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Abstract: Using Natural Language (NL) to interacting with relational 

databases allows users from any background to easily query and analyze 

large amounts of data. This requires a system that understands user 

questions and automatically converts them into structured query language 

such as SQL. The best performing Text-to-SQL systems use supervised 

learning (usually formulated as a classification problem) by approaching 

this task as a sketch-based slot-filling problem, or by first converting 

questions into an Intermediate Logical Form (ILF) then convert it to the 

corresponding SQL query. However, non-supervised modeling that 

directly converts questions to SQL queries has proven more difficult. In 

this sense, we propose an approach to directly translate NL questions into 

SQL statements. In this study, we present a Sequence-to-Sequence 

(Seq2Seq) parsing model for the NL to SQL task, powered by the 

Transformers Architecture exploring the two Language Models (LM): 

Text-To-Text Transfer Transformer (T5) and the Multilingual pre-trained 

Text-To-Text Transformer (mT5). Besides, we adopt the transformation-

based learning algorithm to update the aggregation predictions based on 

association rules. The resulting model achieves a new state-of-the-art on the 

WikiSQL DataSet, for the weakly supervised SQL generation. 

 

Keywords: SQL, Text-to-SQL, Sequence-to-Sequence, Transformers 

Architecture, Multilingual Pre-Trained Text-To-Text Transformer, WikiSQL 

 

Introduction 

Semantic Parsing (SP) is one of the most important 

tasks in NLP, it requires both understanding the meaning 

of Natural Language (NL) sentences and mapping them to 

formal meaning representations (Zelle and Mooney, 1996; 

Panait and Luke, 2005; Clarke et al., 2010; Liang et al., 

2011) often to machine-executable programs, for a 

range of tasks such as question-answering (Yih et al., 

2014), robotic control (Matuszek et al., 2013) and 

intelligent tutoring systems (Graesser et al., 2005). As 

a sub-area of SP, we address the problem of mapping 

natural language utterances to executable relational DB 

queries, which is known to be difficult due to the 

flexibility and ambiguity in natural language and the 

complexity of relational databases. 

In database areas (Androutsopoulos et al., 1995; 

Popescu et al., 2003; Affolter et al., 2019), the general 

problem was known as “Natural Language Interface to 

Databases (NLIDBs)”, in particular, we are interested in 

translate natural language questions to SQL, due to the 

popularity of SQL as the domain-specific language used 

to query and manage data stored in most available 

relational databases (Ramakrsihnan et al., 1998). Despite 

the importance of the task, researchers have recently 

appeared to approach Deep Learning (DL) methods for 

the crucial problem of NLIDBs.  

Translating an NL to SQL is often referenced as “NL-

to-SQL” or “Text-to-SQL” (Xu et al., 2017; Zhong et al., 

2017; Shi et al., 2018; Yu et al., 2018; He et al., 2019; 

Hwang et al., 2019; Guo et al., 2019). Almost all works 

operated on achieving good results on well-known Text-

to-SQL benchmarks such as ATIS, GeoQuery and 

WikiSQL (Xu et al., 2017; Shi et al., 2018; Dong and 

Lapata, 2018; Hwang et al., 2019; He et al., 2019).  
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In this study, we treat the Text-to-SQL task with 

WikiSQL11 (Zhong et al., 2017). This DataSet is the first 

large-scale dataset for Text-to-SQL, with about 80 K 

human-annotated pairs of Natural Language question and 

SQL query. WikiSQL is very challenging because tables 

and questions are very diverse. This DataSet contains 

about 24K different tables.  

There are two leaderboards for the WikiSQL 

challenge: Weakly supervised (without using logical form 

during training) and supervised (with logical form during 

training). On the supervised challenge, there are two 

results: Those with Execution Guided (EG) inference and 

those without EG inference.  

The previous state-of-the-art weakly supervised model 

SeqGenSQL+EG (Li et al., 2020) achieved 90.5% 

execution accuracy on the test DataSet. On the supervised 

challenge, IE-SQL (Ma et al., 2020) achieves 87.8% 

execution accuracy without EG inference on the test 

dataset and 92.5% execution accuracy with EG inference. 

