

 © 2021 Youssef Mellah, Abdelkader Rhouati, El Hassane Ettifouri, Toumi Bouchentouf and Mohammed Ghaouth

Belkasmi. This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

SQL Generation from Natural Language: A Sequence-to-

Sequence Model Powered by the Transformers Architecture

and Association Rules

1,2Youssef Mellah, 1Abdelkader Rhouati, 1El Hassane Ettifouri,
2Toumi Bouchentouf and 2Mohammed Ghaouth Belkasmi

1NovyLab Research, Novelis, Paris, France
2Mohammed First University Oujda, National School of Applied Sciences, LaRSA/SmartICT Lab, Oujda, Morocco

Article history

Received: 12-03-2021

Revised: 21-04-2021

Accepted: 28-04-2021

Corresponding Author:

Youssef Mellah

NovyLab Research, Novelis,

Paris, France

And

LARSA Laboratory, ENSAO,

Mohammed First University,

Oujda, Morocco

Email: ymellah@novelis.io

Abstract: Using Natural Language (NL) to interacting with relational

databases allows users from any background to easily query and analyze

large amounts of data. This requires a system that understands user

questions and automatically converts them into structured query language

such as SQL. The best performing Text-to-SQL systems use supervised

learning (usually formulated as a classification problem) by approaching

this task as a sketch-based slot-filling problem, or by first converting

questions into an Intermediate Logical Form (ILF) then convert it to the

corresponding SQL query. However, non-supervised modeling that

directly converts questions to SQL queries has proven more difficult. In

this sense, we propose an approach to directly translate NL questions into

SQL statements. In this study, we present a Sequence-to-Sequence

(Seq2Seq) parsing model for the NL to SQL task, powered by the

Transformers Architecture exploring the two Language Models (LM):

Text-To-Text Transfer Transformer (T5) and the Multilingual pre-trained

Text-To-Text Transformer (mT5). Besides, we adopt the transformation-

based learning algorithm to update the aggregation predictions based on

association rules. The resulting model achieves a new state-of-the-art on the

WikiSQL DataSet, for the weakly supervised SQL generation.

Keywords: SQL, Text-to-SQL, Sequence-to-Sequence, Transformers

Architecture, Multilingual Pre-Trained Text-To-Text Transformer, WikiSQL

Introduction

Semantic Parsing (SP) is one of the most important

tasks in NLP, it requires both understanding the meaning

of Natural Language (NL) sentences and mapping them to

formal meaning representations (Zelle and Mooney, 1996;

Panait and Luke, 2005; Clarke et al., 2010; Liang et al.,

2011) often to machine-executable programs, for a

range of tasks such as question-answering (Yih et al.,

2014), robotic control (Matuszek et al., 2013) and

intelligent tutoring systems (Graesser et al., 2005). As

a sub-area of SP, we address the problem of mapping

natural language utterances to executable relational DB

queries, which is known to be difficult due to the

flexibility and ambiguity in natural language and the

complexity of relational databases.

In database areas (Androutsopoulos et al., 1995;

Popescu et al., 2003; Affolter et al., 2019), the general

problem was known as “Natural Language Interface to

Databases (NLIDBs)”, in particular, we are interested in

translate natural language questions to SQL, due to the

popularity of SQL as the domain-specific language used

to query and manage data stored in most available

relational databases (Ramakrsihnan et al., 1998). Despite

the importance of the task, researchers have recently

appeared to approach Deep Learning (DL) methods for

the crucial problem of NLIDBs.

Translating an NL to SQL is often referenced as “NL-

to-SQL” or “Text-to-SQL” (Xu et al., 2017; Zhong et al.,

2017; Shi et al., 2018; Yu et al., 2018; He et al., 2019;

Hwang et al., 2019; Guo et al., 2019). Almost all works

operated on achieving good results on well-known Text-

to-SQL benchmarks such as ATIS, GeoQuery and

WikiSQL (Xu et al., 2017; Shi et al., 2018; Dong and

Lapata, 2018; Hwang et al., 2019; He et al., 2019).

Youssef Mellah et al. / Journal of Computer Science 2021, 17 (5): 480.489

DOI: 10.3844/jcssp.2021.480.489

481

In this study, we treat the Text-to-SQL task with

WikiSQL11 (Zhong et al., 2017). This DataSet is the first

large-scale dataset for Text-to-SQL, with about 80 K

human-annotated pairs of Natural Language question and

SQL query. WikiSQL is very challenging because tables

and questions are very diverse. This DataSet contains

about 24K different tables.

There are two leaderboards for the WikiSQL

challenge: Weakly supervised (without using logical form

during training) and supervised (with logical form during

training). On the supervised challenge, there are two

results: Those with Execution Guided (EG) inference and

those without EG inference.

The previous state-of-the-art weakly supervised model

SeqGenSQL+EG (Li et al., 2020) achieved 90.5%

execution accuracy on the test DataSet. On the supervised

challenge, IE-SQL (Ma et al., 2020) achieves 87.8%

execution accuracy without EG inference on the test

dataset and 92.5% execution accuracy with EG inference.

