

 © 2021 Tran Hoang Hai, Nguyen Trong Khiem and Nguyen Huu Phuc. This open access article is distributed under a

Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Review

Toward an Online DoS/DDoS Classification: An Empirical

Study for Network Intrusion Detection Systems

1Tran Hoang Hai, 1Nguyen Trong Khiem and 2Nguyen Huu Phuc

1School of Information and Communication Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
2FPT Software, FPT Corporation, Hanoi, Vietnam

Article history

Received: 15-12-2020

Revised: 13-03-2021

Accepted: 16-03-2021

Corresponding Author:

Tran Hoang Hai

School of Information and

Communication Technology,

Hanoi University of Science

and Technology, Hanoi,

Vietnam
Email: hai.tranhoang@hust.edu.vn

Abstract: In recent years, Distributed Denial of Services (DDoS) attacks

have caused significant losses to industry and government due to an

increasing number of devices connected to the Internet. These devices use

services-over-Internet more frequently with services characterized and

provided seamlessly by 5G, Cloud and Edge Computing. According to

Cisco Annual Internet Report, the frequency of DoS/DDoS attacks has

increased more than 2.5 times over the last 3 years and the average size of

attacks is increasing steadily and approaching 1 Gbps. Therefore, there

are cyber threats continuing to grow even with the development of new

protection technologies. Our work is strongly motivated from with the

goal to study and evaluate four Machine Learning models toward

development of an Online Network Intrusion Detection System (N-IDS).

This article studies on the application on three feature selection

algorithms combined with four machine learning models applied to N-

IDS. We have implemented performance evaluation our proposed model

on three up-to-date DoS/DDoS datasets. We have shown that Feature

Importance and K-Nearest Neighbors’ algorithm (KNN) can give better

results in all benchmark datasets than previous work and the empirical

results of all four machine learning models and three feature selection

algorithms are also presented in detail.

Keywords: DDoS, Network Security, Intrusion Detection, Attack

Classification

Introduction

In recent years, Denial of Service (DoS) and Distributed

Denial of Service (DDoS) attacks are among the most

common attacks in cyber-attacks (Lima Filho et al., 2019).

Internet provides an open environment in which any host

can communicate with others. There is an increasing

number of devices/mobiles connected to the Internet and

using services-over-Internet due to the fast development

of Ubiquitous Computing, Internet of Things (IoT)

model with services characterized and provided

seamlessly by 5G, Edge Computing. The main objective

of an attacker is to take down services of the websites,

Intranet’s enterprises or prevent users using specific

service over Internet. According to (Cisco Annual

Internet Report, 2018-2023), the frequency of

DoS/DDoS attacks has increased more than 2.5 times

over the last 3 years and the average size of attacks is

increasing steadily and approaching 1 Gbps. These

attacks are strong enough to take most organizations

completely offline. Denial of Service DDoS attacks can be

performed using a botnet network controlled by the

attacker. The owner of the compromised computer system

is unaware the botnet is installed in their computers or

they are part of a botnet network. With increasing number

of Internet users, DDoS attack has become the second

most significant threat after virus infection to the Internet

users (Gupta et al., 2009). Moreover, the individual attack

can launch the attack easy by open source tools quite easy

on Internet. Gupta et al. (2009; 2010), the authors

classify DDoS attacks into two broad categories by

flooding attacks and logical attacks. Flooding attacks

create huge of traffic at the victim side which makes the

target computer incapable of handling request from the

legitimate users. There are several types of flooding

attacks such as SYN Flooding, ICMP, UDP Flooding,

Tran Hoang Hai et al. / Journal of Computer Science 2021, 17 (3): 304.318

DOI: 10.3844/jcssp.2021.304.318

305

etc. In logical attack, the attackers exploit known

software bugs to implement such as Ping of Death,

Teardrop and Land attack. Network Intrusion Detection

System (N-IDS) plays an extremely important role in

security management which can support network

administrators to detect such type of DoS/DDoS about

unusual behaviors where a traffic flow might be an

attack or normal traffic flow. Currently, network

administrators apply some solutions such as firewalls to

prevent some unwanted traffics, but the network

manager have to detection by its own technique. In the

traditional rule-based N-IDS, the rules are usually pre-

defined by the security experts and need to be updated

regularly such as Snort, Suricata (Karthikeyan and Indra,

2010; Turner et al., 2016). The advantage of rule-based

N-IDS is that we can detect specific attacks in detail to

give better accuracy and reduce false alarms. However,

with the increasing of traffic flow, it is difficult for

network experts to follow the system (Srivastava et al.,

2011). Therefore, we propose a smart N-IDS which can

capture network traffic and able to analyze and detect

network anomalies automatically. With the rapid

development of machine learning models, several

methods have been proposed to build a knowledge

system on the IDS system (Gupta et al., 2009; 2010;

Karthikeyan and Indra, 2010), where abnormal traffic

can be detected and prevented automatically. Another

type of N-IDS based on statistical analysis which

analyze statistical behavior of users to find abnormal

behaviors based on assumption that malicious traffic

differs from typical user behavior traffic (Chellam et al.,

2018). In recent years, both industry and academia make

a huge effort to address this problem. There are several

approaches, ranging from filtering-based approaches

(Savage et al., 2000; Song and Perrig, 2001; Argyraki and

Cheriton, 2005; Mahajan et al., 2002; Ioannidis and

Bellovin, 2002; Liu et al., 2008), capability-based

approaches (Yaar et al., 2004; Yang et al., 2008; Liu et al.,

2010; 2016). We believe that a knowledge system which

inherit latest development of machine learning models to

combat the risks is extremely important (Panja et al.,

2014; Zwass, 2018; Fuchsberger, 2005). Some related

works based on statistical methods (Larranaga et al.,

2013) and Bayes algorithm (Seraphim et al., 2018) are

typical representative algorithms in this field. An expert

system is currently the most feasible solution which uses

artificial intelligence to solve problems in a field that

requires human expertise. The application of machine

learning algorithms is a breakthrough that provide us an

efficient tool to apply N-IDS in practice and can be

found in detail in (Khraisat et al., 2019; Dali et al.,

2015). Moreover, Deep learning is a subset of machine

learning that outperforms the traditional machine

learning by learning to represent the data as a nested

hierarchy of concepts. A general survey of Anomaly

Detection using Deep Learning can be found in

(Chalapathy and Chawla, 2019). The rest of paper is

organized as follows. Section 2 gives an overview of

related works and application of machine learnings

models to N-IDS and its related benchmark datasets.

Section 3 presents our proposed model for evaluation of

machine learning models with several feature selection

algorithms. Section 4 introduces performance comparison

and finally, conclusions are given in section 5.

Related Work

Machine Learning Models to Network Anomaly

Detection

In this study, we choose four popular machine

learning algorithms which are k-Nearest Neighbors’

algorithm (KNN) (Altman, 1992), Adaptive Boosting

(AdaBoost) (Gandhi, 2018), Random Decision Forests

(RandomForest) (Ho, 1995) and Support Vector

Machine (Cortes and Vapnik, 1995) for our model. The

motivation is that those algorithms are recent works on

applying machine learning to N-IDS and they provide

better results and lower processing time compared to

others (Khraisat et al., 2019; Dali et al., 2015). In pattern

recognition, the k-Nearest Neighbors’ algorithm (k-NN)

is a non-parametric method proposed by Thomas Cover

used for classification and regression (Altman, 1992).

Among all these data mining techniques, KNN was

used prominently due to its better accuracy and

detection rates. Wang et al. (2009), the authors use

attribute normalization to improve the performance of

intrusion detection on three methods, KNN, Principal

Component Analysis (PCA) (Jolliffe, 1986) and SVM.

KDD Cup 1999 dataset is used to evaluate the

normalization schemes and the detection methods (UCI,

1999). Panda et al. (2012), the authors proposed a 2-

class classification strategy on an early version of

NSL-KDD dataset with 10-fold cross validation method.

Their proposed model produced a high detection rate and

low false alarm rate between normal and anomaly traffic.

