermore, Huo et al. 
(2018) embedded code comments automatically to generate 
semantics from source code. Code comments were capable 
of generating more semantic features. The framework was 
applied on both WPDP and CPDP. For WPDP, it was 
compared with the following baselines: LR, Naive Bayes 

(NB) (Hammouri et al., 2018), ADTree (Tan et al., 2015) 
and DBN. For CPDP, DBN and TCA+ were used in the 
comparison. The results ensured that code comments were 
capable of generating more semantic features.  

Phan et al. (2017) applied the multi-view multi-layer 

directed graph-based convolutional neural network to learn 

semantic features from Control Flow Graphs (CFGs) 

(Kanuparthiet al., 2016) of programs. The framework was 

compared with feature-based and tree-based approaches. It 

improved the accuracy from 4.08 to 15.49% compared to 

the feature-based approach and from 1.2 to 12.39% 

compared with the tree-based approaches. In addition, they 

introduced the Tree-Based Convolutional Neural Networks 

(TBCNN) framework (Phan et al., 2018a), it enhanced the 

time and accuracy of classifiers by applying several 

pruning tree models. TBCNN achieved a better accuracy by 

92.63% on average. Also, they presented the Convolutional 

Neural Network on Assembly Code (ASCNN) framework  

(Phan and Le Nguyen, 2017), it applied the multi-view 

convolutional neural network to learn defect features from 

the assembly code instead of AST. ASCNN achieved 

results better than the selected baselines based on software 

metrics and Abstract Syntax Trees. They modified their 

work (Phan et al., 2017) and introduced a new model 

(Phan et al., 2018b). The task of malware analysis was 

added to check if the executable file was malware or not. 

To learn the transferable joint features, (Qiu et al., 

2019a) used the TCA algorithm. TCA handled data and 

the labeled data were fed to LR classifier to predict if the 

new project was defective. The proposed framework 

improved TCA by 30.1% and CNN by 62.8% on average 

of MCC. Also, Cai et al. (2019) employed the hierarchical 

SoftMax to reduce the time complexity of adjusting the 

distributed representation of context words. Sheng et al. 

(2020) extracted the transferable semantic features from 

source code. It applied the adversarial discriminative 

learning on source project and target project. 

To handle the data distribution variance between source 

and target projects, Deng et al. (2020a) proposed the Multi-

Kernel Transfer Convolutional Neural Network (MK-

TCNN) for CPDP. MK-TCNN achieved a better F-measure 

by 0.494 on average, compared with the other baselines. 

Qiu et al. (2019b) added the matching layer to mine the 

transferable semantics by decreasing classification error 

and distribution variance between source and target project. 

The proposed framework achieved a better F-measure by 

0.532 on average, compared with the selected baselines. 

Besides, Shi et al. (2021) represented the code by different 

representations. The most crucial information of nodes was 

coded. The serialization was applied to order the nodes and 

the AST was coded into an embedding sequence. For 

WPDP, the framework improved DP-CNN by 2.03% 

on average of F-measure. For CPDP, improved DP-

CNN by 5.44% on average of F-measure. 
Wen et al. (2018) proposed the RNN model that is called 

FENCES. It used fine-grained change analysis to extract the 
change sequences. FENCES improved the average of F-
measure from 31.6 to 46.8% and the average of AUC from 
4.2 to 16.1%, compared to the prediction models built on the 
traditional metrics. Tian and Tian (2020) applied the Gated 
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Recurrent Unit (GRU) (Dey and Salem, 2017) on the vectors 
to extract semantic features. The proposed framework 
improved WPDP by 11.0% on average of F-measure. For 
CPDP, it improved by 10.4% on average of F-measure 
compared to tree-LSTM model. Zhang et al. (2018b) used 
the RNN model to learn the regularities in the source code. 
Then the Cross-Entropy features were extracted and 
combined with the traditional features. Cross-Entropy helped 
in extracting the implicit knowledge in software repositories. 
The proposed framework's performance improved by 2.8% 
on average of F-measure. Nivetha and Kavitha (2019) 
combined the Cross-Entropy metric and Abstract Syntax 
Tree to be used as a new code metric. It produced better 
accurate defect prediction and the new metric achieved better 
results than the existing metrics. The results showed that the 
proposed framework improved Precision by 4.8%, Recall by 
2.4% and F-measure by 8.5% on average. 

