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Abstract: In recent years, Distributed Denial of Services (DDoS) attacks 

have caused significant losses to industry and government due to an 

increasing number of devices connected to the Internet. These devices use 

services-over-Internet more frequently with services characterized and 

provided seamlessly by 5G, Cloud and Edge Computing. According to 

Cisco Annual Internet Report, the frequency of DoS/DDoS attacks has 

increased more than 2.5 times over the last 3 years and the average size of 

attacks is increasing steadily and approaching 1 Gbps. Therefore, there 

are cyber threats continuing to grow even with the development of new 

protection technologies. Our work is strongly motivated from with the 

goal to study and evaluate four Machine Learning models toward 

development of an Online Network Intrusion Detection System (N-IDS). 

This article studies on the application on three feature selection 

algorithms combined with four machine learning models applied to N-

IDS. We have implemented performance evaluation our proposed model 

on three up-to-date DoS/DDoS datasets. We have shown that Feature 

Importance and K-Nearest Neighbors’ algorithm (KNN) can give better 

results in all benchmark datasets than previous work and the empirical 

results of all four machine learning models and three feature selection 

algorithms are also presented in detail.  

 

Keywords: DDoS, Network Security, Intrusion Detection, Attack 

Classification 

 

Introduction 

In recent years, Denial of Service (DoS) and Distributed 

Denial of Service (DDoS) attacks are among the most 

common attacks in cyber-attacks (Lima Filho et al., 2019). 

Internet provides an open environment in which any host 

can communicate with others. There is an increasing 

number of devices/mobiles connected to the Internet and 

using services-over-Internet due to the fast development 

of Ubiquitous Computing, Internet of Things (IoT) 

model with services characterized and provided 

seamlessly by 5G, Edge Computing. The main objective 

of an attacker is to take down services of the websites, 

Intranet’s enterprises or prevent users using specific 

service over Internet. According to (Cisco Annual 

Internet Report, 2018-2023), the frequency of 

DoS/DDoS attacks has increased more than 2.5 times 

over the last 3 years and the average size of attacks is 

increasing steadily and approaching 1 Gbps. These 

attacks are strong enough to take most organizations 

completely offline. Denial of Service DDoS attacks can be 

performed using a botnet network controlled by the 

attacker. The owner of the compromised computer system 

is unaware the botnet is installed in their computers or 

they are part of a botnet network. With increasing number 

of Internet users, DDoS attack has become the second 

most significant threat after virus infection to the Internet 

users (Gupta et al., 2009). Moreover, the individual attack 

can launch the attack easy by open source tools quite easy 

on Internet. Gupta et al. (2009; 2010), the authors 

classify DDoS attacks into two broad categories by 

flooding attacks and logical attacks. Flooding attacks 

create huge of traffic at the victim side which makes the 

target computer incapable of handling request from the 

legitimate users. There are several types of flooding 

attacks such as SYN Flooding, ICMP, UDP Flooding, 
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etc. In logical attack, the attackers exploit known 

software bugs to implement such as Ping of Death, 

Teardrop and Land attack. Network Intrusion Detection 

System (N-IDS) plays an extremely important role in 

security management which can support network 

administrators to detect such type of DoS/DDoS about 

unusual behaviors where a traffic flow might be an 

attack or normal traffic flow. Currently, network 

administrators apply some solutions such as firewalls to 

prevent some unwanted traffics, but the network 

manager have to detection by its own technique. In the 

traditional rule-based N-IDS, the rules are usually pre-

defined by the security experts and need to be updated 

regularly such as Snort, Suricata (Karthikeyan and Indra, 

2010; Turner et al., 2016). The advantage of rule-based 

N-IDS is that we can detect specific attacks in detail to 

give better accuracy and reduce false alarms. However, 

with the increasing of traffic flow, it is difficult for 

network experts to follow the system (Srivastava et al., 

2011). Therefore, we propose a smart N-IDS which can 

capture network traffic and able to analyze and detect 

network anomalies automatically. With the rapid 

development of machine learning models, several 

methods have been proposed to build a knowledge 

system on the IDS system (Gupta et al., 2009; 2010; 

Karthikeyan and Indra, 2010), where abnormal traffic 

can be detected and prevented automatically. Another 

type of N-IDS based on statistical analysis which 

analyze statistical behavior of users to find abnormal 

behaviors based on assumption that malicious traffic 

differs from typical user behavior traffic (Chellam et al., 

2018). In recent years, both industry and academia make 

a huge effort to address this problem. There are several 

approaches, ranging from filtering-based approaches 

(Savage et al., 2000; Song and Perrig, 2001; Argyraki and 

Cheriton, 2005; Mahajan et al., 2002; Ioannidis and 

Bellovin, 2002; Liu et al., 2008), capability-based 

approaches (Yaar et al., 2004; Yang et al., 2008; Liu et al., 

2010; 2016). We believe that a knowledge system which 

inherit latest development of machine learning models to 

combat the risks is extremely important (Panja et al., 

2014; Zwass, 2018; Fuchsberger, 2005). Some related 

works based on statistical methods (Larranaga et al., 

2013) and Bayes algorithm (Seraphim et al., 2018) are 

typical representative algorithms in this field. An expert 

system is currently the most feasible solution which uses 

artificial intelligence to solve problems in a field that 

requires human expertise. The application of machine 

learning algorithms is a breakthrough that provide us an 

efficient tool to apply N-IDS in practice and can be 

found in detail in (Khraisat et al., 2019; Dali et al., 

2015). Moreover, Deep learning is a subset of machine 

learning that outperforms the traditional machine 

learning by learning to represent the data as a nested 

hierarchy of concepts. A general survey of Anomaly 

Detection using Deep Learning can be found in 

(Chalapathy and Chawla, 2019). The rest of paper is 

organized as follows. Section 2 gives an overview of 

related works and application of machine learnings 

models to N-IDS and its related benchmark datasets. 