In this study, we are interested only in a weakly

supervised challenge with execution accuracy as a metric.

In this study, we revisit the Seq2Seq approach, but this

time powered by the transformers architecture, precisely

using T5 (Raffel et al., 2019) and mT5 (Xue et al., 2020)

language models. The preliminary results show that the

prediction of the Aggregation function (AGG) decreases

the performance of the model, which brings us to adopt

the learning algorithm based on the transformation

inspired by (Brill, 1995), to update the aggregation

predictions based on association rules, which improve the

AGG prediction and the whole model's results.

We organize our paper as follows: In section 2 we review

the related work. In section 3 we formulate the problem of

Text-to-SQL and describe the WikiSQL DataSet in more

detail. In section 4, we describe our methods, then we present

the obtained results in section 5. After that, in section 6 we

analyze and discuss some errors to improve and finally, we

draw the conclusion and future work.

Related Work

Building natural Language Interfaces for Databases

(NLIDBs) has been a significant challenge in the SP

area. Old works (Warren and Pereira, 1982;

Androutsopoulos et al., 1995; Popescu et al., 2004)

focused on rule-based approaches with handcrafted

features, then later systems enabled users to query the

databases with simple keywords (Simitsis et al., 2008;

Blunschi et al., 2012; Bast and Haussmann, 2015).

The next step was to enable the processing of more

complex NL questions by applying a pattern-based

approach (Popescu et al., 2004; Zheng et al., 2017).

Moreover, to improve the precision of natural language

interfaces, grammar-based approaches were introduced by

1 https://github.com/salesforce/WikiSQL

restricting users to formulate queries according to certain

pre-defined rules (Song et al., 2015; Ferré, 2017).

In recent works, that operated on WikiSQL DataSet

for training and evaluation; many approaches share a

similar encoder-decoder architecture. In this case,

information from both the NL and table schema is

encoded into a hidden representation by the encoder.

Some of those works encode the question with each

column name separately (Xu et al., 2017; Yu et al., 2018;

Hwang et al., 2019) and other choose encoding the

concatenation of the question with columns name

(Zhong et al., 2017; Dong and Lapata, 2018; Chang et al.,

2020; Hwang et al., 2019; He et al., 2019).

There are also some works that do both at different layers

(Hwang et al., 2019; He et al., 2019). Then the hidden

representation is decoded with a decoder to a SQL query.

Some early work tried the seq2seq architecture, one

step decoding (Zhong et al., 2017; Dong and Lapata,

2018), by using advanced Neural Network (NN)

architectures to synthesize SQL queries given a user

question, precisely the use of a classical encoder-decoder

architecture based on Recurrent Neural Network (RNN)

with Long Short-Term Memory (LSTM). However, it is

found challenging in output syntax.

Later more works treat the Text-to-SQL as a

classification problem by approaching this task as a

sketch-based slot-filling and predicting several parts of

the SQL query like SELECT column, WHERE column,

WHERE operator, WHERE value, etc. (Xu et al., 2017;

Yu et al., 2018; Hwang et al., 2019; He et al., 2019). That

way, the chance of output syntax problems is reduced.

Then most new works is how to leverage pre-trained

language models (Devlin et al., 2018; Liu et al., 2019b;

Yang et al., 2019; Liu et al., 2019a) and get very good

results (He et al., 2019; Hwang et al., 2019).

“Hybrid Ranking Network” (Lyu et al., 2020), is an

example of a model which also based on a

BERT/RoBERTa pre-trained model and achieved 92%

execution accuracy using an annotated logical form and

EG inference predictions returning empty results will be

dropped and the next most probable prediction is chosen.

The previous state-of-the-art model on the weakly-

supervised challenge “SeqGenSQL” on which we are

inspired in this study, also based on a pre-trained T5 model,

exploring the use of increasing questions with table schema

information (column name, type and database content) and

the use of automatically augmented training data.

Text-to-SQL Task

Task Definition

The specific semantic parsing problem we study in this

study is to map a natural language question to a SQL

Youssef Mellah et al. / Journal of Computer Science 2021, 17 (5): 480.489

DOI: 10.3844/jcssp.2021.480.489

482

query, which can be executed in a given DB to find the

answer to the original question. In particular, we use the

currently cross-domain largest natural language questions

to SQL DataSet “WikiSQL” (described with more details

in the next paragraph) to evaluate our model.

DataSet

We operate on WikiSQL (Zhong et al., 2017), a

DataSet for Text-to-SQL task which contains a

collection of questions, corresponding SQL queries and

SQL tables. This is the largest hand-annotated Semantic

Analysis DataSet to date, it is larger than other DataSets

that have logical shapes, either in terms of the number of

tables or number of examples. It provides tree sets:

Train, dev and test set.

