

© 2021 Ahmed Bahaa, Enas Mohamed Fathy, Ahmed Sharaf Eldin and Laila A. Abd-Elmegid. This open access article

is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Review

A Systematic Literature Review of Software Defect Prediction

Using Deep Learning

1,2Ahmed Bahaa, 1Enas Mohamed Fathy, 1,3Ahmed Sharaf Eldin and 1Laila A. Abd-Elmegid

1Department of Information Systems, Faculty of Computers and Artificial Intelligence,

Helwan University, Helwan 11795, Egypt
2Department of Information Systems, Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suef 62521, Egypt
3Department of Information Systems, Faculty of Information Technology and Computer Science, Sinai University, Sinai, Egypt

Article history

Received: 26-02-2021

Revised: 18-04-2021

Accepted: 11-05-2021

Corresponding Author:

Enas Mohamed Fathy

Department of Information

Systems, Faculty of Computers

and Artificial Intelligence,
Helwan University, Helwan

11795, Egypt

Email: enasm.fathy@gmail.com

Abstract: The approaches associated with software defect prediction are

used to reduce the time and cost of discovering software defects in source

code and to improve the software quality in the organizations. There are two

approaches to reveal the software defects in the source code. The first

approach is concentrated on the traditional features such as lines of code,

code complexity, etc. However, these features fail to extract the semantics of

the source code. The second one is concentrated on revealing these

semantics. This paper presents a Systematic Literature Review (SLR) of

software defect prediction using deep learning models. This SLR is focused

on identifying the studies that use the semantics of the source code for

improving defect prediction. This SLR aims to analyze the used datasets, models

and frameworks. Also, identifying the evaluation metrics to ensure their

applicability in software defect prediction. IEEE Xplore, Scopus and Web of

Science digital libraries were used to select the suitable primary studies. Forty

(40) primary studies were selected that published by 15 December 2020 for

analysis based on the quality criteria. The project levels that applied in the studies

were: Within-project 52.5%, cross-project 17.5% and both within-project and

cross-project 30%. The datasets used were: Promise dataset 68.18% and other

datasets 31.82%. The most used deep learning model in the primary studies was:

Convolutional Neural Network (CNN) by 35%. The most used evaluation

metrics were: F-measure and Area Under the Curve (AUC). Software defect

prediction using deep learning models is still a valuable topic and requires much

research studies to enhance the performance of the defect prediction.

Keywords: Systematic Literature Review, Software Defect Prediction, Deep

Learning, Semantics, Abstract Syntax Tree

Introduction

Proactive software testing plays a crucial role in the

software development life cycle to find more defects

earlier (Olsen, 2019). If the defects are discovered earlier

through the prediction process, then the quality of

software will be enhanced effectively. So, software defect

prediction is becoming a popular research area in the field

of software engineering.

Software defect prediction (Lin et al., 2018) is a

process of predicting the software defects that occur in the

source code by using historical information such as code

complexity. It consists of four phases: The first phase is to

collect and label the data to defective and clean files. There

are different datasets for the experiments such as PROMISE

and NASA repositories. The second step is to collect the key

features of these files. The third phase is to build and train the

model. In order to evaluate the performance of the proposed

model, evaluation metrics can be used such as F-measure,

AUC, etc. Then, the classifier will predict if the new data is

defective or clean (Yang et al., 2015).

Software defect prediction is classified into Within-

Project Defect Prediction (WPDP) and Cross-Project

Defect Prediction (CPDP) (Tong et al., 2018). In WPDP,

the collected data are retrieved from the releases in the

same project. In CPDP, the collected data are retrieved

from different projects.

There are some studies that have been conducted in

software defect prediction. Wahono (2015) presents a

systematic literature review of software defect prediction.

The main goal of this study is to identify and analyze the

Ahmed Bahaa et al./ Journal of Computer Science 2021, 17 (5): 490.510

DOI: 10.3844/jcssp.2021.490.510

491

datasets, methods and frameworks that used in software

defect prediction between 2000 and 2013. This study

analyzes the studies in software defect prediction based

on statistical and machine learning models. However, this

study does not include the evaluation metrics to evaluate the

performance of the models. Also, it does not cover deep

leaning models. Hosseini et al. (2017) also present an SLR

to identify the metrics, models, data approaches, datasets and

associated performances for CPDP. The results show that

CPDP can achieve a good performance compared to WPDP,

when enhancing the factors that impact the performance of

the models.

Unlike these research studies, this SLR concentrates

on identifying, analyzing and evaluating the datasets,

models, frameworks and evaluation metrics used in

software defect prediction using deep learning models.

Therefore, it can be a good guide to obtain the suitable

datasets, models and evaluation metrics that can be used

in the future experiments.

The rest of the paper is organized as follows:

Section II describes the SLR methodology. Section III

presents the results of applying the quality criteria to

the selected primary studies. Section IV presents the

discussion of this SLR. Section V presents and

summarizes the conclusion of this SLR.

Methodology

In order to conduct a deep analysis of software defect

prediction, a Systematic Literature Review (SLR) was

selected in this research. SLR collects the data from

selected research studies to systematically deduce the

results. SLR evaluates all the empirical research evidence

to answer specific research questions (Torres-Carrión et al.,

2018). It uses explicit criteria for deciding which studies

will be included or excluded. This helps to minimize the

authors' bias. SLR process consists of three phases (Okoli,

2015): Planning, conducting and reporting the literature

review. In the planning phase, a review protocol is

developed. It defines the research questions, search

strategy, inclusion and exclusion criteria for selecting

relevant studies. Quality assessment, data extraction

and data synthesis are applied to the selected primary

studies in the conducting phase. The results are

presented in the reporting phase of the literature

review. SLR steps are shown in Fig. 1.

A. Phase One: Planning the Literature Review

In the review protocol, the first step is to identify the

purpose of the research. Then, research questions are

formed to support the objective of the SLR. Then, the data

are extracted based on the identified inclusion and

exclusion criteria.

Research Questions

The objective of this SLR is to summarize, analyze
and assess the empirical evidence regarding the datasets,
models, frameworks and evaluation metrics used in the
context of WPDP and CPDP. In WPDP, the training set
and test set are retrieved from the same project. In CPDP,
the training set and test set are retrieved from different
projects, where the model is trained by a training set from
one project and the test set is validated from another
project. We define six Research Questions (RQs) to
achieve the goal of this SLR. The research questions are
developed based on the Population, Intervention,
Comparison, Outcomes and Context (PICOC) (Sabir et al.,
2019) criteria. Table 1 shows the PICOC criteria of this
SLR. Then, the research questions are developed and
evaluated based on the PICOC criteria. Table 2 shows the
research questions and the description of each question.

Table 1: PICOC Criteria

Population Datasets, Software projects, open-source projects, Software applications.

Intervention Software defect prediction, software fault prediction, datasets, models, frameworks, evaluation metrics.

Comparison Not Available.

Outcomes Performance of software defect prediction models.

Context Public and private datasets.

Table 2: Research Questions

ID Research question Description

RQ1 Which kind of project level is the most used for Identify the kind of project-level, either WPDP or CPDP.

 software defect prediction?

RQ2 What is the type of datasets that is the most used for Identify the datasets commonly used in software defect prediction.

 software defect prediction?

RQ3 What are the models of deep learning that are used Identify the most used models in software defect prediction.

 for software defect prediction?

RQ4 What are the evaluation metrics that are used for Identify the evaluation metrics used in software defect prediction.

 software defect prediction?

RQ5 What are the frameworks used in software defect prediction? Identify the frameworks used in software defect prediction.

RQ6 What is the number of publications in software Identify the number of publications in software defect

 defect prediction over the years? prediction each year.

Ahmed Bahaa et al./ Journal of Computer Science 2021, 17 (5): 490.510

DOI: 10.3844/jcssp.2021.490.510

492

Search Strategy

Search strategy, including search string and relevant

repositories. The aim of the search strategy is to find all

relevant studies that support the research questions. We

apply the following steps to develop the search string. First,

essential search terms are identified. Second, the synonyms

of search terms are identified. Third, a combination of logical

operators ANDs and ORs are used in the search process.

The following search string is used:

(("Deep Learning" OR "Recurrent Neural

Network" OR "Convolutional Neural Network"

OR "Deep Belief Network" OR "Long Short-

Term Memory" OR "Autoencoder" OR

"Deep Reinforcement Learning" OR

"Generative Adversarial Network") AND

("Abstract Syntax Tree*" OR "AST*" OR

"Semantic*") AND ("Software" AND

("Defect" OR "Fault") AND "Prediction"))

Choosing suitable repositories is considered a vital

point of SLR to increase the retrieval of highly relevant

studies. The most popular repositories are considered

relevant in software engineering and have the opportunity

to deal with complex search queries. The selected digital

libraries are:

 IEEE Xplore

 Scopus

 Web of Science

The studies are retrieved by using title, abstract and

keyword. The result of the studies in all digital libraries

are merged, then the duplicated studies are removed. We

select all the studies that were published by 15 December

2020. The studies are limited to publications of journals

and conferences.

Inclusion and Exclusion Criteria

According to SLR, we should define a set of rules for

choosing the most relevant studies. The inclusion and

exclusion criteria are applied for selecting the primary

studies. Table 3 shows the details of the inclusion and

exclusion criteria.

B. Phase Two: Conducting the Literature Review

Select Primary Studies

Figure 2 shows the overview of identified and

remained studies after each step in the search process. In

total, 90 primary studies are retrieved from the selected

repositories based on the defined search string. After

removing the duplicated studies, 44 have remained. Then

the irrelevant studies are discarded based on reading the

details of each study; four studies are discarded, leaving

40 primary studies to be evaluated in this SLR.

Quality Assessment

The quality assessment ensures the efficiency of the

studies and the eligibility for applying software defect

prediction models. The quality assessment is focused on

extracting the studies that have sufficient information for

answering the predefined research questions. We have

defined a set of quality criteria to be applied to the

selected primary studies. The quality criteria are shown

in Table 4. Each quality criteria must be answered using

the options "Yes" or "No". The answer "Yes" represents

value 1 and "No" represents value 0. We accumulate the

values of all answers for each primary study. The sum is

shown in Table 5. The primary study that reaches a sum

lower than 80% will be excluded. After applying quality

assessment on 40 primary studies, all 40 studies are

included for the data extraction.