Section 3 presents our proposed model for evaluation of 

machine learning models with several feature selection 

algorithms. Section 4 introduces performance comparison 

and finally, conclusions are given in section 5. 

Related Work  

Machine Learning Models to Network Anomaly 

Detection 

In this study, we choose four popular machine 

learning algorithms which are k-Nearest Neighbors’ 

algorithm (KNN) (Altman, 1992), Adaptive Boosting 

(AdaBoost) (Gandhi, 2018), Random Decision Forests 

(RandomForest) (Ho, 1995) and Support Vector 

Machine (Cortes and Vapnik, 1995) for our model. The 

motivation is that those algorithms are recent works on 

applying machine learning to N-IDS and they provide 

better results and lower processing time compared to 

others (Khraisat et al., 2019; Dali et al., 2015). In pattern 

recognition, the k-Nearest Neighbors’ algorithm (k-NN) 

is a non-parametric method proposed by Thomas Cover 

used for classification and regression (Altman, 1992). 

Among all these data mining techniques, KNN was 

used prominently due to its better accuracy and 

detection rates. Wang et al. (2009), the authors use 

attribute normalization to improve the performance of 

intrusion detection on three methods, KNN, Principal 

Component Analysis (PCA) (Jolliffe, 1986) and SVM. 

KDD Cup 1999 dataset is used to evaluate the 

normalization schemes and the detection methods (UCI, 

1999). Panda et al. (2012), the authors proposed a 2-

class classification strategy on an early version of    

NSL-KDD dataset with 10-fold cross validation method. 

Their proposed model produced a high detection rate and 

low false alarm rate between normal and anomaly traffic. 

Jamshidi and Nezamabadi (2013), the authors introduced 

a nonlinear valuation function based on lattice based 

nearest neighbor classifier to tune the performance of the 

intrusion detection and was evaluated by an old KDD 

Cup’99 dataset. Tharwat et al. (2013), the authors 

designed and developed three different classifiers based 

on KNN classifier’s concept for facial age estimation to 

achieve high efficiency. Rao and Swathi (2017) adapted 

two fast KNN classification algorithms i.e., Indexed 

Partial Distance Search k-Nearest Neighbor (IKPDS), 

Partial Distance Search k-Nearest Neighbor (KPDS) and 

comparing with traditional KNN classification for 

Network Intrusion Detection on NSL-KDD dataset 2017 
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(NSL-KDD, 2009). Benaddi et al. (2018), the authors 

propose to use PCA-fuzzy Clustering-KNN method 

which ensemble of Analysis of Principal Component and 

Fuzzy Clustering with K-Nearest Neighbor feature 

selection technics to detect anomalies. 

Adaptive Boosting (AdaBoost) is a machine 

learning meta-algorithm proposed by Yoav Freund and 

Robert Schapire who won the 2003 Gödel Prize for 

their work (Zhang et al., 2005). AdaBoost is classified 

as boosting class (or sometimes referred as ensemble 

learning approach) because it aims to convert weak 

classification algorithms, correct previous algorithm 

errors then finally get a strong classifier. Shahraki et al. 

(2020), the authors investigate the feasibility of N-IDS 

by means of the most famous version of the boosting 

algorithms, including Real AdaBoost (Schapire and 

Singer, 1999), Gentle AdaBoost (Friedman et al., 2000) 

and Modest AdaBoost (Vezhnevets and Vezhnevets, 

2005) on five public IDS datasets. 

Random Forests (RF) is an ensemble learning method 

for classification, regression which construct a multitude 

of decision trees at training time and outputting which is 

classification or regression of the individual trees (Ho, 

1998; Biau, 2012). Following (Resende and Drummond, 

2018), RD uses multiple decision trees for layering. The 

algorithm assumes that if a sample is layered by multiple 

decision trees, whichever layer is chosen by most trees, 

then this sample will be assigned to that class. Efron 

(1979), several authors show that RF model applied in 

N-IDS is efficient with low false alarm rate and high 

detection rate. For more accuracy, RF uses a process 

which is called Bootstrapping. Bootstrapping is a 

statistical resampling technique that involves random 

sampling of a dataset with replacement (Peng et al., 

2002). In addition, to make sure the decision trees are 

different, RF will randomly skip a few questions when 

building a decision tree. In this case, if the best question 

is not selected, the next question will be selected to build 

the tree. This process is called attribute sampling. 

Support Vector Machine (SVM) is an efficient 

classification technique in a wide variety of problems 

(Thai et al., 2012) which often provides considerable 

improvement over competing methods. Winter et al. 

(2011), the authors proposed a lightweight IDS that uses 

a one-class SVM to analyze incoming net-flows for 

analysis. Goeschel (2016), the authors proposed to 

combine a linear SVM, decision trees and Naïve Bayes 

to reduce the number of false alarms of the IDS and 

evaluation model on the old KDD Cup’99 dataset (UCI, 

(1999). Lee et al. (2005), the authors proposed an IDS 

model which consists of a one-class SVM for anomaly 

detection during an initial analysis, a multi-class SVM 

for traffic classification in the four classes (i.e., Denial-

of-Service, Remote to local, User to root and Probing 

attacks) and a final clustering process. Khan et al. 

(2007), the authors proposed a new approach for 

enhancing the training process of SVM when dealing 

with large training datasets. This work combines the use 

of SVM and clustering analysis to reduce the number of 

instances used during the computation of the support 

vector margin, which, in turn, reduces the training time 

without affecting the results. Sahu et al. (2019), the 

authors used an ensemble approach of supervised (SVM) 

and unsupervised (K-Means) to detect the anomaly 

patterns which provides more than 99% on three 

benchmarked datasets. 