The WikiSQL dataset consists of 80,654 pairs of SQL

questions and queries spread across 24,241 Wikipedia

tables. Besides the question in NL, the entry also contains

a unique table schema. Each table is present in a single

set, train, development or test, which forces models to

generalize to invisible tables. The SQL structure of the

WikiSQL dataset queries is restricted and always follows

the sketch in “Fig. 1”.

$COLUMN is a single table column and $AGG is an

aggregator function (empty, COUNT, SUM, MAX, MIN,

AVG). The WHERE segment is a sequence of conditions.

Each $OP is a filtering operator (=, <, >) and the filtering

value $VALUE is mentioned in the question. Although

the DataSet ships with a “standard” linear order of

conditions, the order is irrelevant given the semantics of

the WHERE clause (the semantic of “AND”). Figure 2

gives an example from the DataSet.

Fig. 1: SQL Sketch. The tokens starting with “$” are slots to fill.

“*” indicates zero or more AND clauses

Fig. 2: Example of WikiSQL DataSet. For given questions and

table headers, the model generates corresponding SQL

query and retrieves the answer from the table

Methods

We use the original T5&mT5 pre-trained models as

our Seq2Seq baseline model.

We notice that the following described methods are

generic and can be used for any DataSet handling the

Text-to-SQL task.

Input Representation

Given a question Q and a table schema T with columns
name C1, C2, …, Cn, we form the input sequence as follow:

 1 BOS Q SEP C SEP SEP Cn EOS

where, [BOS] and [EOS] denote the beginning and the

end of the input sequence respectively and [SEP] denotes
the separator between columns name.

Preprocessing

We only transformed all DataSet text to lowercase
format and store the input and the output sequences as
Tab-Separated Values in TSV files, the format required
for fine-tuning T5&mT5 (we notice that the original
format of WikiSQL DataSet files is JSON).

T5&mT5 Fine-Tuning

In recent years, Transfer Learning (TL) has led to a

new wave of cutting-edge results in Natural Language

Processing (NLP). The power of TL comes from pre-

training a model on abundantly available unlabeled text

data with a self-supervised task. After that, the model can

be refined on smaller labeled data sets, which often results

in (much) better performance than training on the labeled

data alone. The recent success of transfer learning was

sparked in 2018 by ULMFiT (Howard and Ruder, 2018),

ELMo (Peters et al., 2018) and BERT. The 2019 year saw

the development of a wide variety of new methods like

GPT (Radford et al., 2019), XLNet (Yang et al., 2019),

RoBERTa, ALBERT (Lan et al., 2019), Reformer and

MT-DNN (Liu et al., 2019a). The pace of progress on the

ground has made it difficult to assess the most significant

improvements and their effectiveness when combined.

In this sense, we used T5 (for Text-to-Text Transfert

Transformer), a language model pre-trained on Colossal

Clean Crawled Corpus (C4). This model achieves top results

on many NLP benchmarks while being flexible enough to be

fine-tuned for a variety of important downstream tasks. We

fine-tune T5 on WikiSQL considering the input sequence

(question + schema table) and the output SQL query as texts,

which is illustrated in “Fig. 3”.

We notice that WikiSQL DataSet treats another
language besides English, However, T5 is pre-trained
model only in English. In fact, it is unable to decode some
no English questions. Also within this T5’s limits over
WikiSQL, it’s unable to decode some special characters
in the DataSet.

Table:

 Player Country Points Winnings ($)

 Steve stricker United States 9000 1260000

 K.J. Choi South Korea 5400 756000

 Rory Sabbatini South Africa 3400 4760000
 Mark Calcavecchia United States 2067 289333

 Ernie Els South Africa 2067 289333

Question: What is the points of South Korea player?

SQL: Select point where country = South Korea

Answer: 5400

Youssef Mellah et al. / Journal of Computer Science 2021, 17 (5): 480.489

DOI: 10.3844/jcssp.2021.480.489

483

Fig. 3: General Architecture for using T5&mT5 over WikiSQL

To leverage those limits, we fine-tune alternatively

mT5 (m for multilingual), which is pre-trained on mC4

DataSet covering 101 languages.

T5&mT5

According to studies and statistics, T5 is more efficient

than mT5 on English sequences. Since mT5 allows to

decode and give results on non-English and as mentioned

below, the WikiSQL dataset also contains non-English

sentences with characters not managed by T5, but

managed by mT5, we decided to use T5&mT5 together to

benefit from the advantages of each pre-trained models.

The following algorithm explains how we proceeded.

Algorithm: Procedure pseudo-code for the use of

T5&mT5 together over WikiSQL

INPUT: Question

OUTPUT: SQL_query

DETERMINE SQL_query depending on the Question

IF Question contains English words only AND not

contains special characters

 SQL_Query = Call T5-model

ELSE

 SQL_Query = Call mT5-model

Return SQL_Query

Gated Extraction Network

Seq2Seq models suffer from generation completely

new words, or not generate all words completely. In our

case, the majority of words to predict in the output

sequence are present in the input sequence, so in most

cases, it is better to copy them directly from the input

rather than to try to generate them.