In this study, we are interested only in a weakly 

supervised challenge with execution accuracy as a metric.  

In this study, we revisit the Seq2Seq approach, but this 

time powered by the transformers architecture, precisely 

using T5 (Raffel et al., 2019) and mT5 (Xue et al., 2020) 

language models. The preliminary results show that the 

prediction of the Aggregation function (AGG) decreases 

the performance of the model, which brings us to adopt 

the learning algorithm based on the transformation 

inspired by (Brill, 1995), to update the aggregation 

predictions based on association rules, which improve the 

AGG prediction and the whole model's results.  

We organize our paper as follows: In section 2 we review 

the related work. In section 3 we formulate the problem of 

Text-to-SQL and describe the WikiSQL DataSet in more 

detail. In section 4, we describe our methods, then we present 

the obtained results in section 5. After that, in section 6 we 

analyze and discuss some errors to improve and finally, we 

draw the conclusion and future work. 

Related Work  

Building natural Language Interfaces for Databases 

(NLIDBs) has been a significant challenge in the SP 

area. Old works (Warren and Pereira, 1982; 

Androutsopoulos et al., 1995; Popescu et al., 2004) 

focused on rule-based approaches with handcrafted 

features, then later systems enabled users to query the 

databases with simple keywords (Simitsis et al., 2008; 

Blunschi et al., 2012; Bast and Haussmann, 2015).  

The next step was to enable the processing of more 

complex NL questions by applying a pattern-based 

approach (Popescu et al., 2004; Zheng et al., 2017).  

Moreover, to improve the precision of natural language 

interfaces, grammar-based approaches were introduced by 

                                                           
1 https://github.com/salesforce/WikiSQL 

restricting users to formulate queries according to certain 

pre-defined rules (Song et al., 2015; Ferré, 2017).  

In recent works, that operated on WikiSQL DataSet 

for training and evaluation; many approaches share a 

similar encoder-decoder architecture. In this case, 

information from both the NL and table schema is 

encoded into a hidden representation by the encoder. 

Some of those works encode the question with each 

column name separately (Xu et al., 2017; Yu et al., 2018; 

Hwang et al., 2019) and other choose encoding the 

concatenation of the question with columns name    

(Zhong et al., 2017; Dong and Lapata, 2018; Chang et al., 

2020; Hwang et al., 2019; He et al., 2019).  

There are also some works that do both at different layers 

(Hwang et al., 2019; He et al., 2019). Then the hidden 

representation is decoded with a decoder to a SQL query.  

Some early work tried the seq2seq architecture, one 

step decoding (Zhong et al., 2017; Dong and Lapata, 

2018), by using advanced Neural Network (NN) 

architectures to synthesize SQL queries given a user 

question, precisely the use of a classical encoder-decoder 

architecture based on Recurrent Neural Network (RNN) 

with Long Short-Term Memory (LSTM). However, it is 

found challenging in output syntax. 

Later more works treat the Text-to-SQL as a 

classification problem by approaching this task as a 

sketch-based slot-filling and predicting several parts of 

the SQL query like SELECT column, WHERE column, 

WHERE operator, WHERE value, etc. (Xu et al., 2017; 

Yu et al., 2018; Hwang et al., 2019; He et al., 2019). That 

way, the chance of output syntax problems is reduced.  

Then most new works is how to leverage pre-trained 

language models (Devlin et al., 2018; Liu et al., 2019b; 

Yang et al., 2019; Liu et al., 2019a) and get very good 

results (He et al., 2019; Hwang et al., 2019).  

“Hybrid Ranking Network” (Lyu et al., 2020), is an 

example of a model which also based on a 

BERT/RoBERTa pre-trained model and achieved 92% 

execution accuracy using an annotated logical form and 

EG inference predictions returning empty results will be 

dropped and the next most probable prediction is chosen.  

The previous state-of-the-art model on the weakly-

supervised challenge “SeqGenSQL” on which we are 

inspired in this study, also based on a pre-trained T5 model, 

exploring the use of increasing questions with table schema 

information (column name, type and database content) and 

the use of automatically augmented training data.  