Feature Selection 

Our work is strongly motivated by (Lima Filho et al., 

2019) where the model does not process on all features 

of a network traffic flow which implement feature 

selection before training phase. Feature selection is an 

important step in the pattern recognition process and 

consists of defining the smallest possible set of variables 

capable of efficiently describing a set of classes 

(Ganapathy et al., 2013). According to (Miao and Niu, 

2016), due to presence of noisy, redundant and irrelevant 

dimensions of large-scale data which can not only make 

learning algorithms very slow and even degenerate the 

performance of learning tasks. Benefits of feature 

selection are preventing overfitting (less redundant data 

helps to reduce opportunity to result decisions based on 

noise) and reducing training time (fewer data reduces 

algorithm complexity). In this study, we proposed to use 

Principal Component Analysis (PCA) (Wold et al., 1987; 

Shlens, 2014), Feature Importance (Abualigah et al., 

2017), Univariate Selection (Rahman and Xu, 2004) 

instead of Recursive Feature Elimination with Cross-

Validation technique used in (Lima Filho et al., 2019). 

PCA is a statistical method which projects data in a 

higher dimensional space into a lower dimensional space 

by maximizing the variance of each dimension. PCA 

builds new coordinate axes, has the ability to represent 

data equally well and ensures the variability of the data 

on each new dimension. PCA can discover the relation 

of feature in the new space, it is difficult to detect if 

placed in the old space because these relations are not 

visible. Feature Importance refers to the feature selection 

technique which gives us a score for each feature from 

network traffic data in which the higher the score more 

important or relevant is the feature towards our output 

variable. The importance characteristic is very useful to 

understand more about the data, the model and we can 

choose to remove features has lower importance and vice 

versa. Univariate feature selection examines each feature 

individually to determine the strength of the relationship 

of the feature with the response variable. Both FI and US 

help us choose redundant features to remove, sampling 

fewer features of traffic, saving system storage space. 

These methods are simple and particularly good for us to 
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obtain a better understanding of data (Rahman and Xu, 

2004). With FI, we propose using Extra Trees to 

estimate importance for each feature because Extra Trees 

uses random split can save more computation time than 

Random Forest using best split and then, we set 

threshold by SelectFromModel to keep the number of 

feature important. Features have higher importance or 

equal this threshold will be selected. US also calculate 

the score for each feature, so in this proposed system, we 

use SelectKBest in Pycharm to select features what we 

would like to keep by setting a threshold. 

Benchmark DoS/ DDoS Datasets 

In this study, we have used three benchmark 
DoS/DDoS datasets which are (NSL-KDD, 2009), 
CICIDS 2017 (Sharafaldin et al., 2018) and simulated 
traffic in (Lima Filho et al., 2019). NSL-KDD 2019 is 

the up-to-date dataset we choose for testing the model 
since it has a lot of improvement compared to KDD CUP 
99. There has been a competition called the KDD Cup, 
an international competition for knowledge mining and 
data mining tools. The mission of the competition is to 
design a network intrusion detection system which aims 

to be a predictive model that can distinguish "normal" or 
"abnormal" connection. The results of the competition 
collected several network traffic records and gathered a 
dataset called KDD'99 and since then NSL-KDD dataset 
was created which is an optimized version KDD'99 from 
the University of New Brunswick (NSL-KDD, 2009). 

Finally, the complete dataset NSL-KDD 2019 is an up-
to-date dataset which contains new types of attacks and 
removed duplicates from the KDD'99 dataset. This 
resulting dataset contains about 150,000 data points and is 
divided into predefined training and test subsets which are 
KDDTest+, KDDTest-21, KDDTrain+, KDDTrain+_20% 

where KDDTest-21 and KDDTrain + _20% are subsets of 
KDDTest+ and KDDTrain+. KDDTrain+ is considered a 
training data and KDDTest+ is considered a testing data. 
KDDTest-21 is a subset of the testing data which removes 
the most difficult data records (point 21). KDDTrain 
_20% is a subset of the training data where the number of 

records equal to 20% of the total number of records in the 
training data. In other words, the records in KDDTest-21 
and KDDTrain+_20% are included in testing and training 
data and no records exist in both datasets at the same time 
which make the evaluation of anomaly detection more 
accurately. CICIDS 2017 was created within an 

emulated environment over a period of 5 days and 
contains network traffic in packet-based and 
bidirectional flow-based format. For each flow, the 
authors extracted more than 80 attributes/features and 
provide additional metadata about IP addresses and 
attacks. This dataset contains a wide range of attack 

types such as SSH brute force, heartbleed, botnet, DoS, 
DDoS, web and infiltration attacks. In the original article 
(Sharafaldin et al., 2018) studied by the CIC 

organization that published this dataset, Iman 
Sharafaldin and colleagues used the 
RandomForestRegressor algorithm to select the best 
characteristics for each specific type of attack in CICIDS 
dataset. To select these features, they calculated the 
weight of each feature corresponding to each attack type. 

Finally, the selected features will be tested for 
performance and accuracy with seven machine learning 
algorithms. The results show that the ID3 model 
providing the highest F1 index which reaches up to 98%. 
Aksu et al. (2018), Doğukan Aksu and colleagues 
proposed a model using fisher score algorithm to select 

30 optimal features from 80 of CICIDS2017 dataset. 
Then, they applied several machine learning algorithms 
such as KNN, SVM, Decision Tree to test and evaluate 
the results in which F1 measures 0.99 for the DDos 
dataset. The simulated network data in (Lima Filho et al., 
2019) has done by simulating several VLANs which can 

connect to the Internet. The authors plan to create every 
30 min an attack and there are 48 attack events in 24 h, 
starting at 00:00 and ending at 23:59. The attack tools 
are parameterized to create sneaky low-volume, 
medium-volume or light mode and massive high-volume 
attacks which result to this simulation datasets 

containing 73 features for a single record. Each record is 
clearly labeled as "normal" and "attack". 