An example of generation new words by T5&mT5 is

as follow:

Question: In which country is the city of

Netanya

Predicted SQL query: Select country from 1-

14937957-1 where city = “netheranya”

Expected SQL query: Select country from 1-

14937957-1 where city = “netanya”

An example of not generate all complete words by

T5&mT5 is as follow:

Question: Are there registration notes on

usek.edu.lb?

Predicted SQL query: Select official

registration notes from 1-1160660-1 where

website = 'usk.edu.lb'

Expected SQL query: Select official

registration notes from 1-1160660-1 where

website = 'usek.edu.lb'

To handle this problem and encourage extraction from

the input, we use a gated extraction T5&mT5 network,

similar to (Li et al., 2020) and to a Pointer Generation

Network (See et al., 2017). Between the encoder (Henc)

and decoder (Hdec), we implement a cross attention layer,

then we create a gate layer from the attention layer to

control whether the output should be generated by the

decoder or extracted from the encoder.

W1, W2,…, Wn

Question

Concatenation SQL query

Schema

T5
OR

mT5

C1, C2,…,Cn
[BOS]Q[SEP]C1[SEP]…Cn[EOS]

Preprocessing
Special

character to

process the

Seq2Seq

W: Word
C: Column

Q: Question

BOS: Begin Of Sequence
SEP: Separator

EOS: End Of Sequence

Youssef Mellah et al. / Journal of Computer Science 2021, 17 (5): 480.489

DOI: 10.3844/jcssp.2021.480.489

484

The cross attention layer is implemented the same way

as the T5&mT5 cross attention layer where the score is

the product of Henc and Hdec, as illustrated in “Fig. 4”:

;

.

*

dec

enc

HD Linearization H

HE V Linearization H

Score HD V

The context is then calculated using Score, Hdec and

softmax function:

 Context Func softmax Score V

Based on the hidden state of the Context and the

decoder wrapped inside a sigmoid function, we get the

final gate as a probability:

HdecNormalized Normalisation HD

ContextNormalized Normalisation Context

The final step is to merge both generation and

extraction using element-wise operation:

 _ 1O final Pext Oext Pext Ogen

AGG Prediction Reinforcement

The results of (Hwang et al., 2019) indicate that AGG

annotations in WikiSQL contain up to 10% errors which

negatively affects the prediction of the entire SQL query.

In such a case, a learning model fails to train well. So,

we decided to improve AGG results compared to the

original model, using only simple association signals in

the training data. Notably, we adopt a transformation-

based learning algorithm (Brill, 1995) to update the

aggregation function predictions based on association

rules in the form of "change from X0 to X1", (example:

Change from COUNT to SUM), considering some word

occurrences. The algorithm mine and rank those rules

from the training data “Fig. 5”.

For example, for the question: What is the total

number of assists for players with under 55 games and

over 6 assists per game average?

The predicted SQL is: Select count total assists

where games inferior 55 and ast avg > 6, while the

expected SQL is: Select sum total assists where games

inferior 55 and ast avg > 6.

In this case, the rule “Change from COUNT to SUM”

is triggered and the predicted SQL query is corrected to:

Select sum total assists where games inferior 55 and ast

avg > 6; which corresponds to the expected one.

Fig. 4: Operations for gated extraction network

Sigmoid

Func

Normalisation Normalisation

Func

Matmul

Matmul + Softmax + Dropout

HD HE V

Linearization Linearization

H(Decoder) H(Encoder)

Youssef Mellah et al. / Journal of Computer Science 2021, 17 (5): 480.489

DOI: 10.3844/jcssp.2021.480.489

485

Fig. 5: The mechanism of the transformation-based learning

algorithm

Execution Guided Inference

It is always difficult to generate a perfect SQL query.
To improve the prediction, Wang et al. (2018) introduced
Execution Guided (EG) inference.

EG models send generated SQL queries to the SQL
database engine and make adjustments if the database
engine returns an empty result or run-time errors.

We experimented with beam search using run-time
error or empty result during execution.

To apply EG inference, we used beam search by trying
to execute each output sequence to the SQL database
engine. If the SQL database engine returned a run-time
error or an empty result, we drop the current prediction
and return the next most efficient output sequence and so
on. The algorithm of the EG is as following.

Algorithm for EG

Predicts_SQLs = Predict N SQL query (with N > 1)
Final_SQLs = []

For SQL in Predicts_SQLs
 Try
 Result = Run SQL in database
 If Result is Empty
 Continue
 Final_SQLs.append(SQL)

 Break
 Finally
 Continue
Then we use SQL queries in Final_SQLsfor the
evaluation, instead of initials SQL queries in
Predicts_SQLs predicted by T5/mT5

Experiments and Results

Implementation Details

We used Colab pro with TPU and Google Cloud

Storage (GCS) as our environment and Pytorch with

Tensorflow for codding.

240 is the length of input tokens and 75 is the length

of the output sequence.