Text-to-SQL Task  

Task Definition  

The specific semantic parsing problem we study in this 

study is to map a natural language question to a SQL 
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query, which can be executed in a given DB to find the 

answer to the original question. In particular, we use the 

currently cross-domain largest natural language questions 

to SQL DataSet “WikiSQL” (described with more details 

in the next paragraph) to evaluate our model.  

DataSet  

We operate on WikiSQL (Zhong et al., 2017), a 

DataSet for Text-to-SQL task which contains a 

collection of questions, corresponding SQL queries and 

SQL tables. This is the largest hand-annotated Semantic 

Analysis DataSet to date, it is larger than other DataSets 

that have logical shapes, either in terms of the number of 

tables or number of examples. It provides tree sets: 

Train, dev and test set.  

The WikiSQL dataset consists of 80,654 pairs of SQL 

questions and queries spread across 24,241 Wikipedia 

tables. Besides the question in NL, the entry also contains 

a unique table schema. Each table is present in a single 

set, train, development or test, which forces models to 

generalize to invisible tables. The SQL structure of the 

WikiSQL dataset queries is restricted and always follows 

the sketch in “Fig. 1”. 

$COLUMN is a single table column and $AGG is an 

aggregator function (empty, COUNT, SUM, MAX, MIN, 

AVG). The WHERE segment is a sequence of conditions. 

Each $OP is a filtering operator (=, <, >) and the filtering 

value $VALUE is mentioned in the question. Although 

the DataSet ships with a “standard” linear order of 

conditions, the order is irrelevant given the semantics of 

the WHERE clause (the semantic of “AND”). Figure 2 

gives an example from the DataSet.  

 

 
 
Fig. 1: SQL Sketch. The tokens starting with “$” are slots to fill. 

“*” indicates zero or more AND clauses  

 

 
 
Fig. 2: Example of WikiSQL DataSet. For given questions and 

table headers, the model generates corresponding SQL 

query and retrieves the answer from the table 

Methods 

We use the original T5&mT5 pre-trained models as 

our Seq2Seq baseline model.  

We notice that the following described methods are 

generic and can be used for any DataSet handling the 

Text-to-SQL task.  

Input Representation  

Given a question Q and a table schema T with columns 
name C1, C2, …, Cn, we form the input sequence as follow: 
 

              1     BOS Q SEP C SEP SEP Cn EOS  

 
where, [BOS] and [EOS] denote the beginning and the 

end of the input sequence respectively and [SEP] denotes 
the separator between columns name.  

Preprocessing  

We only transformed all DataSet text to lowercase 
format and store the input and the output sequences as 
Tab-Separated Values in TSV files, the format required 
for fine-tuning T5&mT5 (we notice that the original 
format of WikiSQL DataSet files is JSON).  

T5&mT5 Fine-Tuning  

In recent years, Transfer Learning (TL) has led to a 

new wave of cutting-edge results in Natural Language 

Processing (NLP). The power of TL comes from pre-

training a model on abundantly available unlabeled text 

data with a self-supervised task. After that, the model can 

be refined on smaller labeled data sets, which often results 

in (much) better performance than training on the labeled 

data alone. The recent success of transfer learning was 

sparked in 2018 by ULMFiT (Howard and Ruder, 2018), 

ELMo (Peters et al., 2018) and BERT. The 2019 year saw 

the development of a wide variety of new methods like 

GPT (Radford et al., 2019), XLNet (Yang et al., 2019), 

RoBERTa, ALBERT (Lan et al., 2019), Reformer and 

MT-DNN (Liu et al., 2019a). The pace of progress on the 

ground has made it difficult to assess the most significant 

improvements and their effectiveness when combined.  

In this sense, we used T5 (for Text-to-Text Transfert 

Transformer), a language model pre-trained on Colossal 

Clean Crawled Corpus (C4). This model achieves top results 

on many NLP benchmarks while being flexible enough to be 

fine-tuned for a variety of important downstream tasks. We 

fine-tune T5 on WikiSQL considering the input sequence 

(question + schema table) and the output SQL query as texts, 

which is illustrated in “Fig. 3”.  

We notice that WikiSQL DataSet treats another 
language besides English, However, T5 is pre-trained 
model only in English. In fact, it is unable to decode some 
no English questions. Also within this T5’s limits over 
WikiSQL, it’s unable to decode some special characters 
in the DataSet.  

