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Abstract: Plants are very important living organisms on earth because 

humans and animals depend on them for nutrition, oxygen, medicine and 

balance in the ecosystem. Therefore, plant species recognition is critical to 

the improvement of agricultural productivity, mitigation of climate change 

and the discovery of new medicinal plants. However, species recognition 

has remained a difficult task even for trained botanists, because using the 

traditional approaches, an expert on a specie may be unfamiliar with others. 

Thus, researchers and practitioners are increasingly interested in the 

automation of species recognition problem. Recently, deep learning 

algorithms such as Convolutional Neural Network (CNN) have provided 

huge breakthroughs in various computer vision tasks compared to their 

shallow predecessors. Deep learning automates features extraction by 

learning salient representations of the data and subsequently classifies the 

features using a supervised learning approach. Inspired by this capability, 

we leveraged on five pre-trained CNN models and Leafsnap image dataset 

of 185 plant species to experimentally evolve an accurate species 

recognition model in this study. Among the pre-trained models, 

MobileNetV2 with ADAM optimizer gave the highest testing accuracy of 

92.33%. This result provides a basis for developing a mobile app for 

automated species recognition on the field. This will augment existing 

efforts to alleviate the difficulties of manual species recognition by 

botanists, farmers, biologists, nature tourists as well as conservationists. 
 

Keywords: CNN, Leafsnap, MobileNetV2, Optimizer, Plant Species 
 

Introduction 

It is estimated that there are more than 450,000 plant 

species on earth and approximately 385,000 of these 

have been identified and classified (Pimm and Joppa, 

2015). Because of pollution, deforestation and climate 

change, many plant species have not been discovered yet 

and are at risk of extinction (Butler, 2020). Due to the 

shrinking number of botanists that can classify plants 

and the complexity of plant classification, it is necessary 

to design a computerized system for plant species 

identification. Many computer-based systems for plant 

identification have been designed using leaf analysis, 

DNA analysis, flower analysis, or a combination of these 

and other features (Kaur and Kaur, 2019). However, in 

current literature, leaf analysis remains the most popular 

approach used to identify a given plant, because leaves are 

visible and carry enough information to differentiate plant 

species. Meanwhile, feature extraction and selection are 

the most challenging and time-consuming steps when 

using leaf images to recognize plant species. Deep 

learning techniques came as a solution to achieve 

automatic feature extraction and selection in computer 

vision, especially with Convolutional Neural Networks 
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(CNN). Nonetheless, the selection of the appropriate CNN 

model for plant classification remains a daunting task. In 

this study, five state-of-the-art CNN models were 

employed, to automatically extract the salient features of 

different plant species in the Leafsnap dataset (Kumar et al., 

2012), hence, replacing the need for designing 

handcrafted features as in previous studies (Hall et al., 

2015). The empirical evaluation of these pre-trained CNN 

models presents an efficient tradeoff between accuracy 

and latency: MobileNetV2 (154 layers) outperformed 

other models-AlexNet (25 layers), GoogLeNet (144 

layers), VGG-19 (47 layers) and ResNet50 (177 layers) in 

the classification of plants’ leaf images. To build 

lightweight neural networks, MobileNetV2 uses depth-

separable convolutions. It has also been used in past 

studies for object recognition with promising results 

thus, encouraging the development of mobile and 

embedded vision applications (Howard et al., 2017). 
The rest of this paper provides a literature review of 

recent and influential works on the use of machine 
learning to recognize different species of plant as 
presented in section 2. Materials and methods are 
contained in section 3. Section 4 discusses the findings 
obtained and the discussion of the proposed methods and 
finally, in section 5, we present the conclusion.  

Related Works 

The role of plants in medicine, ecosystem 

maintenance and sustainable agriculture cannot be over-

emphasized, as it significantly fosters drug production 

and provides food for human consumption (Wu et al., 

2007). However, plant identification has been a 

challenging task for botanists, owing to the number of 

different and uncommon plant species, which exist. In 

modern research, automation is playing a significant role 

in solving plant identification problems, using different 

computational intelligence and deep learning techniques. 