Data Extraction

The purpose of data extraction is to extract the data

from the primary studies to answer the predefined

research questions. The data extraction consists of three

steps: The first step is concentrated on general

information about the studies such as authors, publication

title, publication type and publication year. The second

step is focused on the implementation of software defect

prediction models such as kinds of projects, datasets,

models, frameworks and evaluation metrics. The third

step extracts information about the empirical study and

the final results of the models. Table 6 shows the

characteristics that are used to answer the research

questions. Table 7 shows the relationship between the

primary studies and research questions, it checks if the

selected studies answer the research questions or not.

Table 3: Inclusion and Exclusion Criteria

Inclusion criteria

 Studies present an empirical study.

 Studies compare the performance of models.

 Studies concentrate on predicting defects that exist in a specific area of source code.

 Studies that published either in journals or conferences.

Exclusion criteria

 Studies are not related to deep learning models.

 Studies are not discussing semantics and syntactics of source code.

 Studies are not written in English.

Ahmed Bahaa et al./ Journal of Computer Science 2021, 17 (5): 490.510

DOI: 10.3844/jcssp.2021.490.510

493

Table 4: Quality criteria

ID Quality criteria Description

Q1 Is the source of the used datasets clearly reported? The source of datasets must be stated.

Q2 Is the prediction model trained and tested on a different type of data? The model must be trained by the training set and tested by the test set.

Q3 Are the static code metrics clearly reported? It is essential that static code metrics must be

 explicitly identified, such as lines of code, code complexity, etc.

Q4 Is the deep learning model clearly reported? The deep learning model (e.g., Deep Belief Network,

 Recurrent Neural Network, etc.) must be clearly stated in the study.

Q5 Is the model applied to both within-project and cross-project? The performance of the model must be reported in

 within-project and cross-project.

Q6 Are the evaluation metrics used clearly mentioned? The metrics (e.g., F-measure, AUC, etc.) that evaluate

 the model must be reported.

Q7 Are the predictive values of the evaluation metrics clearly reported? The predictive values of the evaluation metrics must

 be clearly represented in numbers.

Table 5: Results of quality criteria for the primary studies

Study Q1 Q2 Q3 Q4 Q5 Q6 Q7 Sum

St1 (Deng et al., 2020a) 1 1 1 1 0 1 1 6

St2 (Cai et al., 2019) 1 1 1 1 0 1 1 6

St3 (Sheng et al., 2020) 1 1 1 1 0 1 1 6

St4 (Meilong et al., 2020) 1 1 1 1 0 1 1 6

St5 (Humphreys and Dam, 2019) 1 1 1 1 0 1 1 6

St6 (Pan et al., 2019) 1 1 1 1 0 1 1 6

St7 (Phan et al., 2018a) 1 1 1 1 0 1 1 6

St8 (Wang et al., 2016) 1 1 1 1 1 1 1 7

St9 (Nivetha and Kavitha, 2019) 1 1 1 1 0 1 1 6

St10 (Phan and Le Nguyen, 2017) 1 1 1 1 0 1 1 6

St11 (Phan et al., 2017) 1 1 1 1 0 1 1 6

St12 (Li et al., 2019) 1 1 1 1 0 1 1 6

St13 (Qiu et al., 2019a) 1 1 1 1 0 1 1 6

St14 (Wang et al., 2018) 1 1 1 1 1 1 1 7

St15 (Fan et al., 2019a) 1 1 1 1 0 1 1 6

St16 (Chen et al., 2019) 1 1 1 1 0 1 1 6

St17 (Zhou et al., 2019) 1 1 1 1 0 1 1 6

St18 (Phan et al., 2018b) 1 1 1 1 0 1 1 6

St19 (Wen et al., 2018) 1 1 1 1 0 1 1 6

St20 (Huo et al., 2018) 1 1 1 1 1 1 1 7

St21 (Dam et al., 2019) 1 1 1 1 1 1 0 6

St22 (Shi et al., 2020) 1 1 1 1 1 1 1 7

St23 (Liang et al., 2019) 1 1 1 1 1 1 1 7

St24 (Fan et al., 2019b) 1 1 1 1 0 1 1 6

St25 (Li et al., 2017) 1 1 1 1 0 1 1 6

St26 (Deng et al., 2020b) 1 1 1 1 0 1 1 6

St27 (Zhang and Wu, 2020) 1 1 1 1 0 1 1 6

St28 (Tian and Tian, 2020) 1 1 1 1 1 1 1 7

St29 (Zhu et al., 2020a) 1 1 1 1 1 1 1 7

St30 (Fan et al., 2018) 1 1 1 1 0 1 1 6

St31 (Zhang et al., 2018a) 1 1 1 1 0 1 1 6

St32 (Qiu et al., 2019b) 1 1 1 1 0 1 1 6

St33 (Wang and Lu, 2020) 1 1 1 1 1 1 1 7

St34 (Chen et al., 2020) 1 1 1 1 1 1 1 7

St35 (Zhu et al., 2020b) 1 1 1 1 0 1 1 6

St36 (Zhang et al., 2020) 1 1 1 1 0 1 1 6

St37 (Dong et al., 2018) 1 1 1 1 1 1 1 7

St38 (Zhou and Lu, 2020) 1 1 1 1 0 1 1 6

St39 (Shi et al., 2021) 1 1 1 1 1 1 1 7

St40 (Hoang et al., 2020) 1 1 1 1 0 1 1 6

Ahmed Bahaa et al./ Journal of Computer Science 2021, 17 (5): 490.510

DOI: 10.3844/jcssp.2021.490.510

494

Table 6: Data extraction characteristics mapped to research

questions

Characteristic Research question

Authors, publication title, type, year General

Project levels RQ1

Datasets RQ2

Deep learning models RQ3

Evaluation metrics RQ4

Frameworks RQ5

Progress of publications RQ6

Table 7: The relationship between the primary studies and

research questions

Study RQ1 RQ2 RQ3 RQ4 RQ5 RQ6

St1 √ √ √ √ √ √

St2 √ √ √ √ √ √

St3 √ √ √ √ √ √

St4 √ √ √ √ √ √

St5 √ √ √ √ √ √

St6 √ √ √ √ √ √

St7 √ √ √ √ √ √

St8 √ √ √ √ √ √

St9 √ √ √ √ √ √

St10 √ √ √ √ √ √

St11 √ √ √ √ √ √

St12 √ √ √ √ √ √

St13 √ √ √ √ √ √

St14 √ √ √ √ √ √

St15 √ √ √ √ √ √

St16 √ √ √ √ √ √

St17 √ √ √ √ √ √

St18 √ √ √ √ √ √

St19 √ √ √ √ √ √

St20 √ √ √ √ √ √

St21 √ √ √ √ √ √

St22 √ √ √ √ √ √

St23 √ √ √ √ √ √

St24 √ √ √ √ √ √

St25 √ √ √ √ √ √

St26 √ √ √ √ √ √

St27 √ √ √ √ √ √

St28 √ √ √ √ √ √

St29 √ √ √ √ √ √

St30 √ √ √ √ √ √

St31 √ √ √ √ √ √

St32 √ √ √ √ √ √

St33 √ √ √ √ √ √

St34 √ √ √ √ √ √

St35 √ √ √ √ √ √

St36 √ √ √ √ √ √

St37 √ √ √ √ √ √

St38 √ √ √ √ √ √

St39 √ √ √ √ √ √

St40 √ √ √ √ √ √

Fig. 1: SLR steps

Fig. 2: Selection of relevant studies

Data Synthesis

The goal of data synthesis is to collect the data together

from the selected primary studies to answer the research

questions, with the aim of aggregating the evidence

(Huang et al., 2018). There are many types of strategies

to synthesize the data. Meta-analysis is used when the

studies are homogeneous. Therefore, it cannot be applied

in this SLR because the primary studies discuss different

Select repositories

Enter search string

Retrieve initial list of

primary studies

Exclude duplicated studies

Exclude irrelevant studies

Retrieve the final list of

primary studies

IEEE Xplore (24)

Scopus (39)

Web of Science (27)

Review protocol

Select primary studies

Quality assessment

Data extraction

Data synthesis

Results

Reporting phase

Conducting phase

Planning phase

Initial list of studies: 90

Duplicated studies: 46

Irrelevant studies: 4

Final list of studies: 40

Ahmed Bahaa et al./ Journal of Computer Science 2021, 17 (5): 490.510

DOI: 10.3844/jcssp.2021.490.510

495

deep learning models, datasets, frameworks and evaluation

metrics. So, we use the narrative synthesis strategy. In

narrative synthesis, visualization of the results is presented

with the support of adding text to explain the context. In this

SLR, the data are presented in a manner compatible with the

research questions. The results of the primary studies are

presented by using tables, bar charts, pie charts and column

charts. The results are shown in section III.

Phase Three: Results

A. Project Levels

Project level has two kinds: Within-project and cross-

project. Within-project means both of the training set and

test set are retrieved from the same project (i.e., Project

A). While cross-project means training set and test set are

retrieved from different projects (i.e., Project A, Project

B) where the model is trained by training set from Project

A and test set is retrieved from Project B.

In Within-Project Defect Prediction (WPDP), there

are two versions (pre, post) of the same project. Pre

version is used for training set and post version is used

for test set. In Cross-Project Defect Prediction (CPDP),

there are two different projects (source project, target

project). Source project is used for training set and

target project is used for test set.

Figure 3 shows the kind of project-level, either within-

project or cross-project, that implemented in the selected

primary studies. Within project was applied to 21 primary

studies, while 12 studies used both of within-project and

cross-project and only 7 studies applied cross-project.

For example, St8 used PROMISE dataset. It applied both

of WPDP and CPDP. For WPDP, Ant (1.5 and 1.6) were

selected. Ant 1.5 was chosen as training set and Ant 1.6 was

chosen as test set. For CPDP, Ant 1.6 and Camel 1.4 were

selected. Ant 1.6 as training set and Camel 1.4 as test set.

