

 © 2021 Shafiul Alom Ahmed and Bhabesh Nath. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Is Single Scan based Restructuring Always a Suitable

Approach to Handle Incremental Frequent Pattern Mining?

Shafiul Alom Ahmed and Bhabesh Nath

Department of Computer Science and Engineering, Tezpur University, Tezpur, India

Article history

Received: 22-12-2020

Revised: 10-03-2021

Accepted: 11-03-2021

Corresponding Author:

Shafiul Alom Ahmed

Department of Computer

Science and Engineering,

Tezpur University, Tezpur,

India

Email: tezu.shafiul@gmail.com

Abstract: Incremental mining of frequent patterns has attracted the

attention of researchers in the last two decades. The researchers have

explored the frequent pattern mining from incremental database problems

by considering that the complete database to be processed can be

accommodated in systems’ main memory even after the database gets

updated very frequently. The FP-tree-based approaches were able to draw

more interest because of their compact representation and requirement of a

minimum number of database scans. The researchers have developed a few

FP-tree based methods to handle the incremental scenario by adjusting or

restructuring the tree prefix paths. Although the approaches have managed

to solve the re-computation problem by constructing a complete pattern tree

data structure using only one database scan, restructuring the prefix paths

for each transaction is a computationally costly task, leading to the high

tree construction time. If the FP-tree construction process can be supported

with suitable data structures, reconstruction of the FP-tree from scratch may

be less time consuming than the restructuring approaches in case of

incremental scenario. In this study, we have proposed a tree data structure

called Improved Frequent Pattern tree (Improved FP-tree). The proposed

Improved FP-tree construction algorithm has immensely improved the

performance of tree construction time by resourcefully using node links,

maintained in header table to manage the same item node list in the FP-tree.

The experimental results emphasize the significance of the proposed

Improved FP-tree construction algorithm over a few conventional

incremental FP-tree construction algorithms with prefix path restructuring.

Keywords: FP-tree, FP-Growth, Frequent Pattern, Pattern Mining, Data

Mining, Frequent Itemset, Itemset Mining, Pattern Analysis

Introduction

In this 21st century, transactional databases are

dynamic. Nowadays, researchers have focused on finding

the hidden knowledge from these incremental databases.

Frequent pattern mining is one of the most widely used

knowledge retrieval techniques of data mining. The

problem of mining frequent itemset was first brought to

attention in the Apriori algorithm (Agrawal et al., 1993).

Apriori algorithm is a level-wise computation, which

employs multiple database scans and generates an

enormous number of candidate itemsets. Moreover, it

exercises costly testing and prune out approach to discard

the redundant and infrequent candidate itemsets to

generate the complete set of frequent patterns. Later on,

many attempts have been made by the researchers to

propose an efficient method to mine the frequent itemsets

from large datasets by adopting the Apriori approach.

However, most of the proposed approaches sustain the

same multiple database scans, computation time

(candidate itemsets) and space problems.

To mitigate the multiple database scans and an

enormous number of candidate itemsets generation, a

group of researchers, (Han et al., 2000) came up with a

prefix path tree-based data structure approach called FP-

Growth. FP-Growth handled the multiple scan problem

by restricting it to only two. Moreover, it is capable of

generating the complete set of frequent itemset without

generating any candidate itemset. There have been many

FP-tree based algorithms proposed by the researchers to

improve the performance of FP-tree construction.

However, those approaches primarily emphasize

Shafiul Alom Ahmed and Bhabesh Nath / Journal of Computer Science 2021, 17 (3): 205.220

DOI: 10.3844/jcssp.2021.205.220

206

efficiently constructing the FP-tree and generating useful

frequent patterns from static databases. However, in

dynamic or incremental databases, FP-tree cannot directly

reflect the database modifications onto the FP-tree or the

already generated frequent patterns. Reconstructing afresh

FP-tree and incrementally restructuring the FP-tree are

two possible ways to deal with the incremental scenarios. If

only a few transactions are frequently added to the database,

it becomes computationally infeasible to repeatedly

reconstruct the FP-tree from scratch every time transactions

are added to the database. Therefore, researchers have

concentrated on incrementally restructuring the FP-tree

without reconstructing the FP-tree from scratch. The main

aim of the restructuring operation is to maintain the basic

FP-tree structure and properties. The restructuring is

performed to reflect the changes in the database directly

onto the FP-tree. The restructuring is achieved by

performing a sequence of costly swapping and merging

of FP-tree prefix paths. Though incrementally

restructuring the FP-tree requires only a single database

scan, the restructuring using swap and merge for each

transaction becomes much costlier than afresh FP-tree

construction if the size of newly added transactions is

enormous. It is required to perform the restructuring

operation along all the prefix paths containing an item

that is to be updated in the FP-tree. Therefore, if the

updated database size and the dimensionality are huge,

the incremental restructuring consumes a significant

amount of time compared to afresh FP-tree construction.