Jamshidi and Nezamabadi (2013), the authors introduced

a nonlinear valuation function based on lattice based

nearest neighbor classifier to tune the performance of the

intrusion detection and was evaluated by an old KDD

Cup’99 dataset. Tharwat et al. (2013), the authors

designed and developed three different classifiers based

on KNN classifier’s concept for facial age estimation to

achieve high efficiency. Rao and Swathi (2017) adapted

two fast KNN classification algorithms i.e., Indexed

Partial Distance Search k-Nearest Neighbor (IKPDS),

Partial Distance Search k-Nearest Neighbor (KPDS) and

comparing with traditional KNN classification for

Network Intrusion Detection on NSL-KDD dataset 2017

Tran Hoang Hai et al. / Journal of Computer Science 2021, 17 (3): 304.318

DOI: 10.3844/jcssp.2021.304.318

306

(NSL-KDD, 2009). Benaddi et al. (2018), the authors

propose to use PCA-fuzzy Clustering-KNN method

which ensemble of Analysis of Principal Component and

Fuzzy Clustering with K-Nearest Neighbor feature

selection technics to detect anomalies.

Adaptive Boosting (AdaBoost) is a machine

learning meta-algorithm proposed by Yoav Freund and

Robert Schapire who won the 2003 Gödel Prize for

their work (Zhang et al., 2005). AdaBoost is classified

as boosting class (or sometimes referred as ensemble

learning approach) because it aims to convert weak

classification algorithms, correct previous algorithm

errors then finally get a strong classifier. Shahraki et al.

(2020), the authors investigate the feasibility of N-IDS

by means of the most famous version of the boosting

algorithms, including Real AdaBoost (Schapire and

Singer, 1999), Gentle AdaBoost (Friedman et al., 2000)

and Modest AdaBoost (Vezhnevets and Vezhnevets,

2005) on five public IDS datasets.

Random Forests (RF) is an ensemble learning method

for classification, regression which construct a multitude

of decision trees at training time and outputting which is

classification or regression of the individual trees (Ho,

1998; Biau, 2012). Following (Resende and Drummond,

2018), RD uses multiple decision trees for layering. The

algorithm assumes that if a sample is layered by multiple

decision trees, whichever layer is chosen by most trees,

then this sample will be assigned to that class. Efron

(1979), several authors show that RF model applied in

N-IDS is efficient with low false alarm rate and high

detection rate. For more accuracy, RF uses a process

which is called Bootstrapping. Bootstrapping is a

statistical resampling technique that involves random

sampling of a dataset with replacement (Peng et al.,

2002). In addition, to make sure the decision trees are

different, RF will randomly skip a few questions when

building a decision tree. In this case, if the best question

is not selected, the next question will be selected to build

the tree. This process is called attribute sampling.

Support Vector Machine (SVM) is an efficient

classification technique in a wide variety of problems

(Thai et al., 2012) which often provides considerable

improvement over competing methods. Winter et al.

(2011), the authors proposed a lightweight IDS that uses

a one-class SVM to analyze incoming net-flows for

analysis. Goeschel (2016), the authors proposed to

combine a linear SVM, decision trees and Naïve Bayes

to reduce the number of false alarms of the IDS and

evaluation model on the old KDD Cup’99 dataset (UCI,

(1999). Lee et al. (2005), the authors proposed an IDS

model which consists of a one-class SVM for anomaly

detection during an initial analysis, a multi-class SVM

for traffic classification in the four classes (i.e., Denial-

of-Service, Remote to local, User to root and Probing

attacks) and a final clustering process. Khan et al.

(2007), the authors proposed a new approach for

enhancing the training process of SVM when dealing

with large training datasets. This work combines the use

of SVM and clustering analysis to reduce the number of

instances used during the computation of the support

vector margin, which, in turn, reduces the training time

without affecting the results. Sahu et al. (2019), the

authors used an ensemble approach of supervised (SVM)

and unsupervised (K-Means) to detect the anomaly

patterns which provides more than 99% on three

benchmarked datasets.

Feature Selection

Our work is strongly motivated by (Lima Filho et al.,

2019) where the model does not process on all features

of a network traffic flow which implement feature

selection before training phase. Feature selection is an

important step in the pattern recognition process and

consists of defining the smallest possible set of variables

capable of efficiently describing a set of classes

(Ganapathy et al., 2013). According to (Miao and Niu,

2016), due to presence of noisy, redundant and irrelevant

dimensions of large-scale data which can not only make

learning algorithms very slow and even degenerate the

performance of learning tasks. Benefits of feature

selection are preventing overfitting (less redundant data

helps to reduce opportunity to result decisions based on

noise) and reducing training time (fewer data reduces

algorithm complexity). In this study, we proposed to use

Principal Component Analysis (PCA) (Wold et al., 1987;

Shlens, 2014), Feature Importance (Abualigah et al.,

2017), Univariate Selection (Rahman and Xu, 2004)

instead of Recursive Feature Elimination with Cross-

Validation technique used in (Lima Filho et al., 2019).

PCA is a statistical method which projects data in a

higher dimensional space into a lower dimensional space

by maximizing the variance of each dimension. PCA

builds new coordinate axes, has the ability to represent

data equally well and ensures the variability of the data

on each new dimension. PCA can discover the relation

of feature in the new space, it is difficult to detect if

placed in the old space because these relations are not

visible. Feature Importance refers to the feature selection

technique which gives us a score for each feature from

network traffic data in which the higher the score more

important or relevant is the feature towards our output

variable. The importance characteristic is very useful to

understand more about the data, the model and we can

choose to remove features has lower importance and vice

versa. Univariate feature selection examines each feature

individually to determine the strength of the relationship

of the feature with the response variable. Both FI and US

help us choose redundant features to remove, sampling

fewer features of traffic, saving system storage space.

These methods are simple and particularly good for us to

Tran Hoang Hai et al. / Journal of Computer Science 2021, 17 (3): 304.318

DOI: 10.3844/jcssp.2021.304.318

307

obtain a better understanding of data (Rahman and Xu,

2004). With FI, we propose using Extra Trees to

estimate importance for each feature because Extra Trees

uses random split can save more computation time than

Random Forest using best split and then, we set

threshold by SelectFromModel to keep the number of

feature important. Features have higher importance or

equal this threshold will be selected. US also calculate

the score for each feature, so in this proposed system, we

use SelectKBest in Pycharm to select features what we

would like to keep by setting a threshold.

Benchmark DoS/ DDoS Datasets

In this study, we have used three benchmark
DoS/DDoS datasets which are (NSL-KDD, 2009),
CICIDS 2017 (Sharafaldin et al., 2018) and simulated
traffic in (Lima Filho et al., 2019). NSL-KDD 2019 is

the up-to-date dataset we choose for testing the model
since it has a lot of improvement compared to KDD CUP
99. There has been a competition called the KDD Cup,
an international competition for knowledge mining and
data mining tools. The mission of the competition is to
design a network intrusion detection system which aims

to be a predictive model that can distinguish "normal" or
"abnormal" connection. The results of the competition
collected several network traffic records and gathered a
dataset called KDD'99 and since then NSL-KDD dataset
was created which is an optimized version KDD'99 from
the University of New Brunswick (NSL-KDD, 2009).

Finally, the complete dataset NSL-KDD 2019 is an up-
to-date dataset which contains new types of attacks and
removed duplicates from the KDD'99 dataset. This
resulting dataset contains about 150,000 data points and is
divided into predefined training and test subsets which are
KDDTest+, KDDTest-21, KDDTrain+, KDDTrain+_20%

where KDDTest-21 and KDDTrain + _20% are subsets of
KDDTest+ and KDDTrain+. KDDTrain+ is considered a
training data and KDDTest+ is considered a testing data.
KDDTest-21 is a subset of the testing data which removes
the most difficult data records (point 21). KDDTrain
_20% is a subset of the training data where the number of

records equal to 20% of the total number of records in the
training data. In other words, the records in KDDTest-21
and KDDTrain+_20% are included in testing and training
data and no records exist in both datasets at the same time
which make the evaluation of anomaly detection more
accurately. CICIDS 2017 was created within an

emulated environment over a period of 5 days and
contains network traffic in packet-based and
bidirectional flow-based format. For each flow, the
authors extracted more than 80 attributes/features and
provide additional metadata about IP addresses and
attacks. This dataset contains a wide range of attack

types such as SSH brute force, heartbleed, botnet, DoS,
DDoS, web and infiltration attacks. In the original article
(Sharafaldin et al., 2018) studied by the CIC

organization that published this dataset, Iman
Sharafaldin and colleagues used the
RandomForestRegressor algorithm to select the best
characteristics for each specific type of attack in CICIDS
dataset. To select these features, they calculated the
weight of each feature corresponding to each attack type.