For all the Forty primary studies, the percentage of each

kind of project-level is shown in Fig. 4. Within-project

was applied in most of the primary studies. However,

some models achieved good performance in within-

project and bad results with cross-project. To check the

performance of the model, it should be applied for

within-project and cross-project.

B. Datasets

Dataset is a data collection that is used to train and test

machine learning and deep learning models. In this SLR, 40

primary studies are analyzed to find which dataset is used in

them. Table 8 shows the details of the datasets used for each

study. After that, for each dataset, we calculate the number

of the primary studies that applied it. There are public and

private datasets that used in software defect prediction. There

is no standard dataset to be used in the models, because each

organization has its own dataset. Therefore, the public

datasets are the best choice for researchers to build their

models. However, public datasets may have some issues

such as lack of data quality. For example, there are two

versions of PROMISE (Ferenc et al., 2018) dataset.

Simplified PROMISE Source Code (SPSC) and PROMISE

Source Code (PSC). Pan et al. (2019) worked on PROMISE

dataset and built the SPSC. The difference in the datasets will

affect the evaluation of the proposed models.

As shown in Fig. 5, most of the studies use one

dataset and few studies use two datasets. And also,

PROMISE dataset is mostly used in software defect

prediction. PROMISE was used in 30 primary studies. It

is a public repository. It contains the following projects:

Ant, Camel, Forrest, Ivy, Jedit, Log4j, Lucene, Pbeans,

Poi, Synapse, Velocity, Xalan and Xerces. It is used for

many purposes. For example: Jedit is a text editor

designed for programmers to help them. Poi is a Java

library used to access Microsoft format files. And Xalan

is a library used to transform XML documents. NASA

dataset was used in two primary studies. It is a public

repository. In St35 and St36, KC2, MC1, PC1 and PC2

projects were selected from NASA dataset. AEEM

dataset was used in only one primary study, it includes

Eclipse and Apache. The other studies used the

following datasets: Open-source projects, GitHub

projects, Codeforces projects, CodeChef projects

android projects, C# projects and OJ system projects. All

the selected datasets in the primary studies are public

datasets, because they are available for all researchers.

Figure 6 shows the percentage of the PROMISE dataset

and other datasets that are used in the primary studies.

To apply the datasets in the proposed models,

researchers select the datasets, then the projects are

chosen. The datasets contain the traditional features and

defect data of source files in each project. Each project

includes project name, project versions, average number

of source files and average defect rate. The first step is

to label the data to be defective or clean for each file.

The second step is to collect the traditional features of

these files. The third step is to build the model. Finally,

trained models are used to predict if the new instance is

defective or clean.

C. Models

Recently, deep learning has emerged as a powerful model

to improve the effectiveness of software defect prediction.

Deep Learning (DL) models are Deep Neural Network

(DNN), Deep Belief Network (DBN), Convolutional Neural

Network (CNN), Recurrent Neural Network (RNN),

Bidirectional Recurrent Neural Network (Bi-RNN),

Long Short-Term Memory (LSTM), Bidirectional

Long Short-Term Memory (Bi-LSTM), Attention

Mechanism (AM) and Autoencoder (AE). DL models

performs better results for software defect prediction.

In DL models, huge data are used to train the models. This

Ahmed Bahaa et al./ Journal of Computer Science 2021, 17 (5): 490.510

DOI: 10.3844/jcssp.2021.490.510

496

data will enhance the performance of the proposed models.

Moreover, DL models can extract the semantics of the

source code effectively. And this helps to predict the

software defects before the execution of the software.

And also, DL models reduce the time and cost of

detecting the software defects in the source code. In

this SLR, there are 40 primary studies that use deep

learning models. Table 9 shows which deep learning

model is used in each study. Figure 7 shows the number

of the studies for each DL model. The percentage of

each model is shown in Fig. 8.

DNN (Samir et al., 2019) and DBN (Yuan et al., 2020)

outperform machine learning models. They use a neural

network with multi-levels. The levels consist of an input

layer, many hidden layers and an output layer. Semantic

features are extracted from source code. Then the

extracted features will be used to build the model. CNN

(Dahou et al., 2019) achieves better performance than

DNN and DBN. CNN uses convolutions and pooling in

order to produce feature maps and reduce the

dimensionality of the output. This will help to extract

semantic features of Abstract Syntax Tree (AST) tokens

more effectively. Recently, RNN (Staudemeyer et al.,

2019) and its types achieve good results over the years.

RNN is a sequential model. It uses a neural network with

internal memory to track the states of every input in the

network. RNN passes information through the forward

direction, while Bi-RNN passes information in both

forward and backward directions. LSTM is a special type

of RNN. It contains a cell for memory to track the

information of long-term dependencies. Bi-LSTM

consists of two independent LSTM. It passes the

information through forward and backward directions.

Attention Mechanism (Li and Liu, 2018) is a sequential

model. It concentrates on the importance of each node of

the sequence by determining the weight of each node. It

sets a high weight for the important data to enhance defect

prediction. Attention Mechanism is used with other DL

models such as Bi-LSTM and RNN. It achieves better

results when it is used alone and also when it combines

with Bi-LSTM or RNN. The recent deep learning model

is the Autoencoder (Zhu et al., 2019). It copies the data

from the input to the output. It encodes the input values

then decodes the encoded values. It extracts the most

robust features by minimizing the reconstruction error

between the input and output.

After analyzing the primary studies, we find that the

most used DL model in the primary studies is CNN. CNN

extracts semantics of source code more effectively. It can

capture the best feature representation of source code. In

addition, it captures more defect feature information from

source code. Moreover, the time and accuracy of the used

classifiers will be enhanced. CNN has the ability to

decrease the classification error between source and target

projects. Furthermore, it generates more semantic features

when code comments are embedded.

D. Evaluation Metrics

Evaluation metrics are used to evaluate the

performance of machine learning and deep learning

models. Main metrics (Li et al., 2018;

Tantithamthavorn et al., 2018) are Precision, Recall, F-

measure and Area Under the Curve (AUC). We compared

the performance of the primary studies based on F-

measure and/or AUC because most of the studies applied

them. When comparing the proposed models with the

other selected baseline models, most of the studies applied

one evaluation metric (F-measure or AUC) and few

studies applied both metrics (F-measure and AUC). F-

measure displays the trade-off between the performances

of the classifier. AUC measures the entire area under the

entire Receiver Operating Characteristic (ROC) curve.

The used metrics for within-project and cross-project are

shown in Table 10. For a fair comparison, we selected

the studies that apply F-measure together. Then the

studies that apply AUC were chosen together. Some

studies are excluded (highlighted in blue color);

because St7 and St13 applied other evaluation metrics.

The values in St21 were not presented in a clear way

and St40 applied different metrics on the used tasks.

The highest values of F-measure for within-project

and cross-project are shown in Figs. 9 and 10,

respectively. The best F-measure for within-projects is

0.809, where the study St36 builds a deep learning model

that uses Autoencoder. At the same time, the best F-

measure for cross-projects is 0.736, where the study

St22 builds a deep learning model that applies

Attention Mechanism. The highest values of AUC for

within-project and cross-project are shown in Fig. 11

and 12, respectively. The best AUC for within-projects

is 0.892, where the study St19 builds a model that

applies RNN. Additionally, the best AUC for cross-

projects is 0.7, where the study St37 builds a deep

learning model that uses DNN.

Fig. 3: Kinds of project level

21

7

12

0

5

10

15

20

25

Within-project Cross-project Within-project &
Cross-project

Ahmed Bahaa et al./ Journal of Computer Science 2021, 17 (5): 490.510

DOI: 10.3844/jcssp.2021.490.510

497

Fig. 4: The percentage of each project level

Fig. 5: Number of studies for each project in the datasets

Fig. 6: The percentage of the used datasets

52.5%

17.5%

30%

Within-project

Cross-project

Within-project & Cross-project

68.18
%

31.82
%

PROMISE Others

Ahmed Bahaa et al./ Journal of Computer Science 2021, 17 (5): 490.510

DOI: 10.3844/jcssp.2021.490.510

498

Fig. 7: Number of studies for each DL model

Fig. 8: Percentage of each DL model

Fig. 9: F-measure for within-projects

5
2 2 2 1 1

14

3 1
5 4

0

5

10

15

Number of studies

12.50%

5.00%

5.00%

5.00%

2.50%
2.50%

35.00%

7.50%

2.50%

12.50%

10.00%

AM AM & Bi-LSTM

AM & RNN Autoencoder

Autoencoder & CNN Autoencoder & DNN

CNN DBN

DNN LSTM or Bi-LSTM

RNN or Bi-RNN

0.795 0.766 0.802 0.796 0.809

0

0.2

0.4

0.6

0.8

1

St17 St22 St29 St35 St36

F-measure for Within-projects

Ahmed Bahaa et al./ Journal of Computer Science 2021, 17 (5): 490.510

DOI: 10.3844/jcssp.2021.490.510

499

Fig. 10: F-measure for cross-projects

Fig. 11: AUC for within-projects

Fig. 12: AUC for cross-projects

Fig. 13: The distribution of the studies over years

0.568 0.616
0.736 0.709

0.618

0

0.2

0.4

0.6

0.8

1

St8 St20 St22 St29 St34

F-measure for Cross-projects

0.795 0.793 0.793
0.892 0.859

0

0.2

0.4

0.6

0.8

1

St10 St11 St18 St19 St37

AUC for Within-projects

0.616 0.618 0.583 0.601
0.7

0

0.2

0.4

0.6

0.8

1

St2 St3 St12 St16 St37

AUC for cross-projects

1

5
6

13

15

1

3
5

7

9

11
13

15

2016 2017 2018 2019 2020

Number of studies

Ahmed Bahaa et al./ Journal of Computer Science 2021, 17 (5): 490.510

DOI: 10.3844/jcssp.2021.490.510

500

Table 8: The used datasets in the primary studies

Study Dataset

St1 Camel, Forrest, Ivy, Jedit, Log4j, Lucene, Poi, Synapse, Velocity, Xalan, Xerces