For tokenization, we used the default tokenizers

T5Tokenizer and MT5Tokenizer of T5&mT5

respectively. And since the raw data splits are stored as

JSON files, we first converted them to TSV format to

make them parsable in TensorFlow. We also take the

opportunity to do a bit of cleaning of the text.

For the loss function, we used CrossEntropyLoss and

AdamW (Loshchilov and Hutter, 2017) to optimize the

models with default hyperparameters.

We train both T5&mT5 on 35 epochs with the batch

size set in 64.

Evaluation and Results

“Table 1” shows the performances of our work.

Using T5-base and mT5-base, our baselines models

achieve 84.1 and 86.2% respectively, on test data

execution accuracy.

Using a gated extraction network, the precision is

improved by about 1%, achieving 85.1 and 87.2% using

T5&mT5 respectively.

Ensembling T5&mT5 and using them at the same time

improve the performance by 5% compared to our

baseline, achieving 90% on test data execution accuracy.

By adding association rules, the accuracy is

augmented by 0.3% achieving 90.3%.

Finally, by using EG and replacing T5-base and

mT5-base by T5-large and mT5-large respectively, the

test data execution accuracy improved more and

achieves 91.0%. “Figure 6” presents a bar chart for

visualizing the improvements of experimentation

results on WikiSQL DataSet.

With those techniques, we exceeded the previous top

model (Li et al., 2020) by 0.5% and achieving the new state

of the art in the weakly supervised WikiSQL challenge.

Table 1: Results of our multiple experimentations on WikiSQL

DataSet

 Test execution

Model accuracy

T5 baseline (T5-base) 84.1

T5-base + gated extraction network 85.1

mT5 baseline (mT5-base) 86.2

mT5 + gated extraction network 87.2

T5-base&mT5-base 90.0

T5-base&mT5-base+ Association Rules 90.3

T5-large&mT5-large + Association Rules 91.0

Unannotated

text

Initial state

Annotated

text
Truth

Learner Rules

Youssef Mellah et al. / Journal of Computer Science 2021, 17 (5): 480.489

DOI: 10.3844/jcssp.2021.480.489

486

Table 2: Our best result compared to previous works on weakly-supervised WikiSQL challenge

Model Dev execution accuracy test execution accuracy

T5-large&mT5-large + Association Rules (ours) 91.2 91.0

SeqGenSQL+EG (Li et al., 2020) 90.8 90.5

SeqGenSQL (Li et al., 2020) 90.6 90.3

HardEM (Min et al., 2019) 84.4 83.9

LatentAlignment (Wang et al., 2018) 79.4 79.3

MeRL Agarwal, 2019 74.9 +/- 0.1 74.8 +/- 0.2

MAPO (Liang et al., 2018) 72.2 +/- 0.2 72.1 +/- 0.3

Rule-SQL (Guo et al., 2019) 61.1 +/- 0.2 61.0 +/- 0.3

Fig. 6: Chart for visualizing the improvements of experimentation results on WikiSQL DataSt

Fig. 7: Our top work compared to previous ones on WikiSQL DataSet

“Table 2” shows our position compared to the top
previous works operated on the weakly supervised
WikiSQL challenge. We note that the majority of those
works uses the database content, so we believe that if we
did it to, we can achieves more accuracy. “Figure 7”
presents a bar chart for visualizing our top work compared
to previous ones, in term of test execution accuracy.

Errors Analysis and Discussion

Even with association rules, analysis of the errors on
the test data shows that most of them were in the
prediction of bad aggregation functions.

Besides, some questions contain ambiguous words.
For example, the word ”total” can be interpreted as a SUM
function in SQL and the word “sum” can be interpreted as
a COUNT function.

Even with the gated extraction network, the model still

predicts new words or predicts an SQL query with fewer

characters or words.

We remarked also that some of the questions simply

didn’t provide sufficient information to compose an

accurate SQL statement, particularly, questions that do

not contain the name of columns, so in this case, the model

predicts usually the wrong column in the SQL query

(select column or condition column).

We also note that there are cases where the expected

SQL query doesn’t match the questions and in some of

these cases, our model predicts the SQL query correctly

in manual verification, even though they don’t match

the expected one.

Despite all these constraints, Sequence generation

simplifies the process of generating SQL statements and

T5 baseline

T5-base + gated extraction network

mT5 + baseline
mT5 + gated extraction network

T5-base&T5-base

T5-base&T5-base + Association rules

T5-large&T5-large + Association rules

80

60

40

20

0

T
ex

t
ex

ec
u

ti
o
n

 a
cc

u
ra

cy
 (

%
)

1 2 3 4 5 6 7

80

60

40

20

0

Rule-SQL (Guo et al., 2019)

MAPO (Liang et al., 2018)

MeRL Agarwal, 2019

LatentAlignment (Wang et al., 2018)

HardEM (Min et al., 2019)

SeqGenSQL (Li et al., 2020)

SeqGenSQL+EG (Li et al., 2020)