Finally, the selected features will be tested for
performance and accuracy with seven machine learning
algorithms. The results show that the ID3 model
providing the highest F1 index which reaches up to 98%.
Aksu et al. (2018), Doğukan Aksu and colleagues
proposed a model using fisher score algorithm to select

30 optimal features from 80 of CICIDS2017 dataset.
Then, they applied several machine learning algorithms
such as KNN, SVM, Decision Tree to test and evaluate
the results in which F1 measures 0.99 for the DDos
dataset. The simulated network data in (Lima Filho et al.,
2019) has done by simulating several VLANs which can

connect to the Internet. The authors plan to create every
30 min an attack and there are 48 attack events in 24 h,
starting at 00:00 and ending at 23:59. The attack tools
are parameterized to create sneaky low-volume,
medium-volume or light mode and massive high-volume
attacks which result to this simulation datasets

containing 73 features for a single record. Each record is
clearly labeled as "normal" and "attack".

Proposed Model

In this study, the author focuses on applying several

feature selection techniques specific to a network flow

and use different machine learning algorithms to create

a different training system. We will evaluate the

execution time, the accuracy of DDoS attack detection

between the models. Therefore, we illustrate the

empirical study in the Fig. 1. The input of our proposed

model use three benchmark DoS/DDoS which are

NSL-KDD 2019, CICIDS 2017 and simulated traffic in

(Lima Filho et al., 2019). After receiving the input

data, this feature selection block use three different

feature selection techniques: PCA, Feature Importance

(using Extra-tree and SelectFromModel of scikit-learn

[]), Univariate Selection (using SelectKBest with chi-

squared algorithm) where:

 PCA: We recalculate the relationship between

features and reducing the number of data

dimensions to the quantity we want. In order to find

the appropriate number of dimensions, we have to

repeat this step several times

 Feature Importance and Univariate Selection:

Although there are different ways of evaluating

individual feature, however there are two

techniques to calculate "points" for each feature

and then retain the features with "points" higher

than the pre-set threshold

Tran Hoang Hai et al. / Journal of Computer Science 2021, 17 (3): 304.318

DOI: 10.3844/jcssp.2021.304.318

308

Fig. 1: Proposed model

Table 1: The number of dimensions after the data being reduced

Name of dataset Number of dimensions

NSL-KDD 21

CIC-IDS 2017 23

Simulated data 20

With the PCA algorithm, the value of the

n_components parameter corresponds to the dimension

of the data when projecting old data to the new data

space. With the algorithm ExtraTree and Chi-Square,

the number of dimensions of data depends on the

feature importance value of the features that calculated

based on these two algorithms. In order to compare the

correlation between the classification execution time

and the classification performance, the data after

reducing dimension through 3 proposed algorithms must

have the same number of data dimensions. A match

value is given based on the correlation between

accuracy, algorithm execution time and the number of

dimensions of the data. According to Table 1 in the

paper, after applying the data dimension reduction

algorithms, the number of dimensions of the NSL-KDD

dataset decreased from 42 to 21. The number of

dimensions of the 2017 CIC-IDS dataset decreased from

68 to 23 and the number of dimensions of the simulated

data set decreased from 73 to 20. Thus, these algorithms

have significantly reduced the dimension of data, saving

computer resources and computation time.
After dealing with data dimension reduction with

feature selection techniques, we have a new data set with
the dimension much smaller than the original data. Then,
we train this dataset with each machine learning
algorithm (KNN, AdaBoost, Random Forest and SVM)
to classify DoS/DDoS attacks.

Experimental Classification Results and

Analysis

The experimental environment is implemented in the

system with the following configuration:

 Operating System: Window 10 64 bit

 CPU: Chip Intel i7 8750H, 6 cores 12 threads

 GPU: Intel UHD Graphic 630 4Gb

 RAM: 8Gb RAM DDR4

 Tool: Pycharm professional 64bit

NSL-KDD2019

CICIDS-2017

Simulation data

Dataset

PCA
Feature

importance
Univariate

Feature

selection

AdaBoost
Random

forest
KNN SVM

Machine

learning

algorithm

Random

forest

result

AdaBoost

result

KNN

result

SVM

result

Tran Hoang Hai et al. / Journal of Computer Science 2021, 17 (3): 304.318

DOI: 10.3844/jcssp.2021.304.318

309

Evaluation of NSL-KDD 2019 Dataset

NSL-KDD 2019 consists of Internet traffic records

observed by a simple intrusion detection network and

contains 43 attributes in each record where 41 attributes

related to the traffic and the last 2 attributes are label

(attack or non-attack) and attack level. In the NSL-KDD

2019 dataset, there are 4 attack classes including Denial

of Services (DoS), Reconnaissance (Probe), User to Root

(U2R) and Remote to Local (R2L). In this study, the

dataset is reprocessed as follows:

 Include two sub-data sets KDDTest + and

KDDTrain +

 Remove four layers of Reconnaissance, User to

Root and Remote to Local

After performing the preprocessing data, the

training data set becomes 77054 normal records and

53385 DDoS attack records have been clearly labeled

for each type of attack. The results of applying PCA in

NSL-KDD 2019 dataset are shown in Table 2 and the

overall result is illustrated in Table 3. We can see that

the computation time after data dimension reduction

including processing time with PCA technique has been

significantly reduced. The reason for using PCA is to

recalculate the relationship between features to move

from a dimensional space to a less data dimension

space. Therefore, every time a network traffic goes

through, the system needs to change the data direction

of that traffic and then analyze whether the traffic is

normal or attack. We also found that the accuracy of

the system using the AdaBoost algorithm after reducing

the data dimension by PCA increased significantly, but

we also noticed that the execution time of both

AdaBoost and Random Forest models increased

dramatically, showing that recalculating the

relationship between features has a good effect on

increasing accuracy but makes the processing time of

these two algorithms significantly increase. This result

shows that this NSL-KDD 2019 is not suitable for the

proposed data reduction model by PCA and using

AdaBoost and Random Forest to detect attacks. The

execution time of the KNN is reduced because fewer

dimensions of the data must be calculated, the faster

process of KNN. Therefore, we obtain the results

showing that the model using KNN and PCA techniques

achieved good results on this NSL-KDD 2019 dataset.

Moreover, the results of applying Feature Importance in

NSL-KDD 2019 dataset are shown in Table 5 and the

overall result is illustrated in Table 4. After performing a

dimensional reduction with the Feature Importance

technique using the Extra Tree to calculate the Importance

of each feature and using SelectFromModel algorithm to

select the features that meet user-defined conditions, we can

remove 20 redundant characteristic and only 21 features

being used. The remaining features are ‘is_host_login’,

‘num_outbound_cmds’, ‘num_shells’, ‘urgent’,

‘num_failed_logins’, ‘num_root’, ‘num_file_creations’,

‘su_attempted’, ‘num_access_file’, ‘root_shell’,

‘is_guest_login’, ‘land’, ‘dst_host_srv_diff_host_rate’,

‘dst_bytes’, ‘duration’, ‘dst_host_diff_srv_rate’,

‘srv_diff_host_rate’, ‘hot’, ‘num_compromised’, ‘service’,

‘dst_host_same_src_port_rate’. With the obtained results,

we found that this training data set is not suitable for the

AdaBoost algorithm. In addition, the system which makes

the selection of high-important "features" in this training

data set achieves very good results. We found that

processing speed could be significantly improved if the

system uses the KNN algorithm to detect network

attacks with the accuracy of the system mitigating but

the execution time is much faster than not eliminating

unnecessary features.