Leaf Image Recognition with Neural Networks 

Research contributions in pattern recognition and image 

processing domain over the past decade have greatly 

influenced the development of models, which reduce the 

computational complexity and improve the accuracy of 

object recognition. More importantly, efficient and robust 

plant recognition systems have been developed to alleviate 

botanists’ efforts in plant species identification. 

The systematic review on the techniques for plant 

leaf recognition conducted by (Azlah et al., 2019) 

claimed that the traditional use of Artificial Neural 

Networks (ANNs) in classifying medicinal plant images 

with 63 leaf image samples, yielded an accuracy of 

94.4% (Azlah et al., 2019; Janani and Gopal, 2013). 

However, this method poses greater computational 

overhead and data overfitting tendency; showing the 

possibility of the poor performance of ANN on out-of-

sample data, while also discouraging its pragmatic 

deployment (Azlah et al., 2019). The need for a system 

capable of identifying large-scale plant species spurred 

(Wu et al., 2007) to propose an identification system for 

plants, which extracts twelve morphological and five 

geometric features based on leaf images’ shape and vein 

structure respectively. In the study, an image dataset 

named Flavia was created, which consists of 1,907 leaf 

images of 32 different plant species. For the dimension 

scaling of the input vector, principal component analysis 

was used before being fed into the three-layered 

Probabilistic Neural Network (P-NN) for image 

classification. An average accuracy of 90.32% was 

obtained and serves as a baseline for studies in the 

research domain. In the same vein, (Kaur and Kaur, 2019) 

adopted an image segmentation procedure, using the 

Swedish dataset consisting of 1,125 images of 15 plant 

species for plant species identification. Noise handling, 

with image resizing and enhancement, characterized the 

pre-processing of the images, while the image texture and 

colour features were extracted to describe the image. A 

Multiclass Support Vector Machine (MSVM) classifier 

was trained for training and testing using 70% and 30% of 

the image dataset, respectively. Average prediction 

accuracy of 93.26% was obtained using the MSVM 

classifier, outperforming the P-NN (Wu et al., 2007). 

Kaur and Kaur (2019) attributed the lag in the prediction 

accuracy to the extraction of limited image features. 

Further to the counter-performance attributed to the 
implementation of shallow networks, some authors made 
significant strides in using deep machine learning for tasks 
of image classification. Lee et al. (2015), employed a CNN 
model to automatically learn the feature representations of 

44 plant species collected at the Royal Botanic Gardens, 
Kew, England. A visualization technique based on 
deconvolutional networks was used to identify feature 
representation. The venation structure was chosen as the 
primary feature for plant species identification. Two sets 
of data, D1 (full leaf images) and D2 (cropped leaf images) 

were passed into the CNN model to check the performance 
and accuracy of the trained model for each dataset. The 
classification accuracies of 97.7% and 99.6% were obtained 
for D1 and D2 respectively, making D2 preferable. 
Similarly, a 26-layer deep CNN (i.e., ResNet26) with 8 
residual building blocks for large-scale identification of 

plants in the wild was proposed by Sun et al. (2017). The 
model sought to address the challenges, which 
characterize the traditional handcrafted feature-based 
classification method. In the research, a total of 10,000 
plant images (containing 100 ornamental plant species) of 
100 image samples per species, from the Beijing Forestry 

University campus were collected using a mobile phone. 
The model parameter was trained using the Stochastic 
Gradient Descent (SGD) algorithm, with the 
categorical_crossentropy loss function as the optimization 
function. The recognition accuracy of ResNet26 was 



Emmanuel Adetiba et al. / Journal of Computer Science 2021, 17 (3): 349.363 

DOI: 10.3844/jcssp.2021.349.363 

 

351 

compared with other ResNet models (Bodhwani et al., 
2019) with results showing 91.78%, 89.27%, 88.28% 
and 86.15% accuracy for ResNet26, ResNet18, 
ResNet34 and ResNet50 respectively. It was observed 
that ResNet26 provided faster and robust convergence 
among other ResNet models. 