Dam et al. (2019) proposed the deep tree-based LSTM 
model, the model took a raw AST of a source file to be used 
as input. The model used two classifiers (LR and Random 
Forest (RF) Zhang et al., 2018a), to choose the best one of 
them. For WPDP, the model that used RF achieved good 
results with all four metrics (F-measure, Precision, Recall 
and AUC). For CPDP, the model achieved very high Recall 
across all projects. Liang et al. (2019) combined word 
embedding with the LSTM model for defect prediction. 
The mapping table was used to map each token to real-
valued vector. The vectors and their labels were used to 
build LSTM. For WPDP, the framework improved DBN, 
tree-based LSTM (tb-LSTM) and Improved Subclass 
Discriminant Analysis (ISDA) by 8.2, 4.3 and 8.4% on 
average of F-measure, respectively. For CPDP, it improved 
them by 8.5, 0.8 and 1.5% on average of F-measure, 
respectively. Deng et al. (2020b) applied their LSTM 
model to automatically learn semantic features from source 
code. Also, Zhou and Lu (2020) introduced the Bi-LSTM 
model to extract semantic features from source code.  

To automatically construct meaningful vector 
representations for token sequences, Li et al. (2019) 
proposed the CPDP approach that focused on the 
Simplified AST (S-AST). The project-independent node 
type only was remained and other project-specific 
information was ignored. CPDP approach was compared 
with the following baselines (Li17-CNN, CamargoCruz09-
DT, Turhan09-DT, Menzies11-RF and Watanabe08-DT). 
The approach improved the baselines by 3.00, 17.54, 8.77, 
14.76 and 8.97%, respectively, on average AUC. 

Shi et al. (2020) built their work based on code2vec, 
they proposed the PathPair2Vec framework based on 
Attention Mechanism. The different parts of the terminal 
node were encoded. Then path pairs were applied to 
identify the semantics of source code. PathPair2Vec 
achieved F-measure better than DP-CNN. It exceeded DP-
CNN by 17.88%. Hoang et al. (2020) proposed the neural 
network model to learn the representation of code changes. 
It used the Attention Mechanism and multiple comparison 
functions to identify the difference between the added and 
removed code. It was applied to the following tasks: Log 

message generation, bug fixing patch identification and just-
in-time defect prediction. It achieved better performance for 
all the tasks. Zhang and Wu (2020) proposed the software 
defect prediction via transformer. It automatically extracted 
semantic features by the encoder. Then, it used scaled dot-
product attention and multi-head attention mechanism to 
capture the key features. It improved CNN by 8% on average 
of F-measure and improved RNN by 7%.  

Humphreys and Dam (2019) solved the long 

dependency problem by allowing each token to access 

other tokens through only one connection with Self-

Attention. The model was compared with the model of 

Wang et al. (2016). The proposed model achieved 0.666 

on average of F-measure, while Song Wang et al.'s model 

achieved 0.641 only. Chen et al. (2020) combined the 

Self-Attention Mechanism with the Deep Transfer 

Learning model. It visualized program files of source code 

as images. Self-Attention Mechanism was applied to 

capture the semantic features of the images. Transfer 

Learning model was used to reduce the difference in 

sample distributions between projects. The framework 

improved TCA+, DBN, LSTM and CNN by 29.0, 8.8, 

24.8 and 15.5% on average of F-measure, respectively. 

To capture the key features of defects, Fan et al. (2019a) 

proposed the Defect Prediction via Attention-based 

Recurrent Neural Network (DP-ARNN) (Fan et al., 2019b) 

and Defect Prediction via Attention Mechanism (DP-AM) 

(Fan et al., 2019a) frameworks. The RNN was used to 

automatically extract semantic features from source code. 

Then, Attention Mechanism was used to capture the key 

features. DP-ARNN improved the selected baselines by 14% 

on average of F-measure and improved the average of AUC 

by 7%. DP-AM improved the selected baselines by 11% on 

average of F-measure. Chen et al. (2019) built their work 

depending on Li et al., (2019), Attention Mechanism was 

added over the Bi-LSTM layer to learn the weight of the 

vectors from the learned semantic features. 

To handle the problem of Time Limit Exceed (TLE), 

Zhou et al. (2019) built the DeepTLE model to predict if 

there were performance defects before running the test cases. 

DeepTLE saved 96% of the time cost and 82% of accuracy. 

Wang and Lu (2020) applied the Convolutional 

Autoencoder (CAE) to learn semantic features by 

decreasing the reconstruction error between input and 

output. Domain Adaptation was applied for CPDP to 

improve the transferability of CAE-based features. 