T5-large&mT5-large + Association Rules (ours)

T
ex

t
ex

ec
u

ti
o
n

 a
cc

u
ra

cy
 (

%
)

1 2 3 4 5 6 7 8

Youssef Mellah et al. / Journal of Computer Science 2021, 17 (5): 480.489

DOI: 10.3844/jcssp.2021.480.489

487

performs one-step prediction for this task with high

accuracy. Besides, we still consider the following things

for improving the accuracy of the model:

 We assume larger base models could provide even

more improvement. I fact, we can use T5-3B and

mT5-xl (about * 4 larger than T5-large and mT5-

large), but this requires more resources precisely in

terms of TPU and RAM

 Improve the gated extraction network

 Carefully designed question augmentation (with

more information like data-type, POS), as well as

accessing the content of the database and include

some rows as input

 Training the model on more data by doing data

augmentation on train and dev set

Conclusion

In this study, we present our work for the generation

of SQL queries from natural language. We used

T5&mT5 for SQL sequence generation and we adopt a

transformation-based learning algorithm to update the

aggregation function predictions based on simple

association rules, which helps to improve the general

results. We trained and evaluated our model on

WikiSQL DataSet, outperforming all previous works

and achieving a new state-of-the-art on the weakly

supervised challenge. As future work, we plan first to

improve our model over WikiSQL Dataset, then use

more complex DataSet like Spider, which treats multi-

tables, containing nested SQL queries, with jointures

and more components.

Acknowledgment

I would like to thank all members of the Novelis
research team, as well as all members of the LARSA
laboratory of ENSAO, Mohammed First University.

Author’s Contributions

All authors equally contributed in this work.

Ethics

This article is original and contains unpublished
material. The corresponding author confirms that all of the
other authors have read and approved the manuscript and
no ethical issues involved.

References

Affolter, K., Stockinger, K., & Bernstein, A. (2019). A

comparative survey of recent natural language

interfaces for databases. The VLDB Journal, 28(5),

793-819. https://doi.org/10.1007/s00778-019-00567-8

Androutsopoulos, I., Ritchie, G. D., & Thanisch, P.

(1995). Natural language interfaces to databases-an

introduction. Natural Language Engineering, 1(1),

29-81. https://doi.org/10.1017/S135132490000005X

Bast, H., & Haussmann, E. (2015, October). More accurate

question answering on freebase. In Proceedings of the

24th ACM International on Conference on Information

and Knowledge Management (pp. 1431-1440).

https://doi.org/10.1145/2806416.2806472

Blunschi, L., Jossen, C., Kossman, D., Mori, M., &

Stockinger, K. (2012). Soda: Generating SQL for

business users. Proceedings of the VLDB Endowment,

5, 932-943. https://doi.org/10.14778/2336664.2336667

Brill, E. (1995). Transformation-based error-driven

learning and natural language processing: A case

study in part-of-speech tagging. Computational

Linguistics, 21(4), 543-565.

 https://dl.acm.org/doi/abs/10.5555/218355.218367

Chang, S., Liu, P., Tang, Y., Huang, J., He, X., & Zhou,

B. (2020, April). Zero-shot text-to-SQL learning with

auxiliary task. In Proceedings of the AAAI

Conference on Artificial Intelligence, (pp. 7488-7495).

Association for the Advancement of Artificial

Intelligence. https://doi.org/10.1609/aaai.v34i05.6246

Clarke, J., Goldwasser, D., Chang, M. W., & Roth, D.

(2010, July). Driving semantic parsing from the

world’s response. In Proceedings of the fourteenth

conference on computational natural language

learning (pp. 18-27).

 https://www.aclweb.org/anthology/W10-2903.pdf

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018).

Bert: Pre-training of deep bidirectional transformers

for language understanding. arXiv preprint

arXiv:1810.04805. https://arxiv.org/abs/1810.04805

Dong, L., & Lapata, M. (2018). Coarse-to-fine decoding

for neural semantic parsing. In 56th Annual Meeting

of the Association for Computational Linguistics,

(pp. 731–742), Association for Computational

Linguistics, Melbourne, Australia.

https://doi.org/10.18653/v1/P18-1068

Ferré, S. (2017). Sparklis: An expressive query builder for

SPARQL endpoints with guidance in natural

language. Semantic Web, 8(3), 405-418.

https://doi.org/10.3233/SW-150208

Graesser, A. C., Chipman, P., Haynes, B. C., & Olney, A.

(2005). AutoTutor: An intelligent tutoring system

with mixed-initiative dialogue. IEEE Transactions on

Education, 48(4), 612-618.

 https://doi.org/10.1109/TE.2005.856149
Guo, J., Zhan, Z., Gao, Y., Xiao, Y., Lou, J. G., & Liu, T.