In an attempt to differentiate between individual plant 
species, Lasseck (2017) proposed a Deep CNN (DCNN) 

technique to classify 10,000 plant species using an 
image-based identification method. Plant images were 

retrieved from the Encyclopedia of Life dataset and 
PlantCLEF 2016 dataset for training. Models of three 

DCNN architectures - GoogLeNet, ResNet152 and 

ResNeXT, were used for training and classification of 
the plant images. To gain diversity across models, the 

training images were rescaled to various dimensions and 
random cropping was carried out. The models’ 

performance on the test dataset was evaluated using 

Mean Reciprocal Rank (MRR), top-1 and top-5 
accuracy, with results of 92.0%, 88.5% and 96.2% 

respectively. The sheer desire for an optimum 
performance inspired Ghazi et al. (2017) to employ 

DCNNs-AlexNet, GoogLeNet and VGGNet, with the 
optimization of transfer learning parameters to uniquely 

classify different plant species. To fine-tune the three 

pre-trained models, using the LifeCLEF 2015 plant 
image datasets, the transfer learning approach was 

adopted. Data augmentation techniques were used to 
artificially increase the datasets, thereby mitigating the 

overfitting of the models. An empirical evaluation was 

carried out on AlexNet, GoogLeNet and VGGNet based 
on the optimization parameters and dataset, to identify 

the different factors which affect the performance of 
each of the deep CNNs. Results from the comparative 

study showed that VGGNet, GoogLeNet and AlexNet 

ranked 1st, 2nd and 3rd respectively in the prediction 
accuracy, with VGGNet having an accuracy of 78.44%. 

The factors, which affected the performance of the 
models are the number of iterations used and poor data 

augmentation methods. 

Convolutional Neural Networks 

The advancement in image processing, pattern 

recognition and computer vision has brought about the 

upsurge in the use of deep neural networks in the field 

of image classification. Relatively, a lot of shallow 

neural network classifiers have been reported to pose 

problems of data overfitting, which greatly affects how 

objects or images are classified (Janani and Gopal, 

2013; Sweetwilliams et al., 2019; Alaba et al., 2020; 

Akanle et al., 2020), hence, the advent of CNN to 

mitigate the vanishing gradient problem. A CNN is a 

supervised deep learning method that employs the use of 

convolution mathematics, which is the process of 

implementing a 2-D convolution with a filter on an input 

image, in at least one of the network layers. A deep CNN 

consists of an input layer that contains image data of m 

training examples, multiple hidden layers that compute 

features from input images and an output layer, which 

classifies the learned images. Deep learning models 

employ non-linear transformation functions to solve 

complex large-scale problems (Reyes et al., 2015; Li et al., 

2016; Badejo et al., 2018). As shown in Figure 1, the 

hidden layers consist of stacked convolution layers that 

convolve using a Rectified Linear Unit (ReLU) 

activation (or transfer) function, as well as a pooling 

layer, which reduces the dimension of the convoluted 

image. The Fully Connected (FC) layer connects each 

input to the next layer (classification layer) from the 

previous layer. Significant achievements have been made 

through the application of deep learning models in image 

processing, natural language processing and speech 

recognition tasks, thereby paving the way for more 

predictive analysis of big data (Li et al., 2016). The 

description of the aforementioned layers can be 

mathematically represented as shown in Equation (1)-(7): 
 

H W DX     (1)  
 

A colour (RGB) image X is a three-dimensional 

matrix of H rows (height), W columns (width) and D 

channels (depth) denoted as H × W × D. For a colour 

image, D = 3, which stores each of the Red, Green and 

Blue pixel (px) value in the range 0 < px < 255. The 

RGB image is fed into the first convolution layer, which 

extracts salient image features. The output of each 

convolution layer gives a feature map (G), obtained from 

the kernel computation: 
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Where: 

Hm = Previous layer’s image height 

Hn = Current convolution layer’s output image height 

Wm = Previous layer’s image width 

Wn = Current convolution layer’s output image width 

F = Filter, K = number of filters, P = padding and S = 

stride. 
 