Table: 
 

 Player Country Points Winnings ($) 
 

 Steve stricker United States 9000 1260000 

 K.J. Choi South Korea 5400 756000 

 Rory Sabbatini South Africa 3400 4760000 
 Mark Calcavecchia United States 2067 289333 

 Ernie Els South Africa 2067 289333 
 

Question: What is the points of South Korea player? 

SQL: Select point where country = South Korea 

Answer: 5400 
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Fig. 3: General Architecture for using T5&mT5 over WikiSQL 

 

To leverage those limits, we fine-tune alternatively 

mT5 (m for multilingual), which is pre-trained on mC4 

DataSet covering 101 languages.  

T5&mT5  

According to studies and statistics, T5 is more efficient 

than mT5 on English sequences. Since mT5 allows to 

decode and give results on non-English and as mentioned 

below, the WikiSQL dataset also contains non-English 

sentences with characters not managed by T5, but 

managed by mT5, we decided to use T5&mT5 together to 

benefit from the advantages of each pre-trained models. 

The following algorithm explains how we proceeded. 

 

Algorithm: Procedure pseudo-code for the use of 

T5&mT5 together over WikiSQL  

INPUT: Question  

OUTPUT: SQL_query  

DETERMINE SQL_query depending on the Question  

IF Question contains English words only AND not 

contains special characters  

 SQL_Query = Call T5-model  

ELSE  

 SQL_Query = Call mT5-model  

Return SQL_Query  

 

Gated Extraction Network  

Seq2Seq models suffer from generation completely 

new words, or not generate all words completely. In our 

case, the majority of words to predict in the output 

sequence are present in the input sequence, so in most 

cases, it is better to copy them directly from the input 

rather than to try to generate them.  

An example of generation new words by T5&mT5 is 

as follow: 

 

Question: In which country is the city of 

Netanya  

Predicted SQL query: Select country from 1-

14937957-1 where city = “netheranya”  

Expected SQL query: Select country from 1-

14937957-1 where city = “netanya”  

 

An example of not generate all complete words by 

T5&mT5 is as follow:  

 

Question: Are there registration notes on 

usek.edu.lb?  

Predicted SQL query: Select official 

registration notes from 1-1160660-1 where 

website = 'usk.edu.lb'  

Expected SQL query: Select official 

registration notes from 1-1160660-1 where 

website = 'usek.edu.lb'  

 

To handle this problem and encourage extraction from 

the input, we use a gated extraction T5&mT5 network, 

similar to (Li et al., 2020) and to a Pointer Generation 

Network (See et al., 2017). Between the encoder (Henc) 

and decoder (Hdec), we implement a cross attention layer, 

then we create a gate layer from the attention layer to 

control whether the output should be generated by the 

decoder or extracted from the encoder.  

W1, W2,…, Wn 

Question 

Concatenation SQL query 

Schema 

T5 
OR 

mT5 

C1, C2,…,Cn 
[BOS]Q[SEP]C1[SEP]…Cn[EOS] 

Preprocessing 
Special 

character to 

process the 

Seq2Seq 

W: Word 
C: Column 

Q: Question 

BOS: Begin Of Sequence 
SEP: Separator 

EOS: End Of Sequence 
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The cross attention layer is implemented the same way 

as the T5&mT5 cross attention layer where the score is 

the product of Henc and Hdec, as illustrated in “Fig. 4”: 

 

 

 

;

.

*

dec

enc

HD Linearization H

HE V Linearization H

Score HD V



 



 

 

The context is then calculated using Score, Hdec and 

softmax function: 

 

  Context Func softmax Score V   

 

Based on the hidden state of the Context and the 

decoder wrapped inside a sigmoid function, we get the 

final gate as a probability: 

 

 

 

HdecNormalized Normalisation HD

ContextNormalized Normalisation Context




 

 

The final step is to merge both generation and 

extraction using element-wise operation: 

 

 _ 1O final Pext Oext Pext Ogen      

AGG Prediction Reinforcement  

The results of (Hwang et al., 2019) indicate that AGG 

annotations in WikiSQL contain up to 10% errors which 

negatively affects the prediction of the entire SQL query. 