St2 Ant, Camel, Ivy, Log4j, Lucene, Synapse, Velocity, Xalan, Xerces

St3 Camel, Forrest, Ivy, Log4j, Lucene, Poi, Synapse, Velocity, Xalan, Xerces

St4 Camel, Lucene, Poi, Synapse, Xalan, Xerces

St5 Ant, Camel, Ivy, Jedit, Log4j, Lucene, Poi, Synapse, Xalan, Xerces

St6 Ant, Camel, Ivy, Jedit, Log4j, Lucene, Pbeans, Poi, Synapse, Velocity, Xalan, Xerces

St7 Projects retrieved from a Pedagogical Programming Open Judge (OJ) system

St8 Ant, Camel, Jedit, Log4j, Lucene, Xalan, Xerces, Ivy, Synapse, Poi

St9 C# projects

St10 CodeChef projects

St11 CodeChef projects

St12 Ant, Camel, Jedit, Log4j, Lucene, Poi, Synapse, Velocity, Xalan, Xerces

St13 Ant, Camel, Ivy, Log4j, Lucene, Synapse, Velocity, Xalan, Xerces

St14 Ant, Camel, Ivy, Jedit, Log4j, Lucene, Poi, Synapse, Xalan, Xerces

St15 Camel, Jedit, Lucene, Poi, Synapse, Xalan, Xerces

St16 Ant, Camel, Jedit, Log4j, Lucene, Poi, Synapse, Velocity, Xalan, Xerces

St17 Codeforces projects

St18 CodeChef projects

St19 Ant, Camel, Ivy, Jedit, Log4j, Lucene, Poi, Synapse, Xalan, Xerces

St20 Camel, Ivy, Log4j, Lucene, Poi, Synapse, Xalan, Xerces

St21 Ant, Camel, Ivy, Jedit, Log4j, Lucene, Poi, Synapse, Xalan, Xerces

St22 Ant, Camel, Ivy, Jedit, Log4j, Lucene, Poi, Synapse, Xalan, Xerces

St23 Camel, Jedit, Log4j, Lucene, Poi, Synapse, Xalan, Xerces, GitHub projects

St24 Camel, Jedit, Lucene, Poi, Synapse, Xalan, Xerces

St25 Camel, Jedit, Lucene, Poi, Synapse, Xalan, Xerces

St26 Camel, Jedit, Lucene, Log4j, Poi, Xalan, Xerces

St27 Camel, Jedit, Lucene, Poi, Synapse, Xalan, Xerces

St28 Ant, Camel, Ivy, Jedit, Log4j, Lucene, Poi, Synapse, Xalan, Xerces

St29 Open-source projects

St30 Android projects

St31 Ant, Camel, Ivy, Jedit, Log4j, Lucene, Pbeans, Poi, Synapse, Velocity, Xalan, Xerces

St32 Camel, Forrest, Ivy, Log4j, Lucene, Poi, Synapse, Velocity, Xalan, Xerces

St33 Ant, Camel, Ivy, Jedit, Lucene, Poi, Synapse, Velocity, Xalan, Xerces

St34 Ant, Camel, Ivy, Jedit, Log4j, Lucene, Poi, Synapse, Xalan, Xerces

St35 Ant, Camel, Ivy, Jedit, Poi, Synapse, Xalan, Xerces, NASA projects

St36 Ant, Ivy, Jedit, Poi, Xerces, NASA projects

St37 Android projects

St38 Jedit, Log4j, Lucene, Poi, Synapse, Velocity, Xalan, Xerces

St39 Ant, Camel, Ivy, Jedit, Log4j, Lucene, Poi, Synapse, Xalan, Xerces, AEEEM projects

St40 Open-source projects

Table 9: DL models for each primary study

DL model Study

AM St5, St22, St27, St34, St40

AM and Bi-LSTM St16, St17

AM and RNN St15, St24

Autoencoder St33, St36

Autoencoder and CNN St29

Autoencoder and DNN St35

CNN St1, St2, St3, St4, St6, St7, St10,St11, St13, St18, St20, St25, St32, St39

DBN St8, St14, St30

DNN St37

LSTM or Bi-LSTM St12, St21, St23, St26, St38

RNN or Bi-RNN St9, St19, St28, St31

Ahmed Bahaa et al./ Journal of Computer Science 2021, 17 (5): 490.510

DOI: 10.3844/jcssp.2021.490.510

501

Table 10: F-measure and AUC for each primary study

 F-measure AUC

 -- --

Study Within-project Cross-project Within-project Cross-project

St1 - 0.494 - -

St2 - - - 0.616

St3 - 0.527 - 0.618

St4 0.560 - - -

St5 0.666 - 0.745 -

St6 0.618 - - -

St7 - - - -

St8 0.641 0.568 - -

St9 0.374 - 0.686 -

St10 0.741 - 0.795 -

St11 - - 0.793 -

St12 - - - 0.583

St13 - - - -

St14 0.641 0.539 - -

St15 0.582 - - -

St16 - - - 0.601

St17 0.795 - - -

St18 0.731 - 0.793 -

St19 0.657 - 0.892 -

St20 0.669 0.616 - -

St21 - - - -

St22 0.766 0.736 - -

St23 0.533 0.262 - -

St24 0.564 - 0.738 -

St25 0.608 - - -

St26 0.521 - - -

St27 0.626 - - -

St28 0.590 0.548 - -

St29 0.802 0.709 - -

St30 - - 0.780 -

St31 0.374 - 0.686 -

St32 - 0.532 - -

St33 0.539 0.503 - -

St34 0.642 0.618 - -

St35 0.796 - - -

St36 0.809 - - -

St37 - - 0.859 0.700

St38 - - 0.637 -

St39 0.587 0.561 - -

St40 - - - -

E. Frameworks

Previous studies focused on traditional features such as

code complexity, etc. However, these features failed to

capture the semantics of source code. In this SLR, 40 primary

studies are included. So, all the developed frameworks are

analyzed based on the used deep learning model. Wang et al.

(2016) introduced the DBN model to automatically extract

semantic features of source code. Then fed them into the

classifier to predict the defective code for both WPDP and

CPDP. Edit Distance Similarity Computation algorithm was

applied to identify the distances among token sequences.

Also, Closest List Noise Identification (CLNI) was applied

to remove the incorrectly labeled data. The framework was

compared with PROMISE features and AST features for

WPDP. For CPDP, it was compared with TCA+ (Nam et al.,

2013). TCA+ is an extended Transfer Component Analysis

(TCA). The proposed framework improved the WPDP by

14.7, 11.5 and 14.2% in Precision, Recall and F-measure,

respectively, compared to traditional features. For CPDP, it

improved by 8.9% in F-measure compared to TCA+. Also,

they worked on their study (Wang et al., 2016) and proposed

the enhanced DBN model (Wang et al., 2018) to learn the

semantic features from both source code and code

changes. The same framework was used with the same

evaluation metrics, but a new metric was added called

PofB20 (Jiang et al., 2013), to measure the percentage of

defects by reviewing the top 20 of code lines. The

proposed framework achieved better PofB20 than both

TCA+ and the baseline.

Ahmed Bahaa et al./ Journal of Computer Science 2021, 17 (5): 490.510

DOI: 10.3844/jcssp.2021.490.510

502

However, existing studies on software defect
prediction were limited to source code. So, Dong et al.
(2018) proposed the DNN model to extract semantic
features for Android projects that is called Smali2vec.
DNN was used to build a supervised-learning model for
the defect prediction. Based on that, Smali2vec
improved WPDP by 85.98% in AUC and improved
CPDP by 70%. Also, Fan et al. (2018) proposed the
DBN model that applied on Android projects but it
extracted both of functional and semantic features to
improve the accuracy of the prediction.

In most studies, CNN achieved better performance than

DBN and DNN, since it could capture context and semantics

more effectively. To benefit from the hand-crafted features,

(Li et al., 2017) proposed the Defect Prediction via

Convolutional Neural Network (DP-CNN). They combined

the hand-crafted features with semantic features generated

from AST to extract the best feature representation of source

code. The combined features were used as input to Logistic

Regression (LR) (Felix and Lee, 2020) classifier. Then the

probability for each source code file was produced to predict

if the file was defective or clean. To handle the imbalanced

data, the defective files was duplicated many times to reach

a balanced dataset. The framework was compared with the

following baselines: DBN, traditional features method,

DBN+ (an improved version of DBN proposed by them), the

semantic features were combined with the traditional

features) and CNN (CNN-learned features were fed to the

classifier without combining traditional features). The

proposed framework improved the selected baseline models

by 12% on average of F-measure.
Pan et al. (2019) built their work depending on Li et al.

(2017), they enhanced the capability of extracting global
patterns and enhanced the model for better generalization.
The framework was applied on the Simplified
PROMISE Source Code (SPSC) dataset and PROMISE
Source Code (PSC) dataset. SPSC dataset was smaller
than the PSC dataset. For SPSC, the results showed that
the proposed framework improved the existing CNN
model by 2.2% on average of F-measure. For PSC, the
results showed that the proposed framework improved
the F-measure by 6%, the G-measure (Herbold et al.,
2017) by 5% and Matthews Correlation Coefficient
(MCC) (Boughorbel et al., 2017) by 2%.

Meilong et al. (2020) focused on learning more defect
feature information from source code. The performance of
the model increased when the filter length was 10 andthe

optimal number of filters was 20. Furthermore, Huo et al.
(2018) embedded code comments automatically to generate
semantics from source code. Code comments were capable
of generating more semantic features. The framework was
applied on both WPDP and CPDP. For WPDP, it was
compared with the following baselines: LR, Naive Bayes

(NB) (Hammouri et al., 2018), ADTree (Tan et al., 2015)
and DBN. For CPDP, DBN and TCA+ were used in the
comparison. The results ensured that code comments were
capable of generating more semantic features.

Phan et al. (2017) applied the multi-view multi-layer

directed graph-based convolutional neural network to learn

semantic features from Control Flow Graphs (CFGs)

(Kanuparthiet al., 2016) of programs. The framework was

compared with feature-based and tree-based approaches. It

improved the accuracy from 4.08 to 15.49% compared to

the feature-based approach and from 1.2 to 12.39%

compared with the tree-based approaches. In addition, they

introduced the Tree-Based Convolutional Neural Networks

(TBCNN) framework (Phan et al., 2018a), it enhanced the

time and accuracy of classifiers by applying several

pruning tree models. TBCNN achieved a better accuracy by

92.63% on average. Also, they presented the Convolutional

Neural Network on Assembly Code (ASCNN) framework

(Phan and Le Nguyen, 2017), it applied the multi-view

convolutional neural network to learn defect features from

the assembly code instead of AST. ASCNN achieved

results better than the selected baselines based on software

metrics and Abstract Syntax Trees. They modified their

work (Phan et al., 2017) and introduced a new model

(Phan et al., 2018b). The task of malware analysis was

added to check if the executable file was malware or not.