Table 2: The result of detecting each type of attack on NSL-KDD data set when reducing data dimension by PCA

 KNN AdaBoost Random Forest SVM

 -- --- --- ---

 Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level

Attack (before PCA) (%) (after PCA) (%) (before PCA) (%) (after PCA) (%) (before PCA) (%) (after PCA) (%) (before PCA) (%) (after PCA) (%)

Apache2 98.47 99.35 0.00 100.00 100.00 100.00 99.32 99.31

Back 92.10 90.83 0.00 95.07 100.00 93.35 31.02 32.45

Land 100.00 100.00 100.00 100.00 50.00 50.00 100.00 40.00

Mailbomb 93.54 100.00 0.00 100.00 100.00 100.00 89.06 100.00

Neptune 99.67 99.98 97.42 100.00 99.98 100.00 99.98 99.97

Normal 99.71 99.68 98.00 99.90 99.92 99.83 99.78 99.79

Pod 96.22 96.29 0.00 96.36 91.67 97.56 96.49 94.64

Processtable 98.57 97.56 0.00 97.63 100.00 97.10 100.00 100.00

Smurf 99.54 99.53 0.00 99.84 100.00 99.38 99.20 98.82

Teardrop 96.62 100.00 0.00 96.29 98.31 98.10 98.95 98.44

Table 3: The results of the whole model after features reduced by PCA on NSL-KDD 2019

 Accuracy level Accuracy level Processing time Processing time
Machine learning (before PCA) (after PCA) before PCA (ms) after PCA (ms)

KNN 99.67 99.66 99424.66 72476.28
AdaBoost 92.06 99.84 21197.64 627577.96
Random Forest 99.91 99.77 7504.45 38984.94
SVM 99.15 99.11 34103.84 20579.71

Tran Hoang Hai et al. / Journal of Computer Science 2021, 17 (3): 304.318

DOI: 10.3844/jcssp.2021.304.318

310

Table 4: The results of the whole model after features reduced by feature importance on NSL-KDD 2019

 Accuracy level Accuracy level Processing time Processing time

Machine learning (before FI) (after FI) before FI (ms) after FI (ms)

KNN 99.61 99.50 101808.01 38171.09

AdaBoost 92.26 94.17 18701.45 12145.49

Random Forest 99.93 99.93 7635.63 5623.96

SVM 99.08 98.99 27682.66 17538.80

Table 5: The result of detecting each type of attack on NSL-KDD data set when reducing data dimension by Feature Importance

 KNN AdaBoost Random Forest SVM

 --- --- -- ---

 Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level

Attack (before FI) (%) (after FI) (%) (before FI) (%) (after FI) (%) (before PCA) (%) (after PCA) (%) (before PCA) (%) (after PCA) (%)

Apache2 99.33 95.52 0.00 0.00 100.00 100.00 99.32 99.31

Back 87.82 86.39 0.00 0.00 100.00 93.35 31.02 32.45

Land 100.00 50.00 100.00 0.00 50.00 50.00 100.00 40.00

Mailbomb 100.00 74.66 0.00 0.00 100.00 100.00 89.06 100.00

Neptune 99.96 99.98 97.63 97.70 99.98 100.00 99.98 99.97

Normal 99.62 99.64 97.89 96.83 99.92 99.83 99.78 99.79

Pod 97.73 94.33 0.00 96.55 91.67 97.56 96.49 94.64

Processtable 97.58 98.47 0.00 0.00 100.00 97.10 100.00 100.00

Smurf 99.84 99.69 0.00 100.00 100.00 99.38 99.20 98.82

Teardrop 98.95 99.84 0.00 0.00 98.31 98.10 98.95 98.44

Table 6: The result of detecting each type of attack on NSL-KDD data set when reducing data dimension by Univariate Selection

 KNN AdaBoost Random Forest SVM

 --- --- -- --

 Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level Accuracy level

Attack (before FI) (%) (after FI) (%) (before FI) (%) (after FI) (%) (before PCA) (%) (after PCA) (%) (before PCA) (%) (after PCA) (%)

Apache2 99.33 95.52 0.00 0.00 100.00 100.00 99.32 99.31

Back 87.82 86.39 0.00 0.00 100.00 93.35 31.02 32.45

Land 100.00 50.00 100.00 0.00 50.00 50.00 100.00 40.00

Mailbomb 100.00 74.66 0.00 0.00 100.00 100.00 89.06 100.00

Neptune 99.96 99.98 97.63 97.70 99.98 100.00 99.98 99.97

Normal 99.62 99.64 97.89 96.83 99.92 99.83 99.78 99.79

Pod 97.73 94.33 0.00 96.55 91.67 97.56 96.49 94.64

Processtable 97.58 98.47 0.00 0.00 100.00 97.10 100.00 100.00

Smurf 99.84 99.69 0.00 100.00 100.00 99.38 99.20 98.82

Teardrop 98.95 99.84 0.00 0.00 98.31 98.10 98.95 98.44

Table 7: The results of the whole model after features reduced by Univariate Selection on NSL-KDD 2019

 Accuracy level Accuracy level Processing time Processing time

Machine learning (before US) (after US) before US (ms) after US (ms)

KNN 99.61 99.50 101808.01 38171.09

AdaBoost 92.26 94.17 18701.45 12145.49

Random Forest 99.93 99.93 7635.63 5623.96

SVM 99.08 98.99 27682.66 17538.80

We continue to apply Univariate Selection in NSL-

KDD 2019 dataset and the results are shown in Table 6

and in Table 7. We perform data dimension reduction

with the Univariate Selection technique that uses the chi-

squared algorithm to calculate squared values for each

feature in the data set, then sort them in descending

order. We then set the characteristic parameters we want

to keep to SelectKBest and the features are taken in

order from high to low according to the chi-square

parameters until sufficient. Finally, the remaining 21

features being used which are ‘is_host_login’, ‘urgent’,

‘num_compromised’, ‘num_root’, ‘num_file_creations’,

‘src_bytes’, ‘num_shells’, ‘num_failed_logins’, ‘dst_bytes’,

‘num_access_files’, ‘sv_attempted’, ‘root_shell’, ‘hot’,

‘is_guest_login’, ‘dst_host_diff_srv_rate’, ‘diff_srv_rate’,

‘dst_host_srv_diff_host_rate’, ‘service’, ‘protocol_type’,

‘duration’, ‘dst_host_count’. With the obtained

results, we can see that AdaBoost is not working well

with this dataset, same when we do feature selection

with Feature Important. In summary, through the

results achieved after implementing the proposed

system on the NSL-KDD 2019 dataset, we realize that

the data reduction system by PCA and intrusion

detection using KNN algorithms bring the best results.

However, we also implement this proposed model

using SVM but the obtained result is worst. Moreover,

the processing time is very slow, so it is not suitable

for online attack detection system. The possible

reason is that it is very time-consuming to analyze and

compute hyperplane in SVM to classify the attacks.

Tran Hoang Hai et al. / Journal of Computer Science 2021, 17 (3): 304.318

DOI: 10.3844/jcssp.2021.304.318

311

Fig. 2: Processing time on NSL KDD 2019 data set

Based on the results obtained on the execution time

as shown in Fig. 2, we can see that KNN provides best

results together with all feature selection algorithms. The

main reason is that the less the number of dimensions to

be computed, the faster the KNN algorithm is processed.

But with AdaBoost and Random Forest processing with

PCA, the results are not in our expectation. It is probably

the correlation between the features of an object and

AdaBoost and Random Forest are classified as black box

models. It is possible that the reduced correlation

between features makes splitting feature to build the tree

of both algorithms more difficult and more

computationally time consuming.

Evaluation of CICIDS 2017 Dataset

CICIDS 2017 dataset contains normal traffic records

and common attacks with real data packets in PCAP. It

also includes network traffic analysis results using

CICFlowMeter with timestamped flows, source and

destination IP, source and destination port, protocol and

attack (CSV file). The data collection time begin at 9 am,

Monday, July 3, 2017 and ended at 5 pm, Friday 7 July

2017 for a total of 5 days monitoring. Monday is a

normal day and only includes valid traffic. Attacks are

carried out (including Brute Force FTP, Brute Force

SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet

and DDoS) in the morning and afternoon on Tuesday,

Wednesday, Thursday and Friday. In this study, we use

attack data on Friday mornings (Friday-WorkingHours-

Afternoon-DDos.pcap_ISCX.csv). Initially, this dataset

has 78 features, after pre-processing the data, we

remove10 features with 0 variance. Moreover, the dataset

had 68 features and was labeled with Benign and DDoS.

The data set contains records with values of some features

such as NaN, Infinity, which have no effect in the

calculation, so they are deleted. After processing the

dataset, it includes 97686 Benign records and 128025

DDoS records. After, we then used the Min Max Scaling

(Han et al., 2011) to normalize the data with characteristic

values from -1 to 1 to serve the performance evaluation.