Depending on the database size and dimensionality, both

approaches have their pros and cons.
Most importantly, the data structures have a

significant influence on the performance of frequent
itemset mining algorithms. The data structure used by
the FP-Growth algorithm is a compact prefix tree data
structure named Frequent Pattern tree (FP-tree). FP-tree
consists of nodes and each node contains a value pair of
data or item and its count. The nodes containing the
same item are maintained in the list. Therefore, every
time a new node is created, it must traverse the whole
same item list and add the newly created node at the
list’s rear position. Hence, the FP-tree data structure
performs well in dense databases as many transactions
will share the common prefix paths in the tree. However,
for sparse databases with higher dimensions and high
average transaction lengths, the FP-tree size becomes
vast. Therefore, traversing a long list every time a new
node is inserted into the FP-tree demotes the tree
construction performance drastically. Depending on
specific characteristics of databases such as updated
database size, dimensionality, the average length of
transactions, dense and sparse, a few approaches perform
well. However, it may not be feasible to handle the
incremental scenarios with all cases.

Therefore, in this study, we have addressed a new

two scan based FP-tree construction algorithm named

Improved FP-tree (IFP-tree) from scratch by

manipulating the same item node links to handle the

incremental scenarios. Instead of the linked list, we have

maintained the nodes containing the same items in a

stack. Stack enables to directly access the top node so

that the newly created node can be inserted at the top of

the stack without traversing the whole stack. Which

saves a significant amount of time. Hence improves the

IFP-tree construction time significantly. The IFP-tree

construction algorithm’s strength is that if the size of

newly added transactions to the database is very high

irrespective of dense or sparse, it outperforms few

incremental restructuring algorithms and constructs the

FP-tree from scratch approaches. The experimental

results are significantly promising and establish the

novelty of the proposed IFP-tree.

Frequent pattern tree construction algorithm plays an

essential role in frequent pattern mining. The proposed

Improved FP-tree data structure can efficiently mine

frequent patterns and association rules from static and

incremental datasets. Frequent patterns and association

rules are used in different application domains such as

market-basket analysis, risk analysis in commercial

environments, disease factor analysis and patients

survivability possibility analysis.

Preliminaries

The main objective of FIM is to generate the

frequently occurring patterns or itemsets from

transactional databases that are useful and meet users

criteria in decision making. The usefulness and

interestingness of patterns generated is gauged by some

popular and most widely used measures discussed below:

Let D be a transactional database with items I = [i1,

i2….im} and set of all transactions T = {t1, t2….tn}. Each

transaction tj is a subset of I. A transaction tj is said to

contain an itemset say i, if i is a subset of tj.

Definition 1. Support Count ()

Support count is the total number of transactions in

the database that contain an itemset. Mathematically, the

support count  of an itemset P can be represented as:

   | ;j j jP t P t t T    (1)

Definition 2. Support (Supp)

Support of an itemset P can be defined as the

percentage of transactions in the transactional database D

that contains the itemset P. Mathematically, the support

of an itemset P can be represented as:

 
 p

Supp P
T


 (2)

Shafiul Alom Ahmed and Bhabesh Nath / Journal of Computer Science 2021, 17 (3): 205.220

DOI: 10.3844/jcssp.2021.205.220

207

Definition 3. Frequent Pattern or Frequent Itemset

An itemset is said to be frequent if the support of the

itemset is greater than or equal to the user specified

minimum support threshold minSupp. Formally, an

itemset P is said to be frequent if it satisfies the

following constraint:

 Supp P minSupp (3)

Related Work

The problem of mining frequent itemsets from static
databases was first coined by Agrawal et al., named Apriori
(Agrawal et al., 1993). There are several variants of Apriori
based incremental algorithms have been proposed by the
researchers, for instance, FUP (Cheung et al., 1996), FUP-
2 (Cheung et al., 1997), Border algorithm (Aumann et al.,
1999), Modified borders (Das and Bhattacharyya, 2004),
Update With Early Pruning (Ayan et al., 1999) (UWEP),
DEMON (Ganti et al., 2001), Incremental Constrained
APriori (ICAP) (Ayad, 2000), Maintaining Association
Rules with Apriori Property (Zhou and Ezeife, 2001)
(MAAP), Maximal Frequent Trend Pattern (MFTP)
(Guirguis et al., 2006), PRE-HU (Lin et al., 2014). Like
Apriori, if the length of the maximum frequent itemset is
K, the approaches require at least K number of scans
over the database. Several limitations, such as multiple
database scans and the generation of an enormous
number of candidate itemset of the Apriori algorithm
makes it computationally infeasible to handle the
incremental scenario of frequent pattern mining. Later
on, (Han et al., 2000) propose an efficient approach,
“FP-growth,” using a prefix tree data structure called
FP-tree. The researchers have exhaustively exploited
the FP-tree of the FP-growth algorithm to mine frequent
patterns as it can improve the mining performance
compared to the candidate itemset generation and prune
out mechanism of Apriori using multiple databases
scans. FP-growth requires only two database scans.
Since FP-tree is dependant on the user-defined minimum
support threshold and the FP-tree contains information
about only those items, it cannot be easily made
compatible with the dynamic scenario. Reconstructing
the FP-tree from scratch using two database scans every
time new transactions are added to the database, or the
minimum support change is not feasible. Although a
significant number of approaches viz. nonordfp (Rácz,
2004), IFP Growth (Lin et al., 2011), LP Growth
(Pyun et al., 2014), Incremental FP Tree (Adnan et al.,
2006b), Alternative FP Tree (Alhajj and Barker, 2008),
DB-tree (Ezeife and Su, 2002), FUFP (Hong et al.,
2008) and Pre-FUFP (Lin et al., 2009) have been
proposed in the last two decades. However, most of the
approaches suffer from the same problems as FP-tree.
Therefore, to deal with constructing afresh FP-tree,
researchers have developed few new approaches,