To learn the transferable joint features, (Qiu et al.,

2019a) used the TCA algorithm. TCA handled data and

the labeled data were fed to LR classifier to predict if the

new project was defective. The proposed framework

improved TCA by 30.1% and CNN by 62.8% on average

of MCC. Also, Cai et al. (2019) employed the hierarchical

SoftMax to reduce the time complexity of adjusting the

distributed representation of context words. Sheng et al.

(2020) extracted the transferable semantic features from

source code. It applied the adversarial discriminative

learning on source project and target project.

To handle the data distribution variance between source

and target projects, Deng et al. (2020a) proposed the Multi-

Kernel Transfer Convolutional Neural Network (MK-

TCNN) for CPDP. MK-TCNN achieved a better F-measure

by 0.494 on average, compared with the other baselines.

Qiu et al. (2019b) added the matching layer to mine the

transferable semantics by decreasing classification error

and distribution variance between source and target project.

The proposed framework achieved a better F-measure by

0.532 on average, compared with the selected baselines.

Besides, Shi et al. (2021) represented the code by different

representations. The most crucial information of nodes was

coded. The serialization was applied to order the nodes and

the AST was coded into an embedding sequence. For

WPDP, the framework improved DP-CNN by 2.03%

on average of F-measure. For CPDP, improved DP-

CNN by 5.44% on average of F-measure.
Wen et al. (2018) proposed the RNN model that is called

FENCES. It used fine-grained change analysis to extract the
change sequences. FENCES improved the average of F-
measure from 31.6 to 46.8% and the average of AUC from
4.2 to 16.1%, compared to the prediction models built on the
traditional metrics. Tian and Tian (2020) applied the Gated

Ahmed Bahaa et al./ Journal of Computer Science 2021, 17 (5): 490.510

DOI: 10.3844/jcssp.2021.490.510

503

Recurrent Unit (GRU) (Dey and Salem, 2017) on the vectors
to extract semantic features. The proposed framework
improved WPDP by 11.0% on average of F-measure. For
CPDP, it improved by 10.4% on average of F-measure
compared to tree-LSTM model. Zhang et al. (2018b) used
the RNN model to learn the regularities in the source code.
Then the Cross-Entropy features were extracted and
combined with the traditional features. Cross-Entropy helped
in extracting the implicit knowledge in software repositories.
The proposed framework's performance improved by 2.8%
on average of F-measure. Nivetha and Kavitha (2019)
combined the Cross-Entropy metric and Abstract Syntax
Tree to be used as a new code metric. It produced better
accurate defect prediction and the new metric achieved better
results than the existing metrics. The results showed that the
proposed framework improved Precision by 4.8%, Recall by
2.4% and F-measure by 8.5% on average.

Dam et al. (2019) proposed the deep tree-based LSTM
model, the model took a raw AST of a source file to be used
as input. The model used two classifiers (LR and Random
Forest (RF) Zhang et al., 2018a), to choose the best one of
them. For WPDP, the model that used RF achieved good
results with all four metrics (F-measure, Precision, Recall
and AUC). For CPDP, the model achieved very high Recall
across all projects. Liang et al. (2019) combined word
embedding with the LSTM model for defect prediction.
The mapping table was used to map each token to real-
valued vector. The vectors and their labels were used to
build LSTM. For WPDP, the framework improved DBN,
tree-based LSTM (tb-LSTM) and Improved Subclass
Discriminant Analysis (ISDA) by 8.2, 4.3 and 8.4% on
average of F-measure, respectively. For CPDP, it improved
them by 8.5, 0.8 and 1.5% on average of F-measure,
respectively. Deng et al. (2020b) applied their LSTM
model to automatically learn semantic features from source
code. Also, Zhou and Lu (2020) introduced the Bi-LSTM
model to extract semantic features from source code.

To automatically construct meaningful vector
representations for token sequences, Li et al. (2019)
proposed the CPDP approach that focused on the
Simplified AST (S-AST). The project-independent node
type only was remained and other project-specific
information was ignored. CPDP approach was compared
with the following baselines (Li17-CNN, CamargoCruz09-
DT, Turhan09-DT, Menzies11-RF and Watanabe08-DT).
The approach improved the baselines by 3.00, 17.54, 8.77,
14.76 and 8.97%, respectively, on average AUC.

Shi et al. (2020) built their work based on code2vec,
they proposed the PathPair2Vec framework based on
Attention Mechanism. The different parts of the terminal
node were encoded. Then path pairs were applied to
identify the semantics of source code. PathPair2Vec
achieved F-measure better than DP-CNN. It exceeded DP-
CNN by 17.88%. Hoang et al. (2020) proposed the neural
network model to learn the representation of code changes.
It used the Attention Mechanism and multiple comparison
functions to identify the difference between the added and
removed code. It was applied to the following tasks: Log

message generation, bug fixing patch identification and just-
in-time defect prediction. It achieved better performance for
all the tasks. Zhang and Wu (2020) proposed the software
defect prediction via transformer. It automatically extracted
semantic features by the encoder. Then, it used scaled dot-
product attention and multi-head attention mechanism to
capture the key features. It improved CNN by 8% on average
of F-measure and improved RNN by 7%.

Humphreys and Dam (2019) solved the long

dependency problem by allowing each token to access

other tokens through only one connection with Self-

Attention. The model was compared with the model of

Wang et al. (2016). The proposed model achieved 0.666

on average of F-measure, while Song Wang et al.'s model

achieved 0.641 only. Chen et al. (2020) combined the

Self-Attention Mechanism with the Deep Transfer

Learning model. It visualized program files of source code

as images. Self-Attention Mechanism was applied to

capture the semantic features of the images. Transfer

Learning model was used to reduce the difference in

sample distributions between projects. The framework

improved TCA+, DBN, LSTM and CNN by 29.0, 8.8,

24.8 and 15.5% on average of F-measure, respectively.

To capture the key features of defects, Fan et al. (2019a)

proposed the Defect Prediction via Attention-based

Recurrent Neural Network (DP-ARNN) (Fan et al., 2019b)

and Defect Prediction via Attention Mechanism (DP-AM)

(Fan et al., 2019a) frameworks. The RNN was used to

automatically extract semantic features from source code.

Then, Attention Mechanism was used to capture the key

features. DP-ARNN improved the selected baselines by 14%

on average of F-measure and improved the average of AUC

by 7%. DP-AM improved the selected baselines by 11% on

average of F-measure. Chen et al. (2019) built their work

depending on Li et al., (2019), Attention Mechanism was

added over the Bi-LSTM layer to learn the weight of the

vectors from the learned semantic features.

To handle the problem of Time Limit Exceed (TLE),

Zhou et al. (2019) built the DeepTLE model to predict if

there were performance defects before running the test cases.

DeepTLE saved 96% of the time cost and 82% of accuracy.

Wang and Lu (2020) applied the Convolutional

Autoencoder (CAE) to learn semantic features by

decreasing the reconstruction error between input and

output. Domain Adaptation was applied for CPDP to

improve the transferability of CAE-based features.

Zhang et al. (2020) combined the Stacked Contractive

Autoencoder (SCAE) and the Multi-Objective Defect

Prediction Model (SMONGE). SCAE was used to learn

the more robust features. SMONGE was used to utilize

the multi-objective NSGAII algorithm to optimize the

Extreme Learning Machine (ELM). SCAE achieved

13.25, 21.99 and 43.39% on average of F-measure, G-

measure and MCC compared with the used feature

extraction methods. SMONGE achieved 9.09, 4.84 and

Ahmed Bahaa et al./ Journal of Computer Science 2021, 17 (5): 490.510

DOI: 10.3844/jcssp.2021.490.510

504

14.79% on average of F-measure, G-measure and MCC

compared with the used defect predictors.

Zhu et al. (2020a) proposed the just-in-time defect

prediction model based on Denoising Autoencoder (DAE)

and CNN. CNN was used to extract semantic features,

then DAE was used to learn the more robust features.

Zhu et al. (2020b) used the DAE to learn the more robust

features and DNN to learn the semantic features. The

model achieved 8.96, 34.83 and 11.35% on average of F-

measure, MCC and G-measure compared with the used

feature extraction methods. In terms of PF, it achieved a

lower value than other methods. The framework achieved

11.31, 46.55 and 15.08% on average of F-measure, MCC

and G-measure compared to the used defect predictors.

F. Number of Publications

In this SLR, 40 primary studies published in software

defect prediction that use deep learning models. After

analyzing the studies, we find that all studies have

published since 2016. Also, the number of studies is

increased over the years. Figure 13 shows the distribution

of the studies over the years.

Discussion

In this study, we have reviewed Forty primary studies

on software defect prediction using deep learning models

that were published by 15 December 2020. We provide a

summary of software defect prediction models and

identify the used datasets, framework and evaluation

metrics of the proposed models. The data are collected

from all available research studies in the selected digital

libraries. A software defect is a fault in a document, code,

software, or system that leads to producing an incorrect

behavior during execution, causing failure to be appeared.

The system that contains defects lead to many problems,

including loss of money and time of fixing defects.

Following the predefined research questions in Section

II, the first question is related to the kind of project levels that

researchers often use to build a software defect prediction

model. Within-project has applied in most of the primary

studies. However, some models achieve good performance

in within-project and bad results with cross-project. So, the

model should be applied on both within-project and cross-

project to make sure of the performance of the model.

Unfortunately, only 30% of the primary studies have applied

both of within-project and cross-project.

The second question is related to the datasets that are

often used for software defect prediction. Most of the

primary studies have applied PROMISE repository only.