Zhang et al. (2020) combined the Stacked Contractive 

Autoencoder (SCAE) and the Multi-Objective Defect 

Prediction Model (SMONGE). SCAE was used to learn 

the more robust features. SMONGE was used to utilize 

the multi-objective NSGAII algorithm to optimize the 

Extreme Learning Machine (ELM). SCAE achieved 

13.25, 21.99 and 43.39% on average of F-measure, G-

measure and MCC compared with the used feature 

extraction methods. SMONGE achieved 9.09, 4.84 and 
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14.79% on average of F-measure, G-measure and MCC 

compared with the used defect predictors. 

Zhu et al. (2020a) proposed the just-in-time defect 

prediction model based on Denoising Autoencoder (DAE) 

and CNN. CNN was used to extract semantic features, 

then DAE was used to learn the more robust features. 

Zhu et al. (2020b) used the DAE to learn the more robust 

features and DNN to learn the semantic features. The 

model achieved 8.96, 34.83 and 11.35% on average of F-

measure, MCC and G-measure compared with the used 

feature extraction methods. In terms of PF, it achieved a 

lower value than other methods. The framework achieved 

11.31, 46.55 and 15.08% on average of F-measure, MCC 

and G-measure compared to the used defect predictors. 

F. Number of Publications 

In this SLR, 40 primary studies published in software 

defect prediction that use deep learning models. After 

analyzing the studies, we find that all studies have 

published since 2016. Also, the number of studies is 

increased over the years. Figure 13 shows the distribution 

of the studies over the years. 

Discussion 

In this study, we have reviewed Forty primary studies 

on software defect prediction using deep learning models 

that were published by 15 December 2020. We provide a 

summary of software defect prediction models and 

identify the used datasets, framework and evaluation 

metrics of the proposed models. The data are collected 

from all available research studies in the selected digital 

libraries. A software defect is a fault in a document, code, 

software, or system that leads to producing an incorrect 

behavior during execution, causing failure to be appeared. 

The system that contains defects lead to many problems, 

including loss of money and time of fixing defects.  

Following the predefined research questions in Section 

II, the first question is related to the kind of project levels that 

researchers often use to build a software defect prediction 

model. Within-project has applied in most of the primary 

studies. However, some models achieve good performance 

in within-project and bad results with cross-project. So, the 

model should be applied on both within-project and cross-

project to make sure of the performance of the model. 

Unfortunately, only 30% of the primary studies have applied 

both of within-project and cross-project. 

The second question is related to the datasets that are 

often used for software defect prediction. Most of the 

primary studies have applied PROMISE repository only. 

However, applying many datasets and comparing the 

results among them is a good indicator for the 

effectiveness of the model. And also, public datasets have 

some issues such as lack of data quality. Therefore, the 

results of the proposed models may be inaccurate.  

The third question is related to the models of deep 

learning that are often used for software defect prediction. 

We find that some studies use one of the deep learning 

models and other studies use a combination of deep 

learning models. And also, the most used deep learning 

model in the primary studies is CNN. Moreover, the 

hybrid models have achieved good results compared to 

individual deep learning models.  

The fourth question is related to the evaluation 

metrics. These metrics are used to compare the proposed 

model with the other selected baseline models. Most of the 

primary studies have applied only one evaluation metric. 

However, using set of evaluation metrics is better than using 

F-measure or AUC only. We need to apply many evaluation 

metrics to validate the applicability of the model. In addition 

to check the performance of the proposed model. 
The fifth question is related to the frameworks that 

are used in software defect prediction. All the 

frameworks are presented in details in section III. Each 

primary study describes the steps of the proposed 

model. It presents how to collect the data from the 

selected datasets and also, it identifies how to extract 

the semantics of the source code. Then, the proposed 

model is compared with the selected baseline models to 

evaluate the performance of the framework. 

The last question is related to the number of 

publications in software defect prediction using deep 

learning models. This SLR is not limited to specific time 

period. However, all the primary studies have published 

since 2016. And also, the number of the studies is 

increased over the years.  

In this SLR, we raise several challenges related to 

software defect prediction and propose the practices that 

can be performed to overcome these challenges. The first 

challenge is using public datasets such as PROMISE and 

NASA in software defect prediction models. There are 

some issues in public datasets, which can lead to poor 

prediction of software defects. We recommend to apply 

the techniques of data preprocessing to enhance the 

quality of public datasets. 