The results of applying PCA in CICIDS 2017 dataset are

shown in Table 8 when we collected 23 features from the

original 68 features of the dataset. We can see that except

Random Forest algorithm, the execution time has increased

significantly and the implementation time has decreased

significantly. This is because PCA has transformed the data

set into a new dataset, which makes the structure of newly

constructed trees different from the original tree. In general,

the accuracy will decrease after reducing the data

dimension, but this reduction is acceptable compared to the

execution time, i.e., the accuracy decreases about 0.01-

0.03% but training and testing times reducing it 2-3

times. Overall, KNN still provides good results with the

execution time is much faster and still gives the system a

relatively high accuracy. The CIC-IDS 2017 data set is

made up of a lot of different traffic files and there are

many traffics of different types of DoS/DDoS attacks. In

this study, we only use a single file (Friday-

51611.32

SVM

Random forest

AdaBoost

KNN

31414.88
17538.8

27682.66

20579.71

34103.84

6135.59

8262.87

5623.96
7635.63

38984.96
7504.45

12532.5

22077.3

12145.49

18701.45
627577.96

21197.64

29376.53

98711.34

38171.09
101808.01

72476.28
99424.66

0 100000 200000 300000 400000 500000 600000 700000

Processing time after US (ms) Processing time before US (ms) Processing time after FI (ms)

Processing time before FI (ms) Processing time after PCA (ms) Processing time before PCA (ms)

Tran Hoang Hai et al. / Journal of Computer Science 2021, 17 (3): 304.318

DOI: 10.3844/jcssp.2021.304.318

312

WorkingHours-Afternoon-DDos.pcap_ISCX.csv) as test

data. This traffic file has only 2 data types: Benign and

DoS. Therefore, we do not have a table of performance

for classifying DoS attacks for this dataset.

Moreover, the results of applying Feature Importance

in CICIDS dataset are shown in Table 9. After

performing a dimensional reduction with the Feature

Importance, we get a new data with 23 features which

are ‘ECE Flag Count’, ‘RST Flag Count’, ‘Active Std’,

‘Active Max’, ‘Active Min’, ‘Bwd IAT Min’, ‘Active

Mean’, ‘Flow Bytes/s’, ‘Flow IAT Min’, ‘Fwd IAT

Min’, ‘Bwd Packets/s’, ‘FIN Flag Count’,

‘Init_Win_bytes_backward’, ‘Total Length of Bwd

Packets’, ‘Bwd IAT Mean’, ‘Idle Std’, ‘Fwd Packets/s’,

‘Bwd Header Length’, ‘Subflow Bwd Bytes’, ‘Flow

Packets/s’, ‘Idle Min’, ‘Subflow Fwd Bytes’, ‘Flow IAT

Mean’. Moreover, we find the results to be very positive.

The accuracy of the model slightly decreased but the

implementation time was much reduced. In addition,

when using the Feature Importance, we get only 23

features that need to be processed. Therefore, the

network administrator only needs to set the rules so that

only 23 features are collected from a network flow which

can help reducing data sampling and increasing the

processing speed for the overall system.

We continue to apply Univariate Selection on

CICIDS 2017 dataset and the result is illustrated in Table

10. Same as previous work, we obtain 23 feature after

using Univariate Selection which are ‘ECE Flag Count’,

‘RST Flag Count’, ‘Active Std’, ‘Active Max’, ‘Active

Min’, ‘Bwd IAT Min’, ‘Active Mean’, ‘Flow Bytes/s’,

‘Flow IAT Min’, ‘Fwd IAT Min’, ‘Bwd Packets/s’, ‘FIN

Flag Count’, ‘Init_Win_bytes_backward’, ‘Total

Length of Bwd Packets’, ‘Bwd IAT Mean’, ‘Idle Std’,

‘Fwd Packets/s’, ‘Bwd Header Length’, ‘Subflow Bwd

Bytes’, ‘Flow Packets/s’, ‘Idle Min’, ‘Subflow Fwd

Bytes’, ‘Flow IAT Mean’.

In Fig. 3, we see that combining feature selection

methods gives a good result on each individual model.

However, with RF in combination with PCA and SVM

in combination with US, the result is not good in terms

of processing time.

Fig. 3: Processing time on CICIDS 2017 Dataset

Table 8: The results of the whole model after features reduced by PCA on CICIDS 2017

 Accuracy level Accuracy level Processing time Processing time

Machine learning (before PCA) (after PCA) before PCA (ms) after PCA (ms)

KNN 99.98 99.95 204696.58 8278.48

AdaBoost 99.98 99.97 105509.13 21565.54

Random Forest 99.99 99.98 62409.92 100667.05

SVM 99.02 99.08 300548.65 130796.97

SVM

Random forest

AdaBoost

KNN

688048.89

0 100000 200000 300000 400000 500000 600000 700000

Processing time after US (ms) Processing time before US (ms) Processing time after FI (ms)

Processing time before FI (ms) Processing time after PCA (ms) Processing time before PCA (ms)

352146.49

389069.11

106207.05

130796.97

300548.65

13883.88

57844.52

12550.93
51288.93

100667.05

62409.92

46774.54

106482.57

28415.82

21565.54

8278.48

107709.13

105509.13

97316.26

78644.95

210576.68

222753.6

204696.58

Tran Hoang Hai et al. / Journal of Computer Science 2021, 17 (3): 304.318

DOI: 10.3844/jcssp.2021.304.318

313

Table 9: The results of the whole model after features reduced by Feature Importance on CICIDS 2017

 Accuracy level Accuracy level Processing time Processing time

Machine learning (before FI) (after FI) before FI (ms) after FI (ms)

KNN 99.98 99.95 222753.60 78644.95

AdaBoost 99.98 99.96 107709.13 28415.82

Random Forest 99.99 99.97 51288.93 12550.93

SVM 99.05 98.40 389069.11 106207.05

Table 10: The results of the whole model after features reduced by Univariate Selection on CICIDS 2017

 Accuracy level Accuracy level Processing time Processing time

Machine learning (before US) (after US) before US (ms) after US (ms)

KNN 99.98 99.95 222753.60 78644.95

AdaBoost 99.98 99.96 107709.13 28415.82

Random Forest 99.99 99.97 51288.93 12550.93

SVM 99.05 98.40 389069.11 106207.05

Evaluation of the Simulated Traffic

This dataset is quite similar to a real network operating

environment (Lima Filho et al., 2019). Therefore, we

chose to use this data set to do performance evaluation

with the proposed model However, we find that this data

set is not large enough which includes 45500 records

(including 22412 attacks and 23088 normal records). The

results of applying PCA in this dataset is illustrated in

Table 11 when we collected 20 features from the original

73 features of this dataset. The computation time after data

dimension reduction has taken into account the processing

time with PCA due to the nature of this technique is to

re-calculate the relationship between the features to

move from multi-dimensional space to a less data

dimensional space. Therefore, every time a network

traffic goes through, the system needs to change the data

direction of that traffic, then analyze whether the traffic

is normal or attack. We found that except for the

Random Forest and AdaBoost algorithms the execution

time increases significantly, but the overall the execution

time decreases significantly. In general, the accuracy will

decrease after reducing the data dimension, but it is

acceptable compared to the execution time. In addition,

we find that KNN algorithm is very suitable for this

training dataset since the execution time is much faster

and still provides a relatively high accuracy level.

Moreover, the results of applying Feature Importance

using Extra Tree in CICIDS dataset are shown in Table

12. After performing a dimensional reduction with the

Feature Importance, we get a new data with 20 features

which are ‘tcp_dataofs_median’, ‘tcp_dataofs_mean’,

‘tcp_flags_mean’, ‘ip_proto’, ‘ip_ttl_cv’, ‘tcp_flags_rte’,

‘ip_len_std’, ‘ip_ttl_std’, ‘tcp_flags_median’,

‘ip_len_entropy’, ‘sport_entropy’, ‘tcp_seq_mean’,

‘tcp_dataofs_rte’, ‘ip_len_cv’, ‘ip_ttl_cvq’,

‘tcp_ack_entropy’, ‘tcp_flags_cv’, ‘tcp_seq_entropy’,

‘tcp_ack_cvq’, ‘ip_len_mean’. Moreover, we also found

that the result is quite positive since the implementation

time is much reduced.

We continue to apply Univariate Selection on

simulating dataset and the result is illustrated in Table 13.