However, applying many datasets and comparing the

results among them is a good indicator for the

effectiveness of the model. And also, public datasets have

some issues such as lack of data quality. Therefore, the

results of the proposed models may be inaccurate.

The third question is related to the models of deep

learning that are often used for software defect prediction.

We find that some studies use one of the deep learning

models and other studies use a combination of deep

learning models. And also, the most used deep learning

model in the primary studies is CNN. Moreover, the

hybrid models have achieved good results compared to

individual deep learning models.

The fourth question is related to the evaluation

metrics. These metrics are used to compare the proposed

model with the other selected baseline models. Most of the

primary studies have applied only one evaluation metric.

However, using set of evaluation metrics is better than using

F-measure or AUC only. We need to apply many evaluation

metrics to validate the applicability of the model. In addition

to check the performance of the proposed model.
The fifth question is related to the frameworks that

are used in software defect prediction. All the

frameworks are presented in details in section III. Each

primary study describes the steps of the proposed

model. It presents how to collect the data from the

selected datasets and also, it identifies how to extract

the semantics of the source code. Then, the proposed

model is compared with the selected baseline models to

evaluate the performance of the framework.

The last question is related to the number of

publications in software defect prediction using deep

learning models. This SLR is not limited to specific time

period. However, all the primary studies have published

since 2016. And also, the number of the studies is

increased over the years.

In this SLR, we raise several challenges related to

software defect prediction and propose the practices that

can be performed to overcome these challenges. The first

challenge is using public datasets such as PROMISE and

NASA in software defect prediction models. There are

some issues in public datasets, which can lead to poor

prediction of software defects. We recommend to apply

the techniques of data preprocessing to enhance the

quality of public datasets.

Another challenge is related to building software

defect prediction models. There are various deep learning

models that are used to make the prediction of software

defects. A few studies have applied hybrid models, which

achieve better performance and high prediction rates

compared to individual deep learning models. We need to

apply more hybrid models, such as using CNN with Bi-

LSTM. We recommend to increase the number of hybrid

models for improving software defect prediction.

And also, another challenge is related to classifying the

files of the source code as defective or clean. However, it is

better to know more information about the number of defects

and also the severity and priority of each defect.

Ahmed Bahaa et al./ Journal of Computer Science 2021, 17 (5): 490.510

DOI: 10.3844/jcssp.2021.490.510

505

Study Limitations

This SLR has some limitations. First, we have used the
predefined search string to find the relevant primary
studies on software defect prediction. And also, the studies
are related to deep learning models only. Second, the primary
studies are retrieved based on the selected digital libraries.
Moreover, English papers are selected only.

Conclusion and Future Work

This SLR aims to identify and analyze the datasets,
models, frameworks and evaluation metrics used in
software defect prediction using deep learning models. It
presents the primary studies that concentrate on extracting
semantic features of the source code. Forty primary
studies are selected to be evaluated in this SLR. This SLR
answers the six research questions that are identified in
the literature review protocol. We summarize the main
findings as follows:

 For project level, within-project was the most used in

the primary studies by 52.5%

 The most used dataset was PROMISE by 68.18%

 Most of the primary studies applied individual deep

learning models such as Convolutional Neural Network

(CNN), Recurrent Neural Network (RNN), etc. Few

research studies applied hybrid deep learning models

such as Attention Mechanism with RNN

 The most applied model was CNN by 35%

 F-measure and Area Under the Curve (AUC) were

the most used evaluation metrics

 The summary of the primary studies is shown in Table

11. Also, the map of the primary studies that is designed

by VOSviewer tool. The map is shown in Fig. 14.

"VOSviewer offers text mining functionality that can be

used to construct and visualize co-occurrence networks

of important terms extracted from a body of scientific

literature (VOSviewer, 2020)"

Table 11: Summary of the primary studies

Study Authors Journal / Conference Project level Datasets Model Evaluation metrics Framework Year

St1 Deng et al. IEEE ACCESS Cross PROMISE CNN F-measure MK-TCNN 2020a

St2 Cai et al. IEEE ACCESS Cross PROMISE CNN AUC TBCNN-THFL 2019
St3 Sheng et al. IEEE ACCESS Cross PROMISE CNN F-measure, AUC, PofB20 ADCNN 2020

St4 Meilong et al. Hindawi Mathematical Within PROMISE CNN F-measure SDP-S2S 2020

 Problems in Engineering

St5 Humphreys International Workshop on Within PROMISE AM Precision, Recall, Self-attention 2019

 and Dam Realizing Artificial Intelligence F-measure, AUC Transformer Encoder

 Synergies in Software Engineering

St6 Pan et al. MDPI applied sciences Within PROMISE CNN F-measure, G-measure, MCC Improved CNN 2019

St7 Phan et al. Data and Knowledge Engineering Within pedagogical open CNN Accuracy TBCNN 2017

 judge (OJ) system

St8 Wang et al. IEEE International Conference Within and Cross PROMISE DBN Precision, Recall, F-measure DBN Model 2016

 on Software Engineering
St9 Nivetha and Kavitha International Journal of Within C# projects Bi-RNN Precision, Recall, F-measure, RNNLM 2019

 Engineering and Advanced AUC

 Technology

St10 Phan et al. Asia Pacific Symposium on Within CodeChef projects CNN Accuracy, F-measure, AUC ASCNN 2017

 Intelligent and Evolutionary

 Systems

St11 Phan et al. International Conference on Within CodeChef projects CNN Accuracy, AUC DGCNN 2017

 Tools with Artificial Intelligence

St12 Li et al. International Joint Conference Cross PROMISE Bi-LSTM AUC CPDP Approach 2019

 on Neural Networks

St13 Qiu et al. DOI reference number: Cross PROMISE CNN MCC CNN-THFL 2019a

 10.18293/SEKE2019-070
St14 Wang et al. IEEE Transactions on Within & Cross PROMISE DBN Precision, Recall, F-measure DBN-based Feature 2018

 Software Engineering Generation

St15 Fan et al. Asia-Pacific Software Within PROMISE AM and RNN F-measure DP-AM 2019a

 Engineering Conference

St16 Chen et al. IEEE ACCESS Cross PROMISE AM & Bi- LSTM AUC DeepCPDP 2019

St17 Zhou et al. Asia-Pacific Software Within Codeforces projects AM & Bi-LSTM Accuracy, Recall, F-measure DeepTLE 2019

 Engineering Conference

St18 Phan et al. Neural Networks Within CodeChef projects CNN Accuracy, F-measure, AUC DGCNN 2018a

St19 Wen et al. IEEE Transactions on Software Engineering Within PROMISE RNN Precision, Recall, F-measure, AUC FENCES 2018

St20 Huo et al. IEEE International Conference Within and Cross PROMISE CNN F-measure CAP-CNN 2018

 on Data Mining
St21 Dam et al. 2019 IEEE/ACM International Within & Cross PROMISE LSTM Precision, Recall, F-measure, AUC Deep Tree-based LSTM 2019

 Conference on Mining Software Repositories

St22 Shi et al. Journal of Computer Languages Within & Cross PROMISE AM F-measure PathPair2Vec 2020

St23 Hongliang et al. IEEE ACCESS Within & Cross PROMISE and LSTM Precision, Recall, F-measure Seml 2019

 GitHub projects

St24 Fan et al. Hindawi Scientific Programming Within PROMISE AM and RNN F-measure, AUC DP-ARNN 2019b

St25 Li et al. International Conference on Software Within PROMISE CNN F measure DP-CNN 2017

 Quality, Reliability and Security

St26 Deng et al. IET Software Within PROMISE LSTM F measure DP-LSTM 2020b

St27 Zhang and Wu Information Technology Networking Within PROMISE AM F-measure DP-Transformer 2020

 Electronic and Automation Control

 Conference
St28 Tian and Tian National Natural Science Within and Cross PROMISE RNN Precision, Recall, F-measure Model based on 2020

 Foundation of China, IEEE program slice

St29 Zhu et al. IET Software Within and Cross Open-source projects AE and CNN Accuracy, Precision, Recall, DAECNN-JDP 2020a

 F-measure, PofB20

St30 Fan et al. IEEE International Conference on Within Android projects DBN AUC HIRER 2018

 Computer Software & Applications

St31 Zhang et al. IEEE International Conference on Within PROMISE RNN Precision, Recall, F-measure, AUC DefectLearner 2018a

 Software Quality, Reliability and Security

St32 Qiu et al. Applied Sciences Cross PROMISE CNN F-measure TCNN 2019b

St33 Wang and Lu DOI reference number: Within & Cross PROMISE AE F-measure SCAE 2020

 10.18293/SEKE2020-036
St34 Chen et al. ICSE 2020, ACM Within & Cross PROMISE AM F-measure DTL-DP 2020

St35 Zhu et al. Computers, Materials & Continua Within PROMISE and AE and DNN F-measure, MCC, PF, G-measure SL-Isomap and DLDD 2020b

 NASA projects

St36 Zhang et al. Computers, Materials & Continua Within PROMISE and AE F-measure, G-measure, PF, MCC SCAE & SMONGE 2020

 NASA projects

St37 Dong et al. Wireless Pers Commun, Springer Within & Cross Android projects DNN AUC Smali2vec 2017

St38 Zhou and Lu International Conference on Software Within PROMISE Bi-LSTM AUC, MCC LSTM-BT 2020

 Quality, Reliability and Security Within and Cross PROMISE and CNN F-measure MPT-embedding 2020

St39 Shi et al. Software: Evolution and Process AEEEM projects

St40 Hoang et al. arXiv, ACM Within Open-source projects AM AUC CC2Vec 2020

Ahmed Bahaa et al./ Journal of Computer Science 2021, 17 (5): 490.510

DOI: 10.3844/jcssp.2021.490.510

506

Fig. 14: The map of the primary studies

For future studies on software defect prediction using

deep learning models, the following are recommended:

 The hybrid deep learning models achieve good

results compared to the individual models. There are

some hybrid models can be applied in the future such

as CNN with Bi-LSTM. CNN can capture the

semantics of the source code more effectively and Bi-

LSTM can detect the information of long-term

dependencies

 More data preprocessing techniques should be

applied to improve the quality of public datasets

 Recently, most of the organizations apply the agile

methodology. Therefore, deep learning models

should be applied for the agile methodology

Author’s Contributions

Ahmed Bahaa: Reviewing, supervising, revising

manuscript contents and editing manuscript.