In such a case, a learning model fails to train well. So, 

we decided to improve AGG results compared to the 

original model, using only simple association signals in 

the training data. Notably, we adopt a transformation-

based learning algorithm (Brill, 1995) to update the 

aggregation function predictions based on association 

rules in the form of "change from X0 to X1", (example: 

Change from COUNT to SUM), considering some word 

occurrences. The algorithm mine and rank those rules 

from the training data “Fig. 5”.  

For example, for the question: What is the total 

number of assists for players with under 55 games and 

over 6 assists per game average?  

The predicted SQL is: Select count total assists 

where games inferior 55 and ast avg > 6, while the 

expected SQL is: Select sum total assists where games 

inferior 55 and ast avg > 6. 

In this case, the rule “Change from COUNT to SUM” 

is triggered and the predicted SQL query is corrected to: 

Select sum total assists where games inferior 55 and ast 

avg > 6; which corresponds to the expected one.   

 

 
 

Fig. 4: Operations for gated extraction network 

Sigmoid 

Func 

Normalisation Normalisation 

Func 

Matmul 

Matmul + Softmax + Dropout 

HD HE V 

Linearization Linearization 

H(Decoder) H(Encoder) 
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Fig. 5: The mechanism of the transformation-based learning 

algorithm  

 

Execution Guided Inference  

It is always difficult to generate a perfect SQL query. 
To improve the prediction, Wang et al. (2018) introduced 
Execution Guided (EG) inference.  

EG models send generated SQL queries to the SQL 
database engine and make adjustments if the database 
engine returns an empty result or run-time errors. 

We experimented with beam search using run-time 
error or empty result during execution. 

To apply EG inference, we used beam search by trying 
to execute each output sequence to the SQL database 
engine. If the SQL database engine returned a run-time 
error or an empty result, we drop the current prediction 
and return the next most efficient output sequence and so 
on. The algorithm of the EG is as following. 

 

Algorithm for EG  

Predicts_SQLs = Predict N SQL query (with N > 1)  
Final_SQLs = []  

For SQL in Predicts_SQLs  
 Try  
 Result = Run SQL in database  
 If Result is Empty  
 Continue  
 Final_SQLs.append(SQL)  

 Break  
 Finally  
 Continue  
## Then we use SQL queries in Final_SQLsfor the 
evaluation, instead of initials SQL queries in 
Predicts_SQLs predicted by T5/mT5  

Experiments and Results  

Implementation Details  

We used Colab pro with TPU and Google Cloud 

Storage (GCS) as our environment and Pytorch with 

Tensorflow for codding.  

240 is the length of input tokens and 75 is the length 

of the output sequence.  

For tokenization, we used the default tokenizers 

T5Tokenizer and MT5Tokenizer of T5&mT5 

respectively. And since the raw data splits are stored as 

JSON files, we first converted them to TSV format to 

make them parsable in TensorFlow. We also take the 

opportunity to do a bit of cleaning of the text.  

For the loss function, we used CrossEntropyLoss and 

AdamW (Loshchilov and Hutter, 2017) to optimize the 

models with default hyperparameters.  

We train both T5&mT5 on 35 epochs with the batch 

size set in 64.  

Evaluation and Results  

“Table 1” shows the performances of our work. 

Using T5-base and mT5-base, our baselines models 

achieve 84.1 and 86.2% respectively, on test data 

execution accuracy.  

Using a gated extraction network, the precision is 

improved by about 1%, achieving 85.1 and 87.2% using 

T5&mT5 respectively.  

Ensembling T5&mT5 and using them at the same time 

improve the performance by 5% compared to our 

baseline, achieving 90% on test data execution accuracy.  

By adding association rules, the accuracy is 

augmented by 0.3% achieving 90.3%.  

Finally, by using EG and replacing T5-base and 

mT5-base by T5-large and mT5-large respectively, the 

test data execution accuracy improved more and 

achieves 91.0%. “Figure 6” presents a bar chart for 

visualizing the improvements of experimentation 

results on WikiSQL DataSet. 

With those techniques, we exceeded the previous top 

model (Li et al., 2020) by 0.5% and achieving the new state 

of the art in the weakly supervised WikiSQL challenge.  