Proposed Model 

In this study, the author focuses on applying several 

feature selection techniques specific to a network flow 

and use different machine learning algorithms to create 

a different training system. We will evaluate the 

execution time, the accuracy of DDoS attack detection 

between the models. Therefore, we illustrate the 

empirical study in the Fig. 1. The input of our proposed 

model use three benchmark DoS/DDoS which are  

NSL-KDD 2019, CICIDS 2017 and simulated traffic in 

(Lima Filho et al., 2019). After receiving the input 

data, this feature selection block use three different 

feature selection techniques: PCA, Feature Importance 

(using Extra-tree and SelectFromModel of scikit-learn 

[]), Univariate Selection (using SelectKBest with chi-

squared algorithm) where: 

 

 PCA: We recalculate the relationship between 

features and reducing the number of data 

dimensions to the quantity we want. In order to find 

the appropriate number of dimensions, we have to 

repeat this step several times 

 Feature Importance and Univariate Selection: 

Although there are different ways of evaluating 

individual feature, however there are two 

techniques to calculate "points" for each feature 

and then retain the features with "points" higher 

than the pre-set threshold 
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Fig. 1: Proposed model 
 
Table 1: The number of dimensions after the data being reduced 

Name of dataset Number of dimensions 

NSL-KDD 21 

CIC-IDS 2017 23 

Simulated data 20 

 

With the PCA algorithm, the value of the 

n_components parameter corresponds to the dimension 

of the data when projecting old data to the new data 

space. With the algorithm ExtraTree and Chi-Square, 

the number of dimensions of data depends on the 

feature importance value of the features that calculated 

based on these two algorithms. In order to compare the 

correlation between the classification execution time 

and the classification performance, the data after 

reducing dimension through 3 proposed algorithms must 

have the same number of data dimensions. A match 

value is given based on the correlation between 

accuracy, algorithm execution time and the number of 

dimensions of the data. According to Table 1 in the 

paper, after applying the data dimension reduction 

algorithms, the number of dimensions of the NSL-KDD 

dataset decreased from 42 to 21. The number of 

dimensions of the 2017 CIC-IDS dataset decreased from 

68 to 23 and the number of dimensions of the simulated 

data set decreased from 73 to 20. Thus, these algorithms 

have significantly reduced the dimension of data, saving 

computer resources and computation time.  
After dealing with data dimension reduction with 

feature selection techniques, we have a new data set with 
the dimension much smaller than the original data. Then, 
we train this dataset with each machine learning 
algorithm (KNN, AdaBoost, Random Forest and SVM) 
to classify DoS/DDoS attacks. 

Experimental Classification Results and 

Analysis 

The experimental environment is implemented in the 

system with the following configuration: 
 

 Operating System: Window 10 64 bit 

 CPU: Chip Intel i7 8750H, 6 cores 12 threads 

 GPU: Intel UHD Graphic 630 4Gb 

 RAM: 8Gb RAM DDR4 

 Tool: Pycharm professional 64bit 

NSL-KDD2019 
 

CICIDS-2017 
 

Simulation data 

Dataset 

PCA 
Feature 

importance 
Univariate 

Feature 

selection 

AdaBoost 
Random 

forest 
KNN SVM 

Machine 

learning 

algorithm 

Random 

forest 

result 

AdaBoost 

result 

KNN 

result 

SVM 

result 
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Evaluation of NSL-KDD 2019 Dataset 

NSL-KDD 2019 consists of Internet traffic records 

observed by a simple intrusion detection network and 

contains 43 attributes in each record where 41 attributes 

related to the traffic and the last 2 attributes are label 

(attack or non-attack) and attack level. In the NSL-KDD 

2019 dataset, there are 4 attack classes including Denial 

of Services (DoS), Reconnaissance (Probe), User to Root 

(U2R) and Remote to Local (R2L). In this study, the 

dataset is reprocessed as follows: 
 

 Include two sub-data sets KDDTest + and 

KDDTrain + 

 Remove four layers of Reconnaissance, User to 

Root and Remote to Local 
 

After performing the preprocessing data, the 

training data set becomes 77054 normal records and 

53385 DDoS attack records have been clearly labeled 

for each type of attack. The results of applying PCA in 

NSL-KDD 2019 dataset are shown in Table 2 and the 

overall result is illustrated in Table 3. We can see that 

the computation time after data dimension reduction 

including processing time with PCA technique has been 

significantly reduced. The reason for using PCA is to 

recalculate the relationship between features to move 

from a dimensional space to a less data dimension 

space. Therefore, every time a network traffic goes 

through, the system needs to change the data direction 

of that traffic and then analyze whether the traffic is 

normal or attack. We also found that the accuracy of 

the system using the AdaBoost algorithm after reducing 

the data dimension by PCA increased significantly, but 

we also noticed that the execution time of both 

AdaBoost and Random Forest models increased 

dramatically, showing that recalculating the 

relationship between features has a good effect on 

increasing accuracy but makes the processing time of 

these two algorithms significantly increase. This result 

shows that this NSL-KDD 2019 is not suitable for the 

proposed data reduction model by PCA and using 

AdaBoost and Random Forest to detect attacks. The 

execution time of the KNN is reduced because fewer 

dimensions of the data must be calculated, the faster 

process of KNN. Therefore, we obtain the results 

showing that the model using KNN and PCA techniques 

achieved good results on this NSL-KDD 2019 dataset. 