Same as previous work, we obtain 20 feature after using

Univariate Selection which are ‘‘ip_ttl_cv’, ‘ip_len_cv’,

‘ip_len_cvq’, ‘ip_ttl_cvq’, ‘tcp_ack_rte’, ‘tcp_seq_cvq’,

‘tcp_seq_rte’, ‘tcp_dataofs_median’, ‘tcp_dataofs_mean’,

‘tcp_window_median’, ‘dport_cv’, ‘tcp_window_mean’,

‘tcp_flags_mean’, ‘tcp_flags_median’, ‘tcp_ack_cvq’,

‘tcp_seq_mean’, ‘tcp_seq_median’, ‘tcp_seq_cv’,

‘ip_ttl_std’, ‘ip_len_std’.

We found that with two datasets (CICIDS 2017 and

simulating traffic (Lima Filho et al., 2019)) that contain

only normal and attack labels, the proposed model all

performed well except for SVM. Therefore, it could

provide a solution for an online network intrusion

detection but still give relatively high overall accuracy.

With the NSL-KDD 2019 dataset, the accuracy of

classifying individual attack when using the AdaBoost

algorithm is not good. Most attacks classified in the

NSL-KDD dataset by the AdaBoost algorithm have very

low performance. The traffic types for which the

AdaBoost algorithm can has a high classification

probability such as Neptune, normal and pod all have

lower value than the other algorithms. Specifically, the

accuracy of Neptune traffic classification by the AdaBoost

algorithm is 96.83%, 2.81% lower than that of KNN

algorithm and 3% compared to the Random Forest

algorithm. Thus, the classification ability of the AdaBoost

algorithm on the NSL-KDD dataset is not good. The

proposed model can provide high accuracy of anomaly

detection but when classifying each specific attack type,

the accuracy is relatively low and there are few false

alarms. We find that the proposed system is special good

for labeled data sets which are normal or attack. The two

models using KNN and Random Forest combined with

feature selection techniques have good results in both

accuracy and implementation time. Finally, we find that

the proposed algorithm to achieve the best results on all

three data sets is the combination of KNN algorithm and

the Feature Importance.

Tran Hoang Hai et al. / Journal of Computer Science 2021, 17 (3): 304.318

DOI: 10.3844/jcssp.2021.304.318

314

Table 11: The results of the whole model after features reduced by PCA on simulating traffic

 Accuracy level Accuracy level Processing time Processing time

Machine learning (before PCA) (after PCA) before PCA (ms) after PCA (ms)

KNN 99.96 99.94 6850.42 1428.97

AdaBoost 99.97 99.97 536.33 964.04

Random Forest 99.99 99.98 4121.98 6626.24

SVM 99.97 99.96 997.33 907.66

Table 12: The results of the whole model after features reduced by Feature Importance on simulating traffic

 Accuracy level Accuracy level Processing time Processing time

Machine learning (before FI) (after FI) before FI (ms) after FI (ms)

KNN 99.98 99.94 6166.51 808.83

AdaBoost 99.98 99.97 527.59 131.64

Random Forest 99.99 99.98 4123.95 1894.93

SVM 99.98 99.92 1017.28 389.99

Table 13: The results of the whole model after features reduced by Univariate Selection on CICIDS 2017

 Accuracy level Accuracy level Processing time Processing time

Machine learning (before US) (after US) before US (ms) after US (ms)

KNN 99.97 99.96 6765.79 1434.16

AdaBoost 99.97 99.96 443.76 174.48

Random Forest 99.99 99.98 4077.45 2441.52

SVM 99.96 99.95 1047.22 303.19

Fig. 4: Processing time on simulating data

In Fig. 4, we show that Random Forest algorithm gives

the best results on three approaches of dimensionality

reduction in accuracy but this one consumes system’s

runtime significantly. After using Importance technique,

SVM

Random forest

AdaBoost

KNN

0 1000 2000 3000 4000 5000 6000 7000

Processing time after US (ms) Processing time before US (ms) Processing time after FI (ms)

Processing time before FI (ms) Processing time after PCA (ms) Processing time before PCA (ms)

303.19

389.99

1047.22

1017.28

907.66

997.33

2441.52

4077.45

1894.93

4123.95

4121.98

6626.24

174.48

443.76

131.64

527.95

964.04

536.33

1434.16

6765.79

808.83

6166.51

1428.97

6850.42

Tran Hoang Hai et al. / Journal of Computer Science 2021, 17 (3): 304.318

DOI: 10.3844/jcssp.2021.304.318

315

the performance of KNN algorithm is much improved

since only important features are retained. Moreover, the

lower the number of data dimensions, the faster the

calculation of KNN. Therefore, although the accuracy is

slightly reduced, the calculation time is greatly reduced

and this is acceptable for us.

Conclusion

In this study, we have proposed a model for empirical

study for Machine Learning-based Network Intrusion

Detection with Feature Selection algorithm which are

PCA, Feature Importance and Univariate Selection. Our

contribution is to study in detail of Machine Learning

algorithms to work with Feature Selection techniques to

evaluate the accuracy level of each combination of

machine learning model and feature selection technique.

Processing network traffic flow in an online manner is a

difficult task especially when it contains a lot of

redundant features/or characteristics. Moreover, we

found that not all machine learning models can provide

good results as in previous works, therefore we have

evaluated the proposed models on three benchmark

datasets which are NSL-KDD 2019, CICIDS 2017 and

simulating traffic (Lima Filho et al., 2019). Lastly, we

conclude that the combination of KDD and Feature

Importance can provide a feasible solution toward an

online network intrusion detection system.

Acknowledgement

This publication was supported by a research grant,

T2020-PC-209, from Hanoi University of Science and

Technology Research Fund.

Author’s Contributions

Tran Hoang Hai: Designed the research plan and

contributed to the writing of the manuscript.

Nguyen Trong Khiem: Did all experiments on SVM

and Random Forest algorithms.

Nguyen Huu Phuc: Did all experiments on

AdaBoost and KNN algorithms.

Ethics

We declare there isn't any ethical issues that may

arise after the publication of this manuscript.

References

Abualigah, L. M., Khader, A. T., Al-Betar, M. A., &
Alomari, O. A. (2017). Text feature selection with a
robust weight scheme and dynamic dimension
reduction to text document clustering. Expert
Systems with Applications, 84, 24-36.
https://doi.org/10.1016/j.eswa.2017.05.002

Aksu, D., Üstebay, S., Aydin, M. A., & Atmaca, T. (2018,

September). Intrusion detection with comparative

analysis of supervised learning techniques and fisher

score feature selection algorithm. In International

Symposium on Computer and Information Sciences

(pp. 141-149). Springer, Cham.

https://doi.org/10.1007/978-3-030-00840-6_16

Altman, N. S. (1992). An introduction to kernel and

nearest-neighbor nonparametric regression. The

American Statistician, 46(3), 175-185.

https://doi.org/10.1080/00031305.1992.10475879

Argyraki, K. J., & Cheriton, D. R. (2005, April). Active

Internet Traffic Filtering: Real-Time Response to

Denial-of-Service Attacks. In USENIX annual

technical conference, general track (Vol. 38).

https://www.usenix.org/legacy/event/usenix05/tech/

general/full_papers/argyraki/argyraki_html/

Benaddi, H., Ibrahimi, K., & Benslimane, A. (2018,

October). Improving the intrusion detection system

for nsl-kdd dataset based on pca-fuzzy clustering-

knn. In 2018 6th International Conference on

Wireless Networks and Mobile Communications

(WINCOM) (pp. 1-6). IEEE.

https://doi.org/10.1109/WINCOM.2018.8629718

Biau, G. (2012). Analysis of a random forests model.

The Journal of Machine Learning Research, 13(1),

1063-1095.

https://www.jmlr.org/papers/volume13/biau12a/biau

12a.pdf

Chalapathy, R., & Chawla, S. (2019). Deep learning for

anomaly detection: A survey. arXiv preprint

arXiv:1901.03407.

https://doi.org/10.1145/3394486.3406704

Chellam, A., Ramanathan, L., & Ramani, S. (2018).

Intrusion detection in computer networks using lazy

learning algorithm. Procedia Computer Science, 132,

928-936. https://doi.org/10.1016/j.procs.2018.05.108

Cisco Annual Internet Report (2018–2023).

https://www.cisco.com/c/en/us/solutions/collateral/e

xecutive-perspectives/annual-internet-report

Cortes, C., & Vapnik, V. (1995). Support-vector

networks. Machine Learning, 20(3), 273-297.

https://doi.org/10.1007/BF00994018

Dali, L., Bentajer, A., Abdelmajid, E., Abouelmehdi, K.,

…, & Abderahim, B. (2015). A survey of intrusion

detection system. In 2nd World Symposium on Web

Applications and Networking (WSWAN, (pp. 1-6).