The feature map G = Hn × Wn × Dn passes through 

the Rectified Linear Unit (ReLU) activation function, 

which normalizes and converts all negative values to 

zero. It is expressed as: 
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Fig. 1: Deep CNN architecture 
 

A pooling layer, which performs non-linear down 
sampling of the feature map reduces the dimension of the 
convoluted image. There are two options of pooling - 
max and average pooling. Max pooling uses the 
maximum computed feature map value, while the 
average pooling uses the average. The Fully Connected 
(FC) layer, which is the last learning phase, maps the 
extracted features from the previous layers to the output 
labels by summing the weighted inputs of each layer: 
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Where: 

 l
jG  = The sum of weighted inputs for the neurons 

in each layer 
 l
ja   = The activation of the lth layer’s weighted 

inputs 
   1l l

j jW a


  = The element-wise product of each layer’s 

neuron weight and the previous layer’s 

activation 
 l

b   = The updated bias in each layer 
 l
j   = Represents the activation function for each of 

the neurons j in layer l 
 

Lastly, a softmax layer, which performs multiclass 
classification using discrete probability distribution 
(Jiang et al., 2020) generates the predicted corresponding 
output label (class) for each feature map, with the 
highest probability being the prediction target as shown 
in Equation (8): 
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Whilst most studies (Kaur and Kaur, 2019; Wu et al., 

2007; Lee et al., 2015; Bodhwani et al., 2019) addressed 

plant identification from a single neural network 

perspective using plant datasets, other studies (Sun et al., 

2017; Lasseck, 2017; Ghazi et al., 2017) carried out a 

comparative analysis on the performance of at most three 

deep neural network models. However, it is imperative 

to evaluate the performance of a number of the state-of-

the-art deep CNN models using rich and robust datasets, 

while demystifying the factors affecting each model for 

optimum prediction accuracy. Hence, this paper 

addresses the problem of using heuristic methods in 

plant species identification through rigorous 

experimentation of pre-trained deep CNN models, which 

include AlexNet, GoogLeNet, VGG-19, ResNet50 and 

MobileNetV2 for the recognition of plant species based 

on the Leafsnap image dataset. 

Pre-Trained CNN Models 

The robust application of deep learning in several 

problem domains has yielded commercial success, 

owing to the paradigm shift from traditional Machine 

Learning (ML) methods to Transfer Learning (TL). In 

contrast to traditional learning where knowledge for a 

trained model is not retained, transfer learning allows the 

learning of new tasks from the knowledge (such as 

features, weights and hyperparameters) of previous 

tasks, thereby making the learning process of a model 

faster, efficient and accurate (Li et al., 2017). Figure 2 

shows the difference between the traditional ML and TL. 

The pre-trained CNN models used in this study have 

been trained on a large dataset containing thousands of 
classes and millions of samples and are hereafter 
succinctly described. 

a) AlexNet 

The AlexNet, which was trained to identify about 1.2 

million high-resolution images of 1,000 classes from the 
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ImageNet Large-Scale Visual Recognition Challenge 

(ILSVRC) dataset, was developed by (Krizhevsky et al., 

2017). The neural network consists of 650,000 neurons 

and 60 million parameters, including five convolutional 

layers, two normalization layers, three max-pooling 

layers, three fully connected layers and one softmax 

layer, with the ReLU activation function applied 

between the convolutional layers and fully connected 

layers. AlexNet (Krizhevsky et al., 2017) uses a dropout 

regularization method (Srivastava et al., 2014) to reduce 

overfitting of the model and it is renowned for winning 

the ILSVRC 2012. The image input size, H × W × D, of 

the network is 227×227×3. 