Enas Mohamed Fathy: Collecting,

synthesizingrelevant literature, and drafting

manuscript contents.

Ahmed Sharaf Eldin: Supervising manuscript contents.

Laila A. Abd-Elmegid: Reviewing, supervising and

revising manuscript contents.

Ethics

We confirm that we have read and approved the

manuscript and no ethical issues involved.

References

Olsen, K. (2019). International Software Testing

Qualifications Board. Certified Tester, Foundation

Level, Version.

Boughorbel, S., Jarray, F., & El-Anbari, M. (2017). Optimal

classifier for imbalanced data using Matthews

Correlation Coefficient metric. PloS One, 12, e0177678.

https://doi.org/10.1371/journal.pone.0177678

Cai, Z., Lu, L., & Qiu, S. (2019). An abstract syntax

tree encoding method for cross-project defect

prediction. IEEE Access, 7, 170844-170853.

https://doi.org/10.1109/ACCESS.2019.2953696

Chen, D., Chen, X., Li, H., Xie, J., & Mu, Y. (2019).

Deepcpdp: Deep learning based cross-project defect

prediction. IEEE Access, 7, 184832-184848.

https://doi.org/10.1109/ACCESS.2019.2961129

Chen, J., Hu, K., Yu, Y., Chen, Z., Xuan, Q., Liu, Y., &

Filkov, V. (2020, June). Software visualization and deep

transfer learning for effective software defect prediction.

In Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering (pp. 578-589).

 https://doi.org/10.1145/3377811.3380389

Ahmed Bahaa et al./ Journal of Computer Science 2021, 17 (5): 490.510

DOI: 10.3844/jcssp.2021.490.510

507

Dahou, A., Elaziz, M. A., Zhou, J., & Xiong, S. (2019).

Arabic sentiment classification using convolutional

neural network and differential evolution algorithm.

Computational Intelligence and Neuroscience, 2019.

https://doi.org/10.1155/2019/2537689

Dam, H. K., Pham, T., Ng, S. W., Tran, T., Grundy, J.,

Ghose, A., ... & Kim, C. J. (2019, May). Lessons

learned from using a deep tree-based model for

software defect prediction in practice. In 2019

IEEE/ACM 16th International Conference on Mining

Software Repositories (MSR) (pp. 46-57). IEEE.

https://ieeexplore.ieee.org/abstract/document/8816787/

Deng, J., Lu, L., & Qiu, S. (2020a). Software defect

prediction via LSTM. IET Software, 14(4), 443-450.

https://doi.org/10.1049/iet-sen.2019.0149

Deng, J., Lu, L., Qiu, S., & Ou, Y. (2020b). A Suitable

AST Node Granularity and Multi-Kernel Transfer

Convolutional Neural Network for Cross-Project

Defect Prediction. IEEE Access, 8, 66647-66661.

https://doi.org/10.1109/ACCESS.2020.2985780

Dey, R., & Salem, F. M. (2017, August). Gate-variants of

gated recurrent unit (GRU) neural networks. In 2017

IEEE 60th international midwest symposium on circuits

and systems (MWSCAS) (pp. 1597-1600). IEEE.

https://doi.org/10.1109/MWSCAS.2017.8053243

Dong, F., Wang, J., Li, Q., Xu, G., & Zhang, S. (2018).

Defect prediction in android binary executables using

deep neural network. Wireless Personal

Communications, 102(3), 2261-2285.

https://doi.org/10.1007/s11277-017-5069-3

Fan, G., Diao, X., Yu, H., Yang, K., & Chen, L. (2019a).

Software defect prediction via attention-based

recurrent neural network. Scientific Programming,

2019. https://doi.org/10.1155/2019/6230953

Fan, G., Diao, X., Yu, H., Yang, K., & Chen, L. (2019b,

December). Deep Semantic Feature Learning with

Embedded Static Metrics for Software Defect

Prediction. In 2019 26th Asia-Pacific Software

Engineering Conference (APSEC) (pp. 244-251). IEEE.

https://ieeexplore.ieee.org/abstract/document/8946058/

Fan, Y., Cao, X., Xu, J., Xu, S., & Yang, H. (2018,

July). High-Frequency Keywords to Predict

Defects for Android Applications. In 2018 IEEE

42nd Annual Computer Software and Applications

Conference (COMPSAC) (Vol. 2, pp. 442-447). IEEE.

https://ieeexplore.ieee.org/abstract/document/837

7901/

Felix, E. A., & Lee, S. P. (2020). Predicting the number

of defects in a new software version. PloS One, 15(3),

e0229131.

https://journals.plos.org/plosone/article?id=10.1371/

journal.pone.0229131

Ferenc, R., Tóth, Z., Ladányi, G., Siket, I., & Gyimóthy,

T. (2018, October). A public unified bug dataset for

Java. In Proceedings of the 14th International

Conference on Predictive Models and Data Analytics

in Software Engineering (pp. 12-21).

 https://doi.org/10.1145/3273934.3273936

Hammouri, A., Hammad, M., Alnabhan, M., &

Alsarayrah, F. (2018). Software bug prediction

using machine learning approach. International

Journal of Advanced Computer Science and

Applications, 9(2), 78-83.

 https://doi.org/10.14569/IJACSA.2018.090212

Herbold, S., Trautsch, A., & Grabowski, J. (2017). A

comparative study to benchmark cross-project defect

prediction approaches. IEEE Transactions on

Software Engineering, 44(9), 811-833.

https://doi.org/10.1145/3180155.3182542

Hoang, T., Kang, H. J., Lo, D., & Lawall, J. (2020,

June). CC2Vec: Distributed representations of

code changes. In Proceedings of the ACM/IEEE

42nd International Conference on Software

Engineering (pp. 518-529).

 https://doi.org/10.1145/3377811.3380361

Hosseini, S., Turhan, B., & Gunarathna, D. (2017). A

systematic literature review and meta-analysis on

cross project defect prediction. IEEE Transactions

on Software Engineering, 45(2), 111-147.

https://ieeexplore.ieee.org/abstract/document/809

7045

Huang, X., Zhang, H., Zhou, X., Babar, M. A., & Yang,

S. (2018, May). Synthesizing qualitative research in

software engineering: A critical review. In

Proceedings of the 40th International Conference on

Software Engineering (pp. 1207-1218).

https://doi.org/10.1145/3180155.3180235

Humphreys, J., & Dam, H. K. (2019, May). An

explainable deep model for defect prediction. In 2019

IEEE/ACM 7th International Workshop on Realizing

Artificial Intelligence Synergies in Software

Engineering (RAISE) (pp. 49-55). IEEE.

https://doi.org/10.1109/RAISE.2019.00016

Huo, X., Yang, Y., Li, M., & Zhan, D. C. (2018,

November). Learning semantic features for software

defect prediction by code comments embedding. In

2018 IEEE International Conference on Data Mining

(ICDM) (pp. 1049-1054). IEEE.

https://doi.org/10.1109/ICDM.2018.00133

Jiang, T., Tan, L., & Kim, S. (2013, November).

Personalized defect prediction. In 2013 28th

IEEE/ACM International Conference on Automated

Software Engineering (ASE) (pp. 279-289). IEEE.

https://doi.org/10.1109/ASE.2013.6693087

Ahmed Bahaa et al./ Journal of Computer Science 2021, 17 (5): 490.510

DOI: 10.3844/jcssp.2021.490.510

508

Kanuparthi, A., Rajendran, J., & Karri, R. (2016, May).

Controlling your control flow graph. In 2016 IEEE

International Symposium on Hardware Oriented

Security and Trust (HOST) (pp. 43-48). IEEE.

https://doi.org/10.1109/HST.2016.7495554

Li, H., Li, X., Chen, X., Xie, X., Mu, Y., & Feng, Z.

(2019, July). Cross-project Defect Prediction via

ASTToken2Vec and BLSTM-based Neural Network.

In 2019 International Joint Conference on Neural

Networks (IJCNN) (pp. 1-8). IEEE.

https://ieeexplore.ieee.org/abstract/document/8852135/

Li, J., He, P., Zhu, J., & Lyu, M. R. (2017, July).

Software defect prediction via convolutional

neural network. In 2017 IEEE International

Conference on Software Quality, Reliability and

Security (QRS) (pp. 318-328). IEEE.

Li, Z., & Liu, G. (2018, December). Optimizing attention

mechanism for neural machine transltion. In 2018

IEEE 4th International Conference on Computer and

Communications (ICCC) (pp. 2398-2404). IEEE.

https://ieeexplore.ieee.org/abstract/document/8780734/

Li, Z., Jing, X. Y., & Zhu, X. (2018). Progress on

approaches to software defect prediction. IET

Software, 12(3), 161-175.

 https://doi.org/10.1049/iet-sen.2017.0148

Liang, H., Yu, Y., Jiang, L., & Xie, Z. (2019). Seml: A

semantic lstm model for software defect prediction.

IEEE Access, 7, 83812-83824.

 https://doi.org/10.1109/ACCESS.2019.2925313

Lin, G., Zhang, J., Luo, W., Pan, L., Xiang, Y., De Vel,

O., & Montague, P. (2018). Cross-project transfer

representation learning for vulnerable function

discovery. IEEE Transactions on Industrial

Informatics, 14(7), 3289-3297.

 https://ieeexplore.ieee.org/abstract/document/8329207

Meilong, S., He, P., Xiao, H., Li, H., & Zeng, C. (2020).

An Approach to Semantic and Structural Features

Learning for Software Defect Prediction.

Mathematical Problems in Engineering, 2020.

https://doi.org/10.1155/2020/6038619

Nam, J., Pan, S. J., & Kim, S. (2013, May). Transfer

defect learning. In 2013 35th international conference

on software engineering (ICSE) (pp. 382-391). IEEE.

https://ieeexplore.ieee.org/abstract/document/6606584/

Nivetha. R., & Kavitha, S. (2019). Bidirectional

Recurrent Neural Network Language Model: Cross

Entropy Churn Metrics for Defect Prediction

Modelling. International Journal of Engineering and

Advanced Technology, pp, 2792-2800.

https://doi.org/10.35940/ijeat.F8859.088619

Okoli, C. (2015). A guide to conducting a standalone

systematic literature review. Communications of the

Association for Information Systems, 37(1), 43.

https://doi.org/10.17705/1CAIS.03743

Pan, C., Lu, M., Xu, B., & Gao, H. (2019). An improved

CNN model for within-project software defect

prediction. Applied Sciences, 9(10), 2138.

https://doi.org/10.3390/app9102138

Phan, A. V., & Le Nguyen, M. (2017, November).