IEEE. https://doi.org/10.1109/WSWAN.2015.7210351
Efron, B. (1979). Bootstrap methods: Another look at the

jackknife. The Annals of Statistics, 7(1), 1-26.
https://doi.org/10.1214/aos/1176344552

Friedman, J., Hastie, T., & Tibshirani, R. (2000).
Additive logistic regression: a statistical view of
boosting (with discussion and a rejoinder by the
authors). Annals of Statistics, 28(2), 337-407.
https://doi.org/10.1214/aos/1016218223

https://doi.org/10.1016/j.eswa.2017.05.002
https://doi.org/10.1007/978-3-030-00840-6_16
https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.1109/WINCOM.2018.8629718
https://doi.org/10.1145/3394486.3406704
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/WSWAN.2015.7210351
https://doi.org/10.1214/aos/1016218223

Tran Hoang Hai et al. / Journal of Computer Science 2021, 17 (3): 304.318

DOI: 10.3844/jcssp.2021.304.318

316

Fuchsberger, A. (2005). Intrusion detection systems and

intrusion prevention systems. Information Security

Technical Report, 10(3), 134-139.
https://doi.org/10.1016/j.istr.2005.08.001

Ganapathy, S., Kulothungan, K., Muthurajkumar, S.,

Vijayalakshmi, M., Yogesh, P., & Kannan, A.

(2013). Intelligent feature selection and

classification techniques for intrusion detection in

networks: a survey. EURASIP Journal on Wireless

Communications and Networking, 2013(1), 1-16.

https://doi.org/10.1186/1687-1499-2013-271

Gandhi, R. (2018). Boosting Algorithms: AdaBoost,

Gradient Boosting and XGBoost. Retrieved from

hackernoon. com.

Goeschel, K. (2016, March). Reducing false positives in

intrusion detection systems using data-mining

techniques utilizing support vector machines,

decision trees and naive Bayes for off-line analysis.

In SoutheastCon 2016 (pp. 1-6). IEEE.

https://doi.org/10.1109/SECON.2016.7506774

Gupta, B. B., Joshi, R. C., & Misra, M. (2009).

Defending against distributed denial of service

attacks: issues and challenges. Information Security

Journal: A Global Perspective, 18(5), 224-247.

https://doi.org/10.1080/19393550903317070

Gupta, B. B., Joshi, R. C., & Misra, M. (2010).

Distributed denial of service prevention techniques.

International Journal of Computer and Electrical

Engineering, 2(2), 268-276.
https://doi.org/10.7763/IJCEE.2010.V2.148

Han, J., Kamber, M., & Pei, J. (2011). Data

transformation and data discretization. Data Mining:

Concepts and Techniques. Elsevier, 111-118.
Ho, T. K. (1995, August). Random decision forests. In

Proceedings of 3rd international conference on

document analysis and recognition (Vol. 1, pp.

278-282). IEEE.

https://doi.org/10.1109/ICDAR.1995.598994

Ho, T. K. (1998). The random subspace method for

constructing decision forests. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 20(8),

832-844. https://doi.org/10.1109/34.709601

Ioannidis, J., & Bellovin, S. M. (2002). Implementing

pushback: Router-based defense against DDoS attacks.
https://academiccommons.columbia.edu/doi/10.791

6/D8R78MXV

Jamshidi, Y., & Nezamabadi, P. H. (2013). A lattice

based nearest neighbor classifier for anomaly

intrusion detection.

https://www.sid.ir/en/journal/ViewPaper.aspx?id=38

6781

Jolliffe, I. T. (1986). Principal Component Analysis.

Springer Series in Statistics. Springer-Verlag. pp.

487. ISBN 978-0-387-95442-4.

Karthikeyan, R., & Indra, A. (2010). Intrusion Detection

Tools and techniques–a Survey'. International

Journal of Computer Theory and Engineering, 2(6),

1793-8201.

https://doi.org/10.7763/IJCTE.2010.V2.260

Khan, L., Awad, M., & Thuraisingham, B. (2007). A

new intrusion detection system using support vector

machines and hierarchical clustering. The VLDB

Journal, 16(4), 507-521.

https://doi.org/10.1007/s00778-006-0002-5

Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J.

(2019). Survey of intrusion detection systems:

techniques, datasets and challenges. Cybersecurity,

2(1), 1-22. https://doi.org/10.1186/s42400-019-0038-7

Larranaga, P., Karshenas, H., Bielza, C., & Santana, R.

(2013). A review on evolutionary algorithms in

Bayesian network learning and inference tasks.

Information Sciences, 233, 109-125.
https://doi.org/10.1016/j.ins.2012.12.051

Lee, H., Song, J., & Park, D. (2005, August). Intrusion

detection system based on multi-class SVM. In

International Workshop on Rough Sets, Fuzzy Sets,

Data Mining and Granular-Soft Computing (pp.

511-519). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/11548706_54

Lima Filho, F. S. D., Silveira, F. A., de Medeiros Brito

Junior, A., Vargas-Solar, G., & Silveira, L. F.

(2019). Smart detection: an online approach for

DoS/DDoS attack detection using machine learning.

Security and Communication Networks, 2019.

https://www.hindawi.com/journals/scn/2019/1574749/

Liu, X., Yang, X., & Lu, Y. (2008, August). To filter or

to authorize: Network-layer DoS defense against

multimillion-node botnets. In Proceedings of the

ACM SIGCOMM 2008 conference on Data

communication (pp. 195-206).

https://doi.org/10.1145/1402946.1402981

Liu, X., Yang, X., & Xia, Y. (2010). Netfence:

preventing internet denial of service from inside out.

ACM SIGCOMM Computer Communication

Review, 40(4), 255-266.

https://doi.org/10.1145/1851275.1851214

Liu, Z., Jin, H., Hu, Y. C., & Bailey, M. (2016, October).

MiddlePolice: Toward enforcing destination-defined

policies in the middle of the Internet. In Proceedings

of the 2016 ACM SIGSAC Conference on Computer

and Communications Security (pp. 1268-1279).
https://doi.org/10.1145/2976749.2978306

Mahajan, R., Bellovin, S. M., Floyd, S., Ioannidis, J.,

Paxson, V., & Shenker, S. (2002). Controlling high

bandwidth aggregates in the network. ACM

SIGCOMM Computer Communication Review,

32(3), 62-73.

https://doi.org/10.1145/571697.571724

https://doi.org/10.1016/j.istr.2005.08.001
https://doi.org/10.1186/1687-1499-2013-271
https://doi.org/10.1109/SECON.2016.7506774
https://doi.org/10.1080/19393550903317070
https://doi.org/10.7763/IJCEE.2010.V2.148
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1109/34.709601
https://doi.org/10.7763/IJCTE.2010.V2.260
https://doi.org/10.1007/s00778-006-0002-5
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1016/j.ins.2012.12.051
https://doi.org/10.1007/11548706_54
https://doi.org/10.1145/1402946.1402981
https://doi.org/10.1145/1851275.1851214
https://doi.org/10.1145/2976749.2978306

Tran Hoang Hai et al. / Journal of Computer Science 2021, 17 (3): 304.318

DOI: 10.3844/jcssp.2021.304.318

317

Miao, J., & Niu, L. (2016). A survey on feature

selection. Procedia Computer Science, 91, 919-926.

https://doi.org/10.1016/j.procs.2016.07.111

NSL-KDD. (2009). NSL-KDD data set for network-

based intrusion detection systems.

http://nsl.cs.unb.ca/KDD/NSLKDD.html

Panda, M., Abraham, A., & Patra, M. R. (2012). A

hybrid intelligent approach for network intrusion

detection. Procedia Engineering, 30, 1-9.
https://doi.org/10.1016/j.proeng.2012.01.827

Panja, B., Ogunyanwo, O., & Meharia, P. (2014, June).