b) GoogLeNet 

Szegedy et al. (2015) developed the GoogLeNet - 

an inception architecture, which combines multi-scale 

processing and dimension reduction. GoogLeNet, 

because of its reputation, won the ILSVRC 2014 

competition, as it enables an increment in the depth 

and width of the network, towards an improved 

generalization. It possesses 6.8 million parameters 

from nine inception modules, two convolutional 

layers, four max-pooling layers, one average pooling 

layer, two fully connected layers and a softmax layer, 

with the ReLU activation function applied in all the 

convolutional layers. The image input size, H × W × 

D, of the network is 224×224×3. 

c) VGG-19 

The ILSVRC 2014 challenge paved the way for 

several deep learning models to emerge, such as the 

VGGNet, which investigates the effects of depth 

increment on the performance of a convolutional 

network, using a homogeneous architecture. Developed 

by (Simonyan and Zisserman, 2014), VGG-19, a variant 

of the VGGNet, consists of 144 million parameters from 

16 convolutional layers, five max-pooling layers, three 

fully connected layers and a softmax layer in the output. 

The image input size, H × W × D of the network is 

224×224×3. According to Ghazi et al. (2017), the 

VGGNet provides optimum performance in transfer 

learning tasks but poses computational complexities 

owing to a large number of inherent parameters 

compared to AlexNet (Krizhevsky et al., 2017) and 

GoogLeNet (Srivastava et al., 2014). 

d) ResNet50 

He et al. (2016) presented a ResNet learning 

model, referred to as deep residual nets, to address the 

degradation problem with deeper networks. ResNet50, 

a residual network with 50 layers employs the 

“shortcut connection concept” by explicitly letting 

the stacked layers fit a residual mapping   , ix W , 

rather than stacking each layer directly. This is shown 

in Equation (9), which describes the stacked layers’ 

approximation of a residual function. Equation (10) 

and (11) show the shortcut connections, where x, y 

and (𝑎) are the input vectors, output vectors and ReLU 

function respectively of the layers considered (Sun et al., 

2017). The residual network with 50 layers, consists 

of 48 convolutional layers, a max-pooling layer and a 

fully connected layer and has an image input size H × 

W × D of 224×224×3: 
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Fig. 2: Traditional ML vs Transfer Learning (Li et al., 2017) 
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Fig. 3: Visualization of the pre-trained deep CNN models 
 

e) MobileNetV2 

Sandler et al. (2018) developed the MobileNetV2 
architecture for object detection. MobileNetV2 is an 
improvement over MobileNetV1 (Howard et al., 2017), as 
it uses depthwise separable convolution as efficient building 
blocks. For mobile applications, the model focuses on 

multiple image classification tasks and contains the initial 
convolution layer with 32 filters and 19 residual bottleneck 
layers. The model has an image input size H × W × D of 
224×224×3 and uses 3.4 million parameters for training. 
Figure 3 illustrates all the CNN models evaluated in this 
study and their corresponding depths (layers). 

Research Methodology 

CNNs have been known for successfully demystifying 
image classification and object identification problems. 
They are widely utilized for training on extensive datasets 
while using high-performance computing hardware 
including the Graphical Processing Unit (GPU) and/or 
Tensor Processing Unit (TPU). This study uses the 

Leafsnap dataset in the training of five state-of-the-art 
deep CNNs-AlexNet, GoogLeNet, VGG-19, ResNet50 
and MobileNetV2 for image classification. This section 
discusses image acquisition, pre-processing and how 
transfer learning, using pre-trained CNN models, was 
employed for plant species recognition. The pattern 

recognition and image classification techniques employed 
by the CNN models are also explained. All the 
experiments were conducted using the MATLAB R2020a 
software on an Ubuntu 18.04.4 Linux server with a 2.00 
GHz Intel Xeon(R) CPU (7.7 GB memory) and a 
GeForce GT 650 M GPU (12 GB memory). Figure 4 

shows the block diagram that graphically illustrates the 
methodology in this study. 