Convolutional neural networks on assembly code for

predicting software defects. In 2017 21st Asia Pacific

Symposium on Intelligent and Evolutionary Systems

(IES) (pp. 37-42). IEEE.

 https://doi.org/10.1109/IESYS.2017.8233558

Phan, A. V., Chau, P. N., Le Nguyen, M., & Bui, L. T.

(2018a). Automatically classifying source code using

tree-based approaches. Data & Knowledge

Engineering, 114, 12-25.

 https://doi.org/10.1016/j.datak.2017.07.003

 IEEE. https://doi.org/10.1109/ICTAI.2017.00019

Phan, A. V., Le Nguyen, M., Nguyen, Y. L. H., & Bui,

L. T. (2018b). Dgcnn: A convolutional neural

network over large-scale labeled graphs. Neural

Networks, 108, 533-543.

 https://doi.org/10.1016/j.neunet.2018.09.001

Phan, A. V., Le Nguyen, M., & Bui, L. T. (2017,

November). Convolutional neural networks over

control flow graphs for software defect prediction. In

2017 IEEE 29th International Conference on Tools

with Artificial Intelligence (ICTAI) (pp. 45-52).

Qiu, S., Lu, L., Cai, Z., & Jiang, S. (2019). Cross-Project

Defect Prediction via Transferable Deep Learning-

Generated and Handcrafted Features. In SEKE (pp.

431-552).

Qiu, S., Xu, H., Deng, J., Jiang, S., & Lu, L. (2019).

Transfer convolutional neural network for cross-

project defect prediction. Applied Sciences, 9(13),

2660. https://www.mdpi.com/2076-3417/9/13/2660

Sabir, F., Palma, F., Rasool, G., Guéhéneuc, Y. G., &

Moha, N. (2019). A systematic literature review on

the detection of smells and their evolution in object‐

oriented and service‐oriented systems. Software:

Practice and Experience, 49(1), 3-39.

https://doi.org/10.1002/spe.2639

Samir, M., El-Ramly, M., & Kamel, A. (2019, November).

Investigating the Use of Deep Neural Networks for

Software Defect Prediction. In 2019 IEEE/ACS 16th

International Conference on Computer Systems and

Applications (AICCSA) (pp. 1-6). IEEE.

https://doi.org/10.1109/AICCSA47632.2019.9035240

Sheng, L., Lu, L., & Lin, J. (2020). An adversarial

discriminative convolutional neural network for cross-

project defect prediction. IEEE Access, 8, 55241-55253.

https://doi.org/10.1109/ACCESS.2020.2981869

Shi, K., Lu, Y., Chang, J., & Wei, Z. (2020).

PathPair2Vec: An AST path pair-based code

representation method for defect prediction. Journal

of Computer Languages, 59, 100979.

https://doi.org/10.1016/j.cola.2020.100979

Ahmed Bahaa et al./ Journal of Computer Science 2021, 17 (5): 490.510

DOI: 10.3844/jcssp.2021.490.510

509

Shi, K., Lu, Y., Liu, G., Wei, Z., & Chang, J. (2021).

MPT‐embedding: An unsupervised representation

learning of code for software defect prediction.

Journal of Software: Evolution and Process, 33(4),

e2330. https://doi.org/10.1002/smr.2330

Staudemeyer, R. C., & Morris, E. R. (2019). Understanding

LSTM--a tutorial into Long Short-Term Memory

Recurrent Neural Networks. arXiv preprint

arXiv:1909.09586.https://arxiv.org/abs/1909.09586

Tan, M., Tan, L., Dara, S., & Mayeux, C. (2015, May).

Online defect prediction for imbalanced data. In 2015

IEEE/ACM 37th IEEE International Conference on

Software Engineering (Vol. 2, pp. 99-108). IEEE.

https://doi.org/10.1109/ICSE.2015.139

Tantithamthavorn, C., McIntosh, S., Hassan, A. E.,

&Matsumoto, K. (2018). The impact of automated

parameter optimization on defect prediction

models. IEEE Transactions on Software

Engineering, 45(7), 683-711.

 https://ieeexplore.ieee.org/abstract/document/8263202/

Tian, J., & Tian, Y. (2020, August). A Model Based on

Program Slice and Deep Learning for Software

Defect Prediction. In 2020 29th International

Conference on Computer Communications and

Networks (ICCCN) (pp. 1-6). IEEE.

https://doi.org/10.1109/ICCCN49398.2020.9209658

Tong, H., Liu, B., & Wang, S. (2018). Software defect

prediction using stacked denoising autoencoders and

two-stage ensemble learning. Information and

Software Technology, 96, 94-111.

https://doi.org/10.1016/j.infsof.2017.11.008

Torres-Carrión, P. V., González-González, C. S., Aciar,

S., & Rodríguez-Morales, G. (2018, April).

Methodology for systematic literature review applied

to engineering and education. In 2018 IEEE Global

Engineering Education Conference (EDUCON) (pp.

1364-1373). IEEE.

 https://doi.org/10.1109/EDUCON.2018.8363388

VOSviewer. (2020). VOSviewer scientific landscapes.

https://www.vosviewer.com/

Wahono, R. S. (2015). A systematic literature review of

software defect prediction. Journal of Software

Engineering, 1(1), 1-16. ISSN-10: 2356-3974.

Wang, S., Liu, T., & Tan, L. (2016, May). Automatically

learning semantic features for defect prediction. In

2016 IEEE/ACM 38th International Conference on

Software Engineering (ICSE) (pp. 297-308). IEEE.

https://doi.org/10.1145/2884781.2884804
Wang, S., Liu, T., Nam, J., & Tan, L. (2018). Deep

semantic feature learning for software defect
prediction. IEEE Transactions on Software
Engineering, 46(12), 1267-1293.

Wang, Z., & Lu, L. (2020). A Semantic Convolutional
Auto-Encoder Model for Software Defect Prediction,
Reference Number, pp. 1-6, 2020.
https://doi.org/10.18293/SEKE2020-036

Wen, M., Wu, R., & Cheung, S. C. (2018). How well do

change sequences predict defects? sequence learning

from software changes. IEEE Transactions on

Software Engineering, 46(11), 1155-1175.

Yang, X., Lo, D., Xia, X., Zhang, Y., & Sun, J. (2015,

August). Deep learning for just-in-time defect

prediction. In 2015 IEEE International Conference on

Software Quality, Reliability and Security (pp. 17-26).

IEEE. https://doi.org/10.1109/QRS.2015.14

Yuan, X., Gu, Y., & Wang, Y. (2020). Supervised deep

belief network for quality prediction in industrial

processes. IEEE Transactions on Instrumentation and

Measurement, 70, 1-11.

 https://doi.org/10.1109/TIM.2020.3035464

Zhang, N., Zhu, K., Ying, S., & Wang, X. (2020). Software

defect prediction based on stacked contractive

autoencoder and multi-objective optimization.

Computers, Materials and Continua, 65(1), 279-308.

https://doi.org/10.32604/cmc.2020.011001

Zhang, Q., & Wu, B. (2020, June). Software Defect

Prediction via Transformer. In 2020 IEEE 4th

Information Technology, Networking, Electronic and

Automation Control Conference (ITNEC) (Vol. 1,

pp. 874-879). IEEE.

 https://doi.org/10.1109/ITNEC48623.2020.9084745

Zhang, X., Ben, K., & Zeng, J. (2018a, July). Cross-

entropy: A new metric for software defect

prediction. In 2018 IEEE International Conference

on Software Quality, Reliability and Security

(QRS) (pp. 111-122). IEEE.

 https://doi.org/10.1109/QRS.2018.00025

Zhang, Y., Lo, D., Xia, X., & Sun, J. (2018b). Combined

classifier for cross-project defect prediction: an

extended empirical study. Frontiers of Computer

Science, 12(2), 280-296.

 https://doi.org/10.1007/s11704-017-6015-y

Zhou, M., Chen, J., Hu, H., Yu, J., Li, Z., & Hu, H. (2019,

December). Deeptle: Learning code-level features to

predict code performance before it runs. In 2019 26th

Asia-Pacific Software Engineering Conference

(APSEC) (pp. 252-259). IEEE.

 https://doi.org/10.1109/APSEC48747.2019.00042

Zhou, X., & Lu, L. (2020, December). Defect

Prediction via LSTM Based on Sequence and Tree

Structure. In 2020 IEEE 20th International

Conference on Software Quality, Reliability and

Security (QRS) (pp. 366-373). IEEE.

https://doi.org/10.1109/QRS51102.2020.00055

Zhu, K., Zhang, N., Ying, S., & Zhu, D. (2020A).

Within-project and cross-project just-in-time

defect prediction based on denoising autoencoder

and convolutional neural network. IET Software,

14(3), 185-195. https://doi.org/10.1049/iet-

sen.2019.0278

https://www.vosviewer.com/

Ahmed Bahaa et al./ Journal of Computer Science 2021, 17 (5): 490.510

DOI: 10.3844/jcssp.2021.490.510

510

Zhu, K., Zhang, N., Zhang, Q., Ying, S., & Wang, X.

(2020B). Software defect prediction based on non-

linear manifold learning and hybrid deep learning

techniques. Computers, Materials and Continua,

65(2), 1467-1486.

 https://doi.org/10.32604/cmc.2020.011415

Zhu, Y., Yin, D., Gan, Y., Rui, L., & Xia, G. (2019, May).

Software Defect Prediction Model Based on Stacked

Denoising Auto-Encoder. In International Conference

on Artificial Intelligence for Communications and

Networks (pp. 18-27). Springer, Cham.

https://doi.org/10.1007/978-3-030-22971-9_2