Moreover, the results of applying Feature Importance in 

NSL-KDD 2019 dataset are shown in Table 5 and the 

overall result is illustrated in Table 4. After performing a 

dimensional reduction with the Feature Importance 

technique using the Extra Tree to calculate the Importance 

of each feature and using SelectFromModel algorithm to 

select the features that meet user-defined conditions, we can 

remove 20 redundant characteristic and only 21 features 

being used. The remaining features are ‘is_host_login’, 

‘num_outbound_cmds’, ‘num_shells’, ‘urgent’, 

‘num_failed_logins’, ‘num_root’, ‘num_file_creations’, 

‘su_attempted’, ‘num_access_file’, ‘root_shell’, 

‘is_guest_login’, ‘land’, ‘dst_host_srv_diff_host_rate’, 

‘dst_bytes’, ‘duration’, ‘dst_host_diff_srv_rate’, 

‘srv_diff_host_rate’, ‘hot’, ‘num_compromised’, ‘service’, 

‘dst_host_same_src_port_rate’. With the obtained results, 

we found that this training data set is not suitable for the 

AdaBoost algorithm. In addition, the system which makes 

the selection of high-important "features" in this training 

data set achieves very good results. We found that 

processing speed could be significantly improved if the 

system uses the KNN algorithm to detect network 

attacks with the accuracy of the system mitigating but 

the execution time is much faster than not eliminating 

unnecessary features. 

 
Table 2: The result of detecting each type of attack on NSL-KDD data set when reducing data dimension by PCA 

 KNN  AdaBoost  Random Forest  SVM 

 -------------------------------------------- ------------------------------------------- ------------------------------------------- --------------------------------------------- 

 Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level 

Attack (before PCA) (%) (after PCA) (%) (before PCA) (%) (after PCA) (%) (before PCA) (%) (after PCA) (%)  (before PCA) (%) (after PCA) (%) 

Apache2 98.47 99.35 0.00 100.00 100.00 100.00 99.32 99.31 

Back 92.10 90.83 0.00 95.07 100.00 93.35 31.02 32.45 

Land 100.00 100.00 100.00 100.00 50.00 50.00 100.00 40.00 

Mailbomb 93.54 100.00 0.00 100.00 100.00 100.00 89.06 100.00 

Neptune 99.67 99.98 97.42 100.00 99.98 100.00 99.98 99.97 

Normal 99.71 99.68 98.00 99.90 99.92 99.83 99.78 99.79 

Pod 96.22 96.29 0.00 96.36 91.67 97.56 96.49 94.64 

Processtable 98.57 97.56 0.00 97.63 100.00 97.10 100.00 100.00 

Smurf 99.54 99.53 0.00 99.84 100.00 99.38 99.20 98.82 

Teardrop 96.62 100.00 0.00 96.29 98.31 98.10 98.95 98.44 

 
Table 3: The results of the whole model after features reduced by PCA on NSL-KDD 2019 

 Accuracy level Accuracy level Processing time Processing time 
Machine learning (before PCA) (after PCA) before PCA (ms) after PCA (ms) 

KNN 99.67 99.66 99424.66 72476.28 
AdaBoost 92.06 99.84 21197.64 627577.96 
Random Forest 99.91 99.77 7504.45 38984.94 
SVM 99.15 99.11 34103.84 20579.71 
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Table 4: The results of the whole model after features reduced by feature importance on NSL-KDD 2019 

 Accuracy level Accuracy level Processing time Processing time 

Machine learning (before FI) (after FI) before FI (ms) after FI (ms) 

KNN 99.61 99.50 101808.01 38171.09 

AdaBoost 92.26 94.17 18701.45 12145.49 

Random Forest 99.93 99.93 7635.63 5623.96 

SVM 99.08 98.99 27682.66 17538.80 

 
Table 5: The result of detecting each type of attack on NSL-KDD data set when reducing data dimension by Feature Importance 

 KNN  AdaBoost  Random Forest  SVM 

 ----------------------------------------- ------------------------------------------- -------------------------------------------- --------------------------------------------- 

 Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level 

Attack (before FI) (%) (after FI) (%) (before FI) (%) (after FI) (%) (before PCA) (%) (after PCA) (%) (before PCA) (%) (after PCA) (%) 

Apache2 99.33 95.52 0.00 0.00 100.00 100.00 99.32 99.31 

Back 87.82 86.39 0.00 0.00 100.00 93.35 31.02 32.45 

Land 100.00 50.00 100.00 0.00 50.00 50.00 100.00 40.00 

Mailbomb 100.00 74.66 0.00 0.00 100.00 100.00 89.06 100.00 

Neptune 99.96 99.98 97.63 97.70 99.98 100.00 99.98 99.97 

Normal 99.62 99.64 97.89 96.83 99.92 99.83 99.78 99.79 

Pod 97.73 94.33 0.00 96.55 91.67 97.56 96.49 94.64 

Processtable 97.58 98.47 0.00 0.00 100.00 97.10 100.00 100.00 

Smurf 99.84 99.69 0.00 100.00 100.00 99.38 99.20 98.82 

Teardrop 98.95 99.84 0.00 0.00 98.31 98.10 98.95 98.44 

 
Table 6: The result of detecting each type of attack on NSL-KDD data set when reducing data dimension by Univariate Selection 

 KNN  AdaBoost  Random Forest  SVM 

 ----------------------------------------- ----------------------------------------- ---------------------------------------- ---------------------------------------- 

 Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level 

Attack (before FI) (%) (after FI) (%) (before FI) (%) (after FI) (%) (before PCA) (%) (after PCA) (%) (before PCA) (%) (after PCA) (%) 