Data Acquisition  

The first step in the process of plant species 

recognition research is the collection of plant images. 

Intuitively for plant species recognition, images of leaf, 

flower, stem, or fruits can be used to distinguish each 

plant (Kaur and Kaur, 2019). However, in most studies, 

leaf images have been used for plant species recognition, 

as deep neural network models uniquely extract salient 

features from each leaf image. For the large-scale 

recognition of plants, the Leafsnap dataset, which 

consists of 185 plant species, was used in this study to 

train the CNN models. The plant species are mainly 

found in the Northeastern United States and acquired in 

Columbia University, the University of Maryland and 

the Smithsonian Institution (Kumar et al., 2012). The 

dataset contains at least 7,500 field images captured by 

mobile devices (iPads and iPhones) in the outdoor 

environment, with varying levels of noise, blur, shadows 

and illumination patterns. Figure 5 shows some of the 

samples from the dataset. To build a visual recognition 

system for automatic plant species identification, the 

robust Leafsnap dataset was used (Kumar et al., 2012). 

Pre-Processing 

Data pre-processing in deep learning, as elicited in 

this study, enhances the Leafsnap dataset before each 

model is trained on it. First, the images were resized to 

match the input layer dimension for each model, after 

which training and validation were carried out on the 

image datasets. Data augmentation, which is a technique 

for creating diverse image variations to increase the size 

of the datasets, was employed to artificially create 

variations in the existing image dataset. This was carried 

out by configuring the image augmentation options for 
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deep learning. Specifically, the properties of the image 

data augmenter object were set to randomly translate the 

images up to 30 pixels horizontally and vertically. Other 

image transformation methods include scaling, flipping, 

cropping, rotation and padding. These allow each model 

to train on a larger image dataset. 
 

 
 

Fig. 4: Block diagram of leaf images recognition using deep learning (CNN) 
 

 
 

Fig. 5: Sample images of the LeafSnap dataset 

Training 

images 
Pre-processing 

Deep learning 

model 
configuration 

and training 

Feature 

vectors 

Dataset Class labels 

Training phase 

Feature 

vectors 

Pre-processing 

Testing phase 

New 

image 

Trained 
deep 

learning 

model 

Recognised 

species 

Pinus esinosa Ptelea.rifoliata Quercus humardii 

Fagus randifolia Zelkova errata Cryptomeria.aponica 



Emmanuel Adetiba et al. / Journal of Computer Science 2021, 17 (3): 349.363 

DOI: 10.3844/jcssp.2021.349.363 

 

356 

CNN Model Development 

Training a machine learning model (Fig. 4) requires 

bridging the gap between the observed training data 

labels and the prediction of the model. Through 

interactive visualizations, the model parameters (weights 

and biases) were defined to minimize the cost function J 

over the entire training dataset for optimum model 

performance as shown in Equation (12): 
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Where: 

mb = The size of the training data referred to as the 

mini-batch size for each iteration, 

L(i) = The loss obtained for a single training example x(i) 

labeled y(i). 

 

However, it is expedient to choose appropriate values 

of hyperparameters such as the learning rate α and batch 

size mb, to reduce the cost function and accelerate 

optimization while enabling model convergence to the 

global minima. This is critical as the selection of a small 

or large learning rate leads to slow convergence or 

overshooting respectively (Katanforoosh et al., 2020). 

Notably, the batch size, which is the number of samples 

used to train the models in each iteration, influences the 

convergence of the cost function. For improved training 

accuracy and quicker updates, the mini-batch size was 

set to a small value, as larger values could cause the 

models to overfit instead of generalizing. Also, the 

training was terminated at 100 epochs, when the 

validation loss stops decreasing and before the models 

lose generalization capacity. Table 1 shows the 

configuration parameters and network training options 

used for the experiments in this study. 