Another challenge is related to building software 

defect prediction models. There are various deep learning 

models that are used to make the prediction of software 

defects. A few studies have applied hybrid models, which 

achieve better performance and high prediction rates 

compared to individual deep learning models. We need to 

apply more hybrid models, such as using CNN with Bi-

LSTM. We recommend to increase the number of hybrid 

models for improving software defect prediction. 

And also, another challenge is related to classifying the 

files of the source code as defective or clean. However, it is 

better to know more information about the number of defects 

and also the severity and priority of each defect. 
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Study Limitations 

This SLR has some limitations. First, we have used the 
predefined search string to find the relevant primary 
studies on software defect prediction. And also, the studies 
are related to deep learning models only. Second, the primary 
studies are retrieved based on the selected digital libraries. 
Moreover, English papers are selected only. 

Conclusion and Future Work 

This SLR aims to identify and analyze the datasets, 
models, frameworks and evaluation metrics used in 
software defect prediction using deep learning models. It 
presents the primary studies that concentrate on extracting 
semantic features of the source code. Forty primary 
studies are selected to be evaluated in this SLR. This SLR 
answers the six research questions that are identified in 
the literature review protocol. We summarize the main 
findings as follows: 

 For project level, within-project was the most used in 

the primary studies by 52.5% 

 The most used dataset was PROMISE by 68.18% 

 Most of the primary studies applied individual deep 

learning models such as Convolutional Neural Network 

(CNN), Recurrent Neural Network (RNN), etc. Few 

research studies applied hybrid deep learning models 

such as Attention Mechanism with RNN 

 The most applied model was CNN by 35% 

 F-measure and Area Under the Curve (AUC) were 

the most used evaluation metrics 

 The summary of the primary studies is shown in Table 

11. Also, the map of the primary studies that is designed 

by VOSviewer tool. The map is shown in Fig. 14. 

"VOSviewer offers text mining functionality that can be 

used to construct and visualize co-occurrence networks 

of important terms extracted from a body of scientific 

literature (VOSviewer, 2020)" 

 
Table 11: Summary of the primary studies  

Study Authors Journal / Conference Project level Datasets Model Evaluation metrics Framework Year 

St1 Deng et al. IEEE ACCESS Cross PROMISE CNN F-measure MK-TCNN 2020a 

St2 Cai et al. IEEE ACCESS Cross PROMISE CNN AUC TBCNN-THFL 2019 
St3 Sheng et al. IEEE ACCESS Cross PROMISE CNN F-measure, AUC, PofB20 ADCNN 2020 

St4 Meilong et al. Hindawi Mathematical Within PROMISE CNN F-measure SDP-S2S 2020 

  Problems in Engineering 

St5 Humphreys International Workshop on Within PROMISE AM Precision, Recall, Self-attention 2019 

 and Dam Realizing Artificial Intelligence    F-measure, AUC Transformer Encoder 

  Synergies in Software Engineering 

St6 Pan et al. MDPI applied sciences Within PROMISE CNN F-measure, G-measure, MCC Improved CNN 2019 

St7  Phan et al. Data and Knowledge Engineering Within pedagogical open CNN Accuracy TBCNN 2017 

    judge (OJ) system 

St8 Wang et al. IEEE International Conference Within and Cross PROMISE DBN Precision, Recall, F-measure DBN Model 2016 

  on Software Engineering 
St9 Nivetha and Kavitha International Journal of Within C# projects Bi-RNN Precision, Recall, F-measure, RNNLM 2019 

  Engineering and Advanced    AUC 

  Technology   

St10 Phan et al. Asia Pacific Symposium on Within CodeChef projects CNN Accuracy, F-measure, AUC ASCNN 2017 

  Intelligent and Evolutionary 

  Systems  

St11 Phan et al. International Conference on Within CodeChef projects CNN Accuracy, AUC DGCNN 2017 

  Tools with Artificial Intelligence  

St12 Li et al. International Joint Conference Cross PROMISE Bi-LSTM AUC CPDP Approach 2019 

  on Neural Networks  

St13 Qiu et al. DOI reference number: Cross PROMISE CNN MCC CNN-THFL 2019a 

  10.18293/SEKE2019-070  
St14 Wang et al. IEEE Transactions on Within & Cross PROMISE DBN Precision, Recall, F-measure DBN-based Feature 2018 

  Software Engineering     Generation 

St15 Fan et al. Asia-Pacific Software Within PROMISE AM and RNN F-measure DP-AM 2019a 