(2019). Towards complex text-to-SQL in cross-domain
database with intermediate representation. In 57th
Annual Meeting of the Association for Computational
Linguistics, (pp. 4524-4535), Association for
Computational Linguistics, Florence, Italy.
https://doi.org/10.18653/v1/P19-1444

Youssef Mellah et al. / Journal of Computer Science 2021, 17 (5): 480.489

DOI: 10.3844/jcssp.2021.480.489

488

He, P., Mao, Y., Chakrabarti, K., & Chen, W. (2019).

X-SQL: reinforce schema representation with

context. arXiv preprint arXiv:1908.08113.

 https://arxiv.org/abs/1908.08113

Howard, J., & Ruder, S. (2018). Universal language model

fine-tuning for text classification. In Proceedings of the

56th Annual Meeting of the Association for

Computational Linguistics, (pp. 328-339), Association

for Computational Linguistics, Melbourne, Australia.

https://doi.org/10.18653/v1/P18-1031

Hwang, W., Yim, J., Park, S., & Seo, M. (2019). A

comprehensive exploration on wikiSQL with table-

aware word contextualization. arXiv preprint

arXiv:1902.01069. https://arxiv.org/abs/1902.01069

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P.,

& Soricut, R. (2019). Albert: A lite bert for self-

supervised learning of language representations.

arXiv preprint arXiv:1909.11942.

 https://arxiv.org/abs/1909.11942

Li, N., Keller, B., Butler, M., & Cer, D. (2020).

SeqGenSQL--A Robust Sequence Generation Model

for Structured Query Language. arXiv preprint

arXiv:2011.03836. https://arxiv.org/abs/2011.03836

Liang, P., Tripp, O., & Naik, M. (2011, January).

Learning minimal abstractions. In Proceedings of the

38th annual ACM SIGPLAN-SIGACT Symposium

on Principles of programming languages (pp. 31-42).

https://doi.org/10.1145/1926385.1926391

Liu, X., He, P., Chen, W., & Gao, J. (2019a). Multi-task

deep neural networks for natural language

understanding. In Proceedings of the 57th Annual

Meeting of the Association for Computational

Linguistics, (pp. 4487–4496), Association for

Computational Linguistics, Florence, Italy.

https://doi.org/10.18653/v1/P19-1441

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ...

& Stoyanov, V. (2019b). Roberta: A robustly

optimized bert pretraining approach. arXiv preprint

arXiv:1907.11692. https://arxiv.org/abs/1907.11692

Loshchilov, I., & Hutter, F. (2017). Decoupled weight decay

regularization. arXiv preprint arXiv:1711.05101.
https://arxiv.org/abs/1711.05101

Lyu, Q., Chakrabarti, K., Hathi, S., Kundu, S., Zhang, J.,

& Chen, Z. (2020). Hybrid ranking network for text-

to-SQL. arXiv preprint arXiv:2008.04759.

 https://arxiv.org/abs/2008.04759

Ma, J., Yan, Z., Pang, S., Zhang, Y., & Shen, J. (2020).

Mention Extraction and Linking for SQL Query

Generation. In Proceedings of the 2020 Conference

on Empirical Methods in Natural Language

Processing (EMNLP), (pp. 6936–6942), Association

for Computational Linguistics.

 https://doi.org/10.18653/v1/2020.emnlp-main.563

Matuszek, C., Herbst, E., Zettlemoyer, L., & Fox, D.

(2013). Learning to parse natural language

commands to a robot control system. In Experimental

robotics (pp. 403-415). Springer, Heidelberg.

https://doi.org/10.1007/978-3-319-00065-7_28

Min, S., Chen, D., Hajishirzi, H., & Zettlemoyer, L.

(2019). A discrete hard EM approach for weakly

supervised question answering. arXiv preprint

arXiv:1909.04849.

Panait, L., & Luke, S. (2005). Cooperative multi-agent

learning: The state of the art. Autonomous Agents

and Multi-Agent Systems, 11(3), 387-434.

 https://doi.org/10.1007/s10458-005-2631-2

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M.,

Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep

contextualized word representations. In Proceedings

of the 2018 Conference of the North American

Chapter of the Association for Computational

Linguistics: Human Language Technologies, (pp.

2227–2237), Association for Computational

Linguistics, New Orleans, Louisiana.

 https://doi.org/10.18653/v1/N18-1202

Popescu, A. M., Armanasu, A., Etzioni, O., Ko, D., &

Yates, A. (2004). Modern natural language interfaces

to databases: Composing statistical parsing with

semantic tractability. In COLING 2004: Proceedings

of the 20th International Conference on

Computational Linguistics (pp. 141-147).

https://doi.org/10.3115/1220355.1220376

Popescu, A. M., Etzioni, O., & Kautz, H. (2003,

January). Towards a theory of natural language

interfaces to databases. In Proceedings of the 8th

international conference on Intelligent user

interfaces (pp. 149-157).

 https://doi.org/10.1145/604045.604120

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., &

Sutskever, I. (2019). Language models are

unsupervised multitask learners. OpenAI Blog, 1(8), 9.

http://www.persagen.com/files/misc/radford2019lan

guage.pdf

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,

Matena, M., ... & Liu, P. J. (2019). Exploring the

limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,

21, 1-67. https://www.jmlr.org/papers/volume21/20-

074/20-074.pdf

Ramakrsihnan, R., Donjerkovic, D., Ranganathan, A.,

Beyer, K. S., & Krishnaprasad, M. (1998, July).