Apache2 99.33 95.52 0.00 0.00 100.00 100.00 99.32 99.31 

Back 87.82 86.39 0.00 0.00 100.00 93.35 31.02 32.45 

Land 100.00 50.00 100.00 0.00 50.00 50.00 100.00 40.00 

Mailbomb 100.00 74.66 0.00 0.00 100.00 100.00 89.06 100.00 

Neptune 99.96 99.98 97.63 97.70 99.98 100.00 99.98 99.97 

Normal 99.62 99.64 97.89 96.83 99.92 99.83 99.78 99.79 

Pod 97.73 94.33 0.00 96.55 91.67 97.56 96.49 94.64 

Processtable 97.58 98.47 0.00 0.00 100.00 97.10 100.00 100.00 

Smurf 99.84 99.69 0.00 100.00 100.00 99.38 99.20 98.82 

Teardrop 98.95 99.84 0.00 0.00 98.31 98.10 98.95 98.44 

 
Table 7: The results of the whole model after features reduced by Univariate Selection on NSL-KDD 2019 

 Accuracy level Accuracy level Processing time Processing time 

Machine learning (before US) (after US) before US (ms) after US (ms) 

KNN 99.61 99.50 101808.01 38171.09 

AdaBoost 92.26 94.17 18701.45 12145.49 

Random Forest 99.93 99.93 7635.63 5623.96 

SVM 99.08 98.99 27682.66 17538.80 

 

We continue to apply Univariate Selection in NSL-

KDD 2019 dataset and the results are shown in Table 6 

and in Table 7. We perform data dimension reduction 

with the Univariate Selection technique that uses the chi-

squared algorithm to calculate squared values for each 

feature in the data set, then sort them in descending 

order. We then set the characteristic parameters we want 

to keep to SelectKBest and the features are taken in 

order from high to low according to the chi-square 

parameters until sufficient. Finally, the remaining 21 

features being used which are ‘is_host_login’, ‘urgent’, 

‘num_compromised’, ‘num_root’, ‘num_file_creations’, 

‘src_bytes’, ‘num_shells’, ‘num_failed_logins’, ‘dst_bytes’, 

‘num_access_files’, ‘sv_attempted’, ‘root_shell’, ‘hot’, 

‘is_guest_login’, ‘dst_host_diff_srv_rate’, ‘diff_srv_rate’, 

‘dst_host_srv_diff_host_rate’, ‘service’, ‘protocol_type’, 

‘duration’, ‘dst_host_count’. With the obtained 

results, we can see that AdaBoost is not working well 

with this dataset, same when we do feature selection 

with Feature Important. In summary, through the 

results achieved after implementing the proposed 

system on the NSL-KDD 2019 dataset, we realize that 

the data reduction system by PCA and intrusion 

detection using KNN algorithms bring the best results. 

However, we also implement this proposed model 

using SVM but the obtained result is worst. Moreover, 

the processing time is very slow, so it is not suitable 

for online attack detection system. The possible 

reason is that it is very time-consuming to analyze and 

compute hyperplane in SVM to classify the attacks. 
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Fig. 2: Processing time on NSL KDD 2019 data set 

 

Based on the results obtained on the execution time 

as shown in Fig. 2, we can see that KNN provides best 

results together with all feature selection algorithms. The 

main reason is that the less the number of dimensions to 

be computed, the faster the KNN algorithm is processed. 

But with AdaBoost and Random Forest processing with 

PCA, the results are not in our expectation. It is probably 

the correlation between the features of an object and 

AdaBoost and Random Forest are classified as black box 

models. It is possible that the reduced correlation 

between features makes splitting feature to build the tree 

of both algorithms more difficult and more 

computationally time consuming. 

Evaluation of CICIDS 2017 Dataset 

CICIDS 2017 dataset contains normal traffic records 

and common attacks with real data packets in PCAP. It 

also includes network traffic analysis results using 

CICFlowMeter with timestamped flows, source and 

destination IP, source and destination port, protocol and 

attack (CSV file). The data collection time begin at 9 am, 

Monday, July 3, 2017 and ended at 5 pm, Friday 7 July 

2017 for a total of 5 days monitoring. Monday is a 

normal day and only includes valid traffic. Attacks are 

carried out (including Brute Force FTP, Brute Force 

SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet 

and DDoS) in the morning and afternoon on Tuesday, 

Wednesday, Thursday and Friday. In this study, we use 

attack data on Friday mornings (Friday-WorkingHours-

Afternoon-DDos.pcap_ISCX.csv). Initially, this dataset 

has 78 features, after pre-processing the data, we 

remove10 features with 0 variance. Moreover, the dataset 

had 68 features and was labeled with Benign and DDoS. 

The data set contains records with values of some features 

such as NaN, Infinity, which have no effect in the 

calculation, so they are deleted. After processing the 

dataset, it includes 97686 Benign records and 128025 

DDoS records. After, we then used the Min Max Scaling 

(Han et al., 2011) to normalize the data with characteristic 

values from -1 to 1 to serve the performance evaluation. 

The results of applying PCA in CICIDS 2017 dataset are 

shown in Table 8 when we collected 23 features from the 

original 68 features of the dataset. We can see that except 

Random Forest algorithm, the execution time has increased 

significantly and the implementation time has decreased 

significantly. This is because PCA has transformed the data 

set into a new dataset, which makes the structure of newly 

constructed trees different from the original tree. In general, 

the accuracy will decrease after reducing the data 

dimension, but this reduction is acceptable compared to the 

execution time, i.e., the accuracy decreases about 0.01-

0.03% but training and testing times reducing it 2-3 

times. Overall, KNN still provides good results with the 

execution time is much faster and still gives the system a 

relatively high accuracy. The CIC-IDS 2017 data set is 

made up of a lot of different traffic files and there are 

many traffics of different types of DoS/DDoS attacks. In 

this study, we only use a single file (Friday-
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WorkingHours-Afternoon-DDos.pcap_ISCX.csv) as test 

data. This traffic file has only 2 data types: Benign and 

DoS. Therefore, we do not have a table of performance 

for classifying DoS attacks for this dataset. 