Training of intelligent intrusion detection system

using neuro fuzzy. In 15th IEEE/ACIS International

Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed

Computing (SNPD) (pp. 1-6). IEEE.
https://doi.org/10.1109/SNPD.2014.6888688

Peng, C. Y. J., Lee, K. L., & Ingersoll, G. M. (2002). An

introduction to logistic regression analysis and

reporting. The Journal of Educational Research, 96(1),

3-14. https://doi.org/10.1080/00220670209598786

Rahman, S., & Xu, H. (2004). A univariate dimension-

reduction method for multi-dimensional integration

in stochastic mechanics. Probabilistic Engineering

Mechanics, 19(4), 393-408.

https://doi.org/10.1016/j.probengmech.2004.04.003

Rao, B. B., & Swathi, K. (2017). Fast KNN classifiers

for network intrusion detection system. Indian

Journal of Science and Technology, 10(14), 1-10.

https://doi.org/10.17485/ijst/2017/v10i14/93690

Resende, P. A. A., & Drummond, A. C. (2018). A survey of

random forest based methods for intrusion detection

systems. ACM Computing Surveys (CSUR), 51(3),

1-36. https://doi.org/10.1145/3178582
Sahu, S. K., Katiyar, A., Kumari, K. M., Kumar, G., &

Mohapatra, D. P. (2019). An SVM-based ensemble
approach for intrusion detection. International
Journal of Information Technology and Web
Engineering (IJITWE), 14(1), 66-84.
https://doi.org/10.4018/IJITWE.2019010104

Savage, S., Wetherall, D., Karlin, A., & Anderson, T.

(2000, August). Practical network support for IP

traceback. In Proceedings of the conference on

Applications, Technologies, Architectures and

Protocols for Computer Communication (pp. 295-306).

https://doi.org/10.1145/347057.347560

Schapire, R. E., & Singer, Y. (1999). Improved boosting

algorithms using confidence-rated predictions.

Machine Learning, 37(3), 297-336.

https://doi.org/10.1023/A:1007614523901

Seraphim, B. I., Palit, S., Srivastava, K., & Poovammal, E.

(2018, December). A Survey on Machine Learning

Techniques in Network Intrusion Detection System.

In 2018 4th International Conference on Computing

Communication and Automation (ICCCA) (pp. 1-5).

IEEE. https://doi.org/10.1109/CCAA.2018.8777596

Shahraki, A., Abbasi, M., & Haugen, Ø. (2020).

Boosting algorithms for network intrusion detection:

A comparative evaluation of Real AdaBoost, Gentle

AdaBoost and Modest AdaBoost. Engineering

Applications of Artificial Intelligence, 94, 103770.

https://doi.org/10.1016/j.engappai.2020.103770.

Sharafaldin, I., Gharib, A., Lashkari, A. H., & Ghorbani,

A. A. (2018). Towards a reliable intrusion detection

benchmark dataset. Software Networking, 2018(1),

177-200. https://doi.org/10.13052/jsn2445-

9739.2017.009.

Shlens, J. (2014). A tutorial on principal component

analysis. arXiv preprint arXiv:1404.1100.

https://arxiv.org/abs/1404.1100

Song, D. X., & Perrig, A. (2001, April). Advanced and

authenticated marking schemes for IP traceback. In

Proceedings IEEE INFOCOM 2001. Conference on

Computer Communications. Twentieth Annual Joint

Conference of the IEEE Computer and

Communications Society (Cat. No. 01CH37213)

(Vol. 2, pp. 878-886). IEEE.

https://doi.org/10.1109/INFCOM.2001.916279

Srivastava, A., Gupta, B. B., Tyagi, A., Sharma, A., &

Mishra, A. (2011, September). A recent survey on

DDoS attacks and defense mechanisms. In

International Conference on Parallel Distributed

Computing Technologies and Applications (pp.

570-580). Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-24037-9_57

Thai, L. H., Hai, T. S., & Thuy, N. T. (2012). Image

classification using support vector machine and

artificial neural network. International Journal of

Information Technology and Computer Science,

4(5), 32-38. https://doi.org/10.5815/ijitcs.2012.05.05

Tharwat, A., Ghanem, A. M., & Hassanien, A. E. (2013,

December). Three different classifiers for facial age

estimation based on k-nearest neighbor. In 2013 9th

International Computer Engineering Conference

(ICENCO) (pp. 55-60). IEEE.

https://doi.org/10.1109/ICENCO.2013.6736476

Turner, C., Jeremiah, R., Richards, D., & Joseph, A.

(2016). A rule status monitoring algorithm for rule-

based intrusion detection and prevention systems.

Procedia Computer Science, 95, 361-368.

https://doi.org/10.1016/j.procs.2016.09.346.

UCI. (1999). KDD Cup 1999 Data. University of

California, Irvine (UCI).

https://kdd.ics.uci.edu/databases/kddcup99/kddcup9

9.html

Vezhnevets, A., & Vezhnevets, V. (2005, September).

Modest AdaBoost-teaching AdaBoost to generalize

better. In Graphicon (Vol. 12, No. 5, pp. 987-997).
http://calvin-

vision.net/bigstuff/hp_avezhnev/Pubs/ModestAdaB

oost.pdf

https://doi.org/10.1016/j.procs.2016.07.111
http://nsl.cs.unb.ca/KDD/NSLKDD.html
https://doi.org/10.1016/j.proeng.2012.01.827
https://doi.org/10.1109/SNPD.2014.6888688
https://doi.org/10.1080/00220670209598786
https://doi.org/10.17485/ijst/2017/v10i14/93690
https://doi.org/10.1145/3178582
https://doi.org/10.4018/IJITWE.2019010104
https://doi.org/10.1145/347057.347560
https://doi.org/10.1023/A:1007614523901
https://doi.org/10.1109/CCAA.2018.8777596
https://doi.org/10.1016/j.engappai.2020.103770
https://doi.org/10.13052/jsn2445-9739.2017.009
https://doi.org/10.13052/jsn2445-9739.2017.009
https://arxiv.org/abs/1404.1100
https://doi.org/10.1109/INFCOM.2001.916279
https://doi.org/10.1007/978-3-642-24037-9_57
https://doi.org/10.5815/ijitcs.2012.05.05
https://doi.org/10.1109/ICENCO.2013.6736476
https://doi.org/10.1016/j.procs.2016.09.346
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Tran Hoang Hai et al. / Journal of Computer Science 2021, 17 (3): 304.318

DOI: 10.3844/jcssp.2021.304.318

318

Wang, W., Zhang, X., Gombault, S., & Knapskog, S. J.

(2009, December). Attribute normalization in

network intrusion detection. In 2009 10th

International Symposium on Pervasive Systems,

Algorithms and Networks (pp. 448-453). IEEE.

https://doi.org/10.1109/I-SPAN.2009.49

Winter, P., Hermann, E., & Zeilinger, M. (2011,

February). Inductive intrusion detection in flow-

based network data using one-class support vector

machines. In 2011 4th IFIP international

conference on new technologies, mobility and

security (pp. 1-5). IEEE.
https://doi.org/10.1109/NTMS.2011.5720582

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal

component analysis. Chemometrics and Intelligent

Laboratory Systems, 2(1-3), 37-52.

https://doi.org/10.1016/0169-7439(87)80084-9

Yaar, A., Perrig, A., & Song, D. (2004, May). SIFF: A

stateless Internet flow filter to mitigate DDoS flooding

attacks. In IEEE Symposium on Security and Privacy,

2004. Proceedings. 2004 (pp. 130-143). IEEE.

https://doi.org/10.1109/SECPRI.2004.1301320.

Yang, X., Wetherall, D., & Anderson, T. (2008). TVA:

A DoS-limiting network architecture. IEEE/ACM

Transactions on Networking, 16(6), 1267-1280.

https://doi.org/10.1109/TNET.2007.914506.

Zhang, C., Jiang, J., & Kamel, M. (2005). Intrusion

detection using hierarchical neural networks. Pattern

Recognition Letters, 26(6), 779-791.

https://doi.org/10.1016/j.patrec.2004.09.045.

Zwass, V. (2018). Expert system. Computer Science,

Enclyclopaedia Britannica,

https://www.britannica.com/technology/expert-

system.

https://doi.org/10.1109/I-SPAN.2009.49
https://doi.org/10.1109/NTMS.2011.5720582
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1109/SECPRI.2004.1301320
https://doi.org/10.1109/TNET.2007.914506
https://doi.org/10.1016/j.patrec.2004.09.045