SRQL: Sorted relational query language. In

Proceedings. Tenth International Conference on

Scientific and Statistical Database Management (Cat.

No. 98TB100243) (pp; 84-95). IEEE.

https://doi.org/10.1109/SSDM.1998.688114

Youssef Mellah et al. / Journal of Computer Science 2021, 17 (5): 480.489

DOI: 10.3844/jcssp.2021.480.489

489

See, A., Liu, P. J., & Manning, C. D. (2017). Get to the

point: Summarization with pointer-generator

networks. In Proceedings of the 55th Annual Meeting

of the Association for Computational Linguistics,

(pp. 1073–1083), Association for Computational

Linguistics, Vancouver, Canada.

 https://doi.org/10.18653/v1/P17-1099
Shi, T., Tatwawadi, K., Chakrabarti, K., Mao, Y.,

Polozov, O., & Chen, W. (2018). IncSQL: Training

incremental text-to-SQL parsers with non-

deterministic oracles. arXiv preprint

arXiv:1809.05054. https://arxiv.org/abs/1809.05054

Simitsis, A., Koutrika, G., & Ioannidis, Y. (2008). Précis:

from unstructured keywords as queries to structured

databases as answers. The VLDB Journal, 17(1),

117-149. https://doi.org/10.1007/s00778-007-0075-9

Song, D., Schilder, F., Smiley, C., Brew, C., Zielund, T.,

Bretz, H., ... & Harrison, J. (2015, October). TR

Discover: A natural language interface for querying

and analyzing interlinked datasets. In International

Semantic Web Conference (pp. 21-37). Springer,

Cham. https://doi.org/10.1007/978-3-319-25010-6_2

Wang, C., Tatwawadi, K., Brockschmidt, M., Huang, P.

S., Mao, Y., Polozov, O., & Singh, R. (2018). Robust

text-to-SQL generation with execution-guided

decoding. arXiv preprint arXiv:1807.03100.

https://arxiv.org/abs/1807.03100

Warren, D. H., & Pereira, F. C. (1982). An efficient easily

adaptable system for interpreting natural language

queries. American Journal of Computational

Linguistics, 8(3-4), 110-122.

 https://dl.acm.org/doi/abs/10.5555/972942.972944

Xu, X., Liu, C., & Song, D. (2017). SQLNet: Generating

structured queries from natural language without

reinforcement learning. arXiv preprint

arXiv:1711.04436. https://arxiv.org/abs/1711.04436

Xue, L., Constant, N., Roberts, A., Kale, M., Al-Rfou, R.,

Siddhant, A., ... & Raffel, C. (2020). mT5: A

massively multilingual pre-trained text-to-text

transformer. arXiv preprint arXiv:2010.11934.

https://arxiv.org/abs/2010.11934

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.,

& Le, Q. V. (2019). XLNet: Generalized autoregressive

pretraining for language understanding. arXiv preprint

arXiv:1906.08237. https://arxiv.org/abs/1906.08237

Yih, W. T., He, X., & Meek, C. (2014, June). Semantic

parsing for single-relation question answering. In

Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics (Volume

2: Short Papers) (pp. 643-648).

 https://doi.org/10.3115/v1/P14-2105

Yu, T., Li, Z., Zhang, Z., Zhang, R., & Radev, D. (2018).

TypeSQL: Knowledge-based type-aware neural text-

to-SQL generation. 16th Annual Conference of the

North American Chapter of the Association for

Computational Linguistics, New Orleans.

https://arxiv.org/abs/1804.09769

Zelle, J. M., & Mooney, R. J. (1996, August). Learning to

parse database queries using inductive logic

programming. In Proceedings of the national

conference on artificial intelligence (pp. 1050-1055).

https://www.aaai.org/Papers/AAAI/1996/AAAI96-

156.pdf

Zheng, W., Cheng, H., Zou, L., Yu, J. X., & Zhao, K. (2017,

November). Natural language question/answering: Let

users talk with the knowledge graph. In Proceedings of

the 2017 ACM on Conference on Information and

Knowledge Management (pp. 217-226).

https://doi.org/10.1145/3132847.3132977

Liang, C., Norouzi, M., Berant, J., Le, Q., & Lao, N.

(2018). Memory augmented policy optimization for

program synthesis and semantic parsing. arXiv

preprint arXiv:1807.02322.

Zhong, V., Xiong, C., & Socher, R. (2017). Seq2SQL:

Generating structured queries from natural language

using reinforcement learning. arXiv preprint

arXiv:1709.00103. https://arxiv.org/abs/1709.00103

https://dl.acm.org/doi/abs/10.5555/972942.972944