Moreover, the results of applying Feature Importance 

in CICIDS dataset are shown in Table 9. After 

performing a dimensional reduction with the Feature 

Importance, we get a new data with 23 features which 

are ‘ECE Flag Count’, ‘RST Flag Count’, ‘Active Std’, 

‘Active Max’, ‘Active Min’, ‘Bwd IAT Min’, ‘Active 

Mean’, ‘Flow Bytes/s’, ‘Flow IAT Min’, ‘Fwd IAT 

Min’, ‘Bwd Packets/s’, ‘FIN Flag Count’, 

‘Init_Win_bytes_backward’, ‘Total Length of Bwd 

Packets’, ‘Bwd IAT Mean’, ‘Idle Std’, ‘Fwd Packets/s’, 

‘Bwd Header Length’, ‘Subflow Bwd Bytes’, ‘Flow 

Packets/s’, ‘Idle Min’, ‘Subflow Fwd Bytes’, ‘Flow IAT 

Mean’. Moreover, we find the results to be very positive. 

The accuracy of the model slightly decreased but the 

implementation time was much reduced. In addition, 

when using the Feature Importance, we get only 23 

features that need to be processed. Therefore, the 

network administrator only needs to set the rules so that 

only 23 features are collected from a network flow which 

can help reducing data sampling and increasing the 

processing speed for the overall system. 

We continue to apply Univariate Selection on 

CICIDS 2017 dataset and the result is illustrated in Table 

10. Same as previous work, we obtain 23 feature after 

using Univariate Selection which are ‘ECE Flag Count’, 

‘RST Flag Count’, ‘Active Std’, ‘Active Max’, ‘Active 

Min’, ‘Bwd IAT Min’, ‘Active Mean’, ‘Flow Bytes/s’, 

‘Flow IAT Min’, ‘Fwd IAT Min’, ‘Bwd Packets/s’, ‘FIN 

Flag Count’, ‘Init_Win_bytes_backward’, ‘Total 

Length of Bwd Packets’, ‘Bwd IAT Mean’, ‘Idle Std’, 

‘Fwd Packets/s’, ‘Bwd Header Length’, ‘Subflow Bwd 

Bytes’, ‘Flow Packets/s’, ‘Idle Min’, ‘Subflow Fwd 

Bytes’, ‘Flow IAT Mean’. 

In Fig. 3, we see that combining feature selection 

methods gives a good result on each individual model. 

However, with RF in combination with PCA and SVM 

in combination with US, the result is not good in terms 

of processing time. 

 

 
 

Fig. 3: Processing time on CICIDS 2017 Dataset 

 
Table 8: The results of the whole model after features reduced by PCA on CICIDS 2017 

 Accuracy level Accuracy level Processing time Processing time 

Machine learning (before PCA) (after PCA) before PCA (ms) after PCA (ms) 

KNN 99.98 99.95 204696.58 8278.48 

AdaBoost 99.98 99.97 105509.13 21565.54 

Random Forest 99.99 99.98 62409.92 100667.05 

SVM 99.02 99.08 300548.65 130796.97 
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Table 9: The results of the whole model after features reduced by Feature Importance on CICIDS 2017 

 Accuracy level Accuracy level Processing time Processing time 

Machine learning (before FI) (after FI) before FI (ms) after FI (ms) 

KNN 99.98 99.95 222753.60 78644.95 

AdaBoost 99.98 99.96 107709.13 28415.82 

Random Forest 99.99 99.97 51288.93 12550.93 

SVM 99.05 98.40 389069.11 106207.05 

 
Table 10: The results of the whole model after features reduced by Univariate Selection on CICIDS 2017 

 Accuracy level Accuracy level Processing time Processing time 

Machine learning (before US) (after US) before US (ms) after US (ms) 

KNN 99.98 99.95 222753.60 78644.95 

AdaBoost 99.98 99.96 107709.13 28415.82 

Random Forest 99.99 99.97 51288.93 12550.93 

SVM 99.05 98.40 389069.11 106207.05 

 

Evaluation of the Simulated Traffic 

This dataset is quite similar to a real network operating 

environment (Lima Filho et al., 2019). Therefore, we 

chose to use this data set to do performance evaluation 

with the proposed model However, we find that this data 

set is not large enough which includes 45500 records 

(including 22412 attacks and 23088 normal records). The 

results of applying PCA in this dataset is illustrated in 

Table 11 when we collected 20 features from the original 

73 features of this dataset. The computation time after data 

dimension reduction has taken into account the processing 

time with PCA due to the nature of this technique is to 

re-calculate the relationship between the features to 

move from multi-dimensional space to a less data 

dimensional space. Therefore, every time a network 

traffic goes through, the system needs to change the data 

direction of that traffic, then analyze whether the traffic 

is normal or attack. We found that except for the 

Random Forest and AdaBoost algorithms the execution 

time increases significantly, but the overall the execution 

time decreases significantly. In general, the accuracy will 

decrease after reducing the data dimension, but it is 

acceptable compared to the execution time. In addition, 

we find that KNN algorithm is very suitable for this 

training dataset since the execution time is much faster 

and still provides a relatively high accuracy level. 