 
Table 1: Results of our multiple experimentations on WikiSQL 

DataSet  

 Test execution 

Model accuracy  

T5 baseline (T5-base)  84.1  

T5-base + gated extraction network  85.1  

mT5 baseline (mT5-base)  86.2  

mT5 + gated extraction network  87.2  

T5-base&mT5-base  90.0  

T5-base&mT5-base+ Association Rules  90.3  

T5-large&mT5-large + Association Rules  91.0  

Unannotated 

text 

Initial state 

Annotated 

text 
Truth 

Learner Rules 
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Table 2: Our best result compared to previous works on weakly-supervised WikiSQL challenge  

Model  Dev execution accuracy test execution accuracy  

T5-large&mT5-large + Association Rules (ours)  91.2 91.0  

SeqGenSQL+EG (Li et al., 2020)  90.8 90.5  

SeqGenSQL (Li et al., 2020)  90.6 90.3  

HardEM (Min et al., 2019)  84.4 83.9  

LatentAlignment (Wang et al., 2018)  79.4 79.3  

MeRL Agarwal, 2019  74.9 +/- 0.1 74.8 +/- 0.2  

MAPO (Liang et al., 2018)  72.2 +/- 0.2 72.1 +/- 0.3  

Rule-SQL (Guo et al., 2019)  61.1 +/- 0.2 61.0 +/- 0.3  

 

 
 

Fig. 6: Chart for visualizing the improvements of experimentation results on WikiSQL DataSt 
 

 
 

Fig. 7: Our top work compared to previous ones on WikiSQL DataSet 
 

“Table 2” shows our position compared to the top 
previous works operated on the weakly supervised 
WikiSQL challenge. We note that the majority of those 
works uses the database content, so we believe that if we 
did it to, we can achieves more accuracy. “Figure 7” 
presents a bar chart for visualizing our top work compared 
to previous ones, in term of test execution accuracy.  

Errors Analysis and Discussion  

Even with association rules, analysis of the errors on 
the test data shows that most of them were in the 
prediction of bad aggregation functions.  

Besides, some questions contain ambiguous words. 
For example, the word ”total” can be interpreted as a SUM 
function in SQL and the word “sum” can be interpreted as 
a COUNT function. 

Even with the gated extraction network, the model still 

predicts new words or predicts an SQL query with fewer 

characters or words. 

We remarked also that some of the questions simply 

didn’t provide sufficient information to compose an 

accurate SQL statement, particularly, questions that do 

not contain the name of columns, so in this case, the model 

predicts usually the wrong column in the SQL query 

(select column or condition column).  

We also note that there are cases where the expected 

SQL query doesn’t match the questions and in some of 

these cases, our model predicts the SQL query correctly 

in manual verification, even though they don’t match 

the expected one. 

Despite all these constraints, Sequence generation 

simplifies the process of generating SQL statements and 

T5 baseline 

T5-base + gated extraction network 

mT5 + baseline 
mT5 + gated extraction network 
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performs one-step prediction for this task with high 

accuracy. Besides, we still consider the following things 

for improving the accuracy of the model: 

 

 We assume larger base models could provide even 

more improvement. I fact, we can use T5-3B and 

mT5-xl (about * 4 larger than T5-large and mT5-

large), but this requires more resources precisely in 

terms of TPU and RAM 

 Improve the gated extraction network  

 Carefully designed question augmentation (with 

more information like data-type, POS), as well as 

accessing the content of the database and include 

some rows as input 

 Training the model on more data by doing data 

augmentation on train and dev set 

 

Conclusion  

In this study, we present our work for the generation 

of SQL queries from natural language. We used 

T5&mT5 for SQL sequence generation and we adopt a 

transformation-based learning algorithm to update the 

aggregation function predictions based on simple 

association rules, which helps to improve the general 

results. We trained and evaluated our model on 

WikiSQL DataSet, outperforming all previous works 

and achieving a new state-of-the-art on the weakly 

supervised challenge. As future work, we plan first to 

improve our model over WikiSQL Dataset, then use 

more complex DataSet like Spider, which treats multi-

tables, containing nested SQL queries, with jointures 

and more components.  
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