basically improvements over the FP-tree, to generate
frequent patterns from incremental databases efficiently.
The incremental approaches take only one database
scan and apply a split, swap and merge operations
sequence to construct the FP-tree incrementally. Few
FP-tree based single scan incrementally restructuring
approaches are discussed below.

FP-Tree based Incremental Approaches

Incremental Frequent Pattern Tree (Adnan et al.,

2006a) does not reconstruct the FP-tree from scratch

whenever the database changes. To achieve this, a

complete FP-tree (assuming the minimum support

threshold as one) is constructed. The complete reflects all

the occurrences of items in the database onto the FP-tree.

As the database gets updated, this algorithm incrementally

updates the FP-tree without re-scanning the old database

or reconstructing the FP-tree from scratch. This algorithm

uses two primary operations: “Shuffling” and “merging”

to maintain the FP-tree structure. However, this algorithm

scans the original database twice to construct the initial

FP-tree also scans twice the newly added set of

transactions every time the database gets updated. The

Fast Updated FP-tree (FUFP) (Hong et al., 2008) is an

improvement over FP-tree based on the FUFP concept to

mine incremental frequent patterns. This algorithm first

divides the items into four groups based on whether the

items are large or small in the old database and new

transactions. Whenever these sets get changed, the

Header-Table and the FUFP-tree are updated accordingly.

When a sufficiently large number of transactions are

inserted, then the entire tree needs to be reconstructed in a

batch way. Pre-FUFP (Lin et al., 2009) is a modification

over FUFP based on the concept of “pre-large” itemsets.

This algorithm uses two threshold values; one is a lower

support threshold and another one is an upper support

threshold to define the pre-large itemsets. However, this

algorithm requires an extra minimum support threshold

input. The CATS-tree (Cheung and Zaiane, 2003) is an

extension over FP-tree to improve storage compression

so that it can be quickly adapted to mine frequent

itemsets from incremental databases without candidate

generation. The CATS-tree (Cheung and Zaiane, 2003)

requires only a single pass over the dataset to construct

the CATS-tree and each path from the root node to the

leaf node represents a set of transactions. When the

database gets updated, the new transactions are added at

the root level. Then, the transactions’ items are

compared with the child_nodes in each level to

determine the common items in both the new transaction

and the child_nodes. If there are common items, then the

transaction is merged with the nodes. The frequencies of

the node are incremented. However, this algorithm

consumes a considerable amount of time to update the

tree when the database gets incremented. Adjusting FP-

tree for Incremental Mining (AFPIM) (Koh and Shieh,

Shafiul Alom Ahmed and Bhabesh Nath / Journal of Computer Science 2021, 17 (3): 205.220

DOI: 10.3844/jcssp.2021.205.220

208

2004) is also an improvement over the FP-tree structure;

it uses two support thresholds to mine incremental

frequent itemsets. It is an O(n2) algorithm and also it

requires extra pre-minimum support. Later on, to solve

the problems of AFPIM, (Leung et al., 2005; 2007)

developed a tree data structure called CANonical-order

Tree (CanTree). However, the ordering of the items in

the CanTree should be unaffected even if the frequency

of the items changes due to incremental database updates

to maintain the items’ canonical order. Which may not

be possible in all cases of real-life scenarios. Though

CanTree does not require any prefix path adjustment or

restructuring, it requires a huge memory space to store

the database information. Afterward, (Tanbeer et al.,

2009) developed a tree data structure named CP-tree or

Compact Pattern tree. CP-tree is constructed using only

one database scan. A pre-defined number of transactions

(slot) are inserted into the CP-tree one by one according

to the pre-defined item order. After inserting a slot of

transactions, if the frequency-dependent item order gets

changes up to a pre-defined degree, the CP-tree

construction algorithm restructures the tree by adjusting

and sorting the prefix paths. Even if the CP-tree is

periodically restructured, it still requires a considerable

amount of time. The researchers proposed several FP-

tree-based incremental approaches with both single and

multiple database scans during the last two decades. A

summary of a few incremental approaches found in the

literature is briefly discussed in Table 1.

Proposed Method

Improved FP-tree Construction

The Improved FP-