Whilst the learning rate and mini-batch size 

significantly influence the efficiency of CNN models, 

the choice of the optimization algorithms is also crucial 

as they make it possible for the deep neural network 

models to learn or train with the dataset. However, the 

speed of convergence given an optimization algorithm is 

a factor, which determines the performance of models. 

To evaluate the performance of the CNN models 

selected for this study, three optimizers, namely-

Stochastic Gradient Descent with Momentum (SGDM), 

Adaptive Moment (ADAM) estimation and Root Mean 

Square Propagation (RMSProp) were used to compute 

the neurons’ activation (Katanforoosh et al., 2020). The 

update rule, as shown in Table 2, shows how the 

gradients are calculated for each model. 

 
Table 1: Network configuration parameters 

Parameter Value 

Batch size 10 

Learning rate 0.0001 

Epochs 100 

Validation frequency 30 

Execution environment GPU 

 
Table 2: Definition and characteristics of optimization algorithms 

Algorithm Update rule Characteristics 

SGDM  1dW dWS S dW     a) It requires applying exponential smoothing to the computed gradient. 

 
dWW W S   b) It performs better than conventional gradient descent. 

  c) It uses more memory than ADAM and RMSProp and requires hyperparameter tuning. 

ADAM  1 11dW dWS S dW      a) The hyperparameters are predefined and require no tuning. 

   2

2 21dW dWV S dW      b) It uses more memory for specified batch size. 

 
 11

dW
dW t

S
Scorr





  c) It is mostly the default optimizer used in machine learning. 

 
 21

dW
dW t

V
Vcorr





  

 dW

dW

Scorr
W W

Vcorr



 


  

RMSPROP   21dW dWV V dW     a) It uses more memory for a given batch size than SGDM, but less than ADAM. 

 

dW

dW
W W

V



 


 b) It normalizes the impact of the learning rate decay. 

  c) It maintains per-parameter learning rates. 
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IN this research, the first experiment was carried out 

to train the five deep CNN models (AlexNet, 

GoogLeNet, VGGNet, ResNet50 and MobileNetV2) 

using the original Leafsnap dataset (non-augmented), 

while the second experiment was carried out using the 

augmented Leafsnap dataset for the training of the 

models for improved generalization. The dataset was 

split into 8:2 ratios for training (i.e., 6000 images) and 

testing (i.e., 1500 images) respectively. 

Results and Discussion 

In this section, the performance assessment of the 
CNN models trained on the Leafsnap dataset is 
presented, while identifying the model with the best 
tradeoff between the validation accuracy and training 
time. Each model was trained at 100 epochs with 600 
iterations per epoch. Table 3 shows the performance 
comparison between the pre-trained CNN models 
examined in this study for the first experiment using the 
non-augmented Leafsnap dataset. Results from the 
experiment show that VGG-19 with SGDM and 
MobileNetV2 with ADAM gave the best performance, 
each with a validation accuracy of 91.86%, while 

GoogLeNet with RMSProp gave the worst performance 
with a validation accuracy of 4.00%. However, the 
training time shows that VGG-19 trains faster on the 
Leafsnap dataset than MobileNetV2. Figures 6 and 7 
show the evolution of the validation accuracy for each of 
the best performing models on the non-augmented 
dataset respectively. For the second experiment, Table 4 
shows the performance result of the pre-trained CNN 
models using the augmented Leafsnap dataset. Results 
from the experiment show that MobileNetV2 with 
ADAM and ResNet50 with SGDM gave the best 
performance and second-best validation accuracies of 
92.33% and 92.13% respectively, while GoogLeNet with 
RMSProp gave the poorest performance with a 
validation accuracy of 1.73%. Figures 8 and 9 show the 
evolution of the validation accuracy for MobileNetV2 
and ResNet50 on the augmented dataset respectively. 
Also, it is noteworthy that the depth of the CNN models, 
as shown in Fig. 3 determines the overall training time as 
illustrated further in Fig. 10 and 11. This observation is 
critical because it will help machine learning experts to 
make informed decisions on model selection for 
classification tasks while considering the computation 
time as a significant factor. 