  Engineering Conference  

St16  Chen et al. IEEE ACCESS Cross PROMISE AM & Bi- LSTM AUC DeepCPDP 2019 

St17 Zhou et al. Asia-Pacific Software Within Codeforces projects AM & Bi-LSTM Accuracy, Recall, F-measure DeepTLE 2019 

  Engineering Conference  

St18  Phan et al. Neural Networks Within CodeChef projects CNN Accuracy, F-measure, AUC DGCNN 2018a 

St19 Wen et al. IEEE Transactions on Software Engineering Within PROMISE RNN Precision, Recall, F-measure, AUC FENCES 2018 

St20 Huo et al. IEEE International Conference Within and Cross PROMISE CNN F-measure CAP-CNN 2018 

  on Data Mining  
St21 Dam et al. 2019 IEEE/ACM International Within & Cross PROMISE LSTM Precision, Recall, F-measure, AUC  Deep Tree-based LSTM 2019 

  Conference on Mining Software Repositories 

St22 Shi et al. Journal of Computer Languages Within & Cross PROMISE AM F-measure PathPair2Vec 2020 

St23 Hongliang et al. IEEE ACCESS Within & Cross PROMISE and LSTM Precision, Recall, F-measure Seml 2019 

    GitHub projects  

St24 Fan et al. Hindawi Scientific Programming Within PROMISE AM and RNN F-measure, AUC DP-ARNN 2019b 

St25 Li et al. International Conference on Software Within PROMISE CNN F measure DP-CNN 2017 

  Quality, Reliability and Security  

St26 Deng et al. IET Software Within PROMISE LSTM F measure DP-LSTM 2020b 

St27 Zhang and Wu Information Technology Networking Within PROMISE AM F-measure DP-Transformer 2020 

  Electronic and Automation Control 

  Conference  
St28 Tian and Tian National Natural Science Within and Cross PROMISE RNN Precision, Recall, F-measure Model based on  2020 

  Foundation of China, IEEE     program slice  

St29 Zhu et al. IET Software Within and Cross Open-source projects AE and CNN Accuracy, Precision, Recall, DAECNN-JDP 2020a 

      F-measure, PofB20 

St30 Fan et al. IEEE International Conference on Within Android projects DBN AUC HIRER 2018 

  Computer Software & Applications  

St31 Zhang et al. IEEE International Conference on Within PROMISE RNN Precision, Recall, F-measure, AUC DefectLearner 2018a 

  Software Quality, Reliability and Security  

St32 Qiu et al. Applied Sciences Cross PROMISE CNN F-measure TCNN 2019b 

St33 Wang and Lu  DOI reference number: Within & Cross PROMISE AE F-measure SCAE 2020 

  10.18293/SEKE2020-036  
St34 Chen et al.  ICSE 2020, ACM Within & Cross PROMISE AM F-measure DTL-DP 2020 

St35 Zhu et al. Computers, Materials & Continua Within PROMISE and AE and DNN F-measure, MCC, PF, G-measure SL-Isomap and DLDD 2020b 

    NASA projects 

St36 Zhang et al.  Computers, Materials & Continua Within PROMISE and AE F-measure, G-measure, PF, MCC SCAE & SMONGE 2020 

    NASA projects 

St37 Dong et al. Wireless Pers Commun, Springer Within & Cross Android projects DNN AUC Smali2vec 2017 

St38 Zhou and Lu International Conference on Software Within PROMISE Bi-LSTM AUC, MCC LSTM-BT 2020 

  Quality, Reliability and Security Within and Cross PROMISE and CNN F-measure MPT-embedding 2020 

St39 Shi et al. Software: Evolution and Process  AEEEM projects  

St40 Hoang et al. arXiv, ACM Within Open-source projects AM AUC CC2Vec 2020 
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Fig. 14: The map of the primary studies 

 

For future studies on software defect prediction using 

deep learning models, the following are recommended: 

 

 The hybrid deep learning models achieve good 

results compared to the individual models. There are 

some hybrid models can be applied in the future such 

as CNN with Bi-LSTM. CNN can capture the 

semantics of the source code more effectively and Bi-

LSTM can detect the information of long-term 

dependencies 

 More data preprocessing techniques should be 

applied to improve the quality of public datasets 

 Recently, most of the organizations apply the agile 

methodology. Therefore, deep learning models 

should be applied for the agile methodology 
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