Moreover, the results of applying Feature Importance 

using Extra Tree in CICIDS dataset are shown in Table 

12. After performing a dimensional reduction with the 

Feature Importance, we get a new data with 20 features 

which are ‘tcp_dataofs_median’, ‘tcp_dataofs_mean’, 

‘tcp_flags_mean’, ‘ip_proto’, ‘ip_ttl_cv’, ‘tcp_flags_rte’, 

‘ip_len_std’, ‘ip_ttl_std’, ‘tcp_flags_median’, 

‘ip_len_entropy’, ‘sport_entropy’, ‘tcp_seq_mean’, 

‘tcp_dataofs_rte’, ‘ip_len_cv’, ‘ip_ttl_cvq’, 

‘tcp_ack_entropy’, ‘tcp_flags_cv’, ‘tcp_seq_entropy’, 

‘tcp_ack_cvq’, ‘ip_len_mean’. Moreover, we also found 

that the result is quite positive since the implementation 

time is much reduced. 

We continue to apply Univariate Selection on 

simulating dataset and the result is illustrated in Table 13. 

Same as previous work, we obtain 20 feature after using 

Univariate Selection which are ‘‘ip_ttl_cv’, ‘ip_len_cv’, 

‘ip_len_cvq’, ‘ip_ttl_cvq’, ‘tcp_ack_rte’, ‘tcp_seq_cvq’, 

‘tcp_seq_rte’, ‘tcp_dataofs_median’, ‘tcp_dataofs_mean’, 

‘tcp_window_median’, ‘dport_cv’, ‘tcp_window_mean’, 

‘tcp_flags_mean’, ‘tcp_flags_median’, ‘tcp_ack_cvq’, 

‘tcp_seq_mean’, ‘tcp_seq_median’, ‘tcp_seq_cv’, 

‘ip_ttl_std’, ‘ip_len_std’. 

We found that with two datasets (CICIDS 2017 and 

simulating traffic (Lima Filho et al., 2019)) that contain 

only normal and attack labels, the proposed model all 

performed well except for SVM. Therefore, it could 

provide a solution for an online network intrusion 

detection but still give relatively high overall accuracy. 

With the NSL-KDD 2019 dataset, the accuracy of 

classifying individual attack when using the AdaBoost 

algorithm is not good. Most attacks classified in the 

NSL-KDD dataset by the AdaBoost algorithm have very 

low performance. The traffic types for which the 

AdaBoost algorithm can has a high classification 

probability such as Neptune, normal and pod all have 

lower value than the other algorithms. Specifically, the 

accuracy of Neptune traffic classification by the AdaBoost 

algorithm is 96.83%, 2.81% lower than that of KNN 

algorithm and 3% compared to the Random Forest 

algorithm. Thus, the classification ability of the AdaBoost 

algorithm on the NSL-KDD dataset is not good. The 

proposed model can provide high accuracy of anomaly 

detection but when classifying each specific attack type, 

the accuracy is relatively low and there are few false 

alarms. We find that the proposed system is special good 

for labeled data sets which are normal or attack. The two 

models using KNN and Random Forest combined with 

feature selection techniques have good results in both 

accuracy and implementation time. Finally, we find that 

the proposed algorithm to achieve the best results on all 

three data sets is the combination of KNN algorithm and 

the Feature Importance.  
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Table 11: The results of the whole model after features reduced by PCA on simulating traffic 

 Accuracy level Accuracy level Processing time Processing time 

Machine learning (before PCA) (after PCA) before PCA (ms) after PCA (ms) 

KNN 99.96 99.94 6850.42 1428.97 

AdaBoost 99.97 99.97 536.33 964.04 

Random Forest 99.99 99.98 4121.98 6626.24 

SVM 99.97 99.96 997.33 907.66 

 

Table 12: The results of the whole model after features reduced by Feature Importance on simulating traffic 

 Accuracy level Accuracy level Processing time Processing time 

Machine learning (before FI) (after FI) before FI (ms) after FI (ms) 

KNN 99.98 99.94 6166.51 808.83 

AdaBoost 99.98 99.97 527.59 131.64 

Random Forest 99.99 99.98 4123.95 1894.93 

SVM 99.98 99.92 1017.28 389.99 

 
Table 13: The results of the whole model after features reduced by Univariate Selection on CICIDS 2017 

 Accuracy level Accuracy level Processing time Processing time 

Machine learning (before US) (after US) before US (ms) after US (ms) 

KNN 99.97 99.96 6765.79 1434.16 

AdaBoost 99.97 99.96 443.76 174.48 

Random Forest 99.99 99.98 4077.45 2441.52 

SVM 99.96 99.95 1047.22 303.19 

 

 
 

Fig. 4: Processing time on simulating data 

 

In Fig. 4, we show that Random Forest algorithm gives 

the best results on three approaches of dimensionality 

reduction in accuracy but this one consumes system’s 

runtime significantly. After using Importance technique, 
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the performance of KNN algorithm is much improved 

since only important features are retained. Moreover, the 

lower the number of data dimensions, the faster the 

calculation of KNN. Therefore, although the accuracy is 

slightly reduced, the calculation time is greatly reduced 

and this is acceptable for us. 

Conclusion 

In this study, we have proposed a model for empirical 

study for Machine Learning-based Network Intrusion 

Detection with Feature Selection algorithm which are 

PCA, Feature Importance and Univariate Selection. Our 

contribution is to study in detail of Machine Learning 

algorithms to work with Feature Selection techniques to 

evaluate the accuracy level of each combination of 

machine learning model and feature selection technique. 

Processing network traffic flow in an online manner is a 

difficult task especially when it contains a lot of 

redundant features/or characteristics. Moreover, we 

found that not all machine learning models can provide 

good results as in previous works, therefore we have 

evaluated the proposed models on three benchmark 

datasets which are NSL-KDD 2019, CICIDS 2017 and 

simulating traffic (Lima Filho et al., 2019). Lastly, we 

conclude that the combination of KDD and Feature 

Importance can provide a feasible solution toward an 

online network intrusion detection system. 
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