 

 

 

Fig. 6: Validation Accuracy using VGG-19 with SGDM for Non-Augmented Dataset 
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Fig. 7: Validation accuracy using MobileNetV2 with ADAM for non-augmented dataset 

 

 
 

Fig. 8: Validation accuracy using MobileNetV2 with ADAM for augmented dataset 
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Fig. 9: Validation accuracy using ResNet50 with SGDM for augmented dataset 

 

 
 

Fig. 10: First experiment without data augmentation 
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Fig. 11: Second experiment with data augmentation 

 

 
 

Fig. 12: Comparison plot of ADAM, RMSProp and SGDM 
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images (7,500) in the Leafsnap dataset was captured on 

the field with mobile devices. Thus, it became apparent 

while MobileNetV2 gave the overall best accuracy since 

it was originally optimised for multiple image 

classification tasks on mobile applications (Kumar et al., 

2012; Sandler et al., 2018). To corroborate the findings 

in this study, previous studies have also reported that 

MobileNetV2 is efficient on various recognition tasks 

such as object detection, landmark recognition and facial 

recognition (Howard et al., 2017; Uchida, 2020). 

 
Table 3: Performance result of the original Leafsnap dataset (without augmentation) using pre-trained CNN models 

CNN model Optimizer Accuracy (%) Training time (seconds) Rank 

AlexNet SGDM 89.33 11,111 8th 

 ADAM 80.92 16,826 11th 

 RMSProp 46.96 13,112 13th 

GoogLeNet SGDM 89.33 53,886 8th 

 ADAM 89.99 76,620 4th 

 RMSProp 4.00 57,953 14th 

VGG-19 SGDM 91.86 68,026 1st 

 ADAM 75.38 62,290 12th 

 RMSProp 2.94 60,929 15th 

ResNet50 SGDM 89.59 66,786 7th 

 ADAM 90.99 99,055 3rd 

 RMSProp 89.73 74,414 6th 

MobileNetV2 SGDM 87.79 74,164 10th 

 ADAM 91.86 100,263 2nd 

 RMSProp 89.79 93,338 5th 

 
Table 4: Performance result of the augmented Leafsnap dataset using pre-trained CNN models 

CNN model Optimizer Accuracy (%) Training time (seconds) Rank 

AlexNet SGDM 91.06 13,708 6th 

 ADAM 86.39 15,868 10th 

 RMSProp 29.22 12,771 13th 

GoogLeNet SGDM 90.86 53,304 7th 

 ADAM 89.66 68,764 9th 

 RMSProp 1.73 61,602 15th 

VGG-19 SGDM 91.66 60,878 5th 

 ADAM 82.52 62,790 12th 

 RMSProp 2.94 60,613 14th 

ResNet50 SGDM 92.13 71,254 2nd 

 ADAM 85.99 87,778 11th 

 RMSProp 91.86 84,879 3rd 

MobileNetV2 SGDM 90.26 74,403 8th 

 ADAM 92.33 120,009 1st 

 RMSProp 91.79 89,221 4th 

 

Conclusion 

In this study, we have presented the development of 
automated plant species identification model through 
rigorous experimentations with five state-of-the-art pre-
trained CNN models (i.e., AlexNet, GoogLeNet, VGG-
19, ResNet50 and MobileNetV2) and the Leafsnap 
plant image dataset. Our experimental results showed 
that MobileNetV2 gave the best-fit model when tuned 
with ADAM optimizer by posting an accuracy of 
92.33%. This provides a baseline for further studies in 
the application of deep learning and leaf images for 
plant species identification. In the future, we plan to 
improve the accuracy of the model and adapt it to 
indigenous plant species in African countries. 
Ultimately, we hope to develop a mobile app or 
customized portable digital device based on this effort, 

to ease the task of plant species identification among 
botanical and allied professionals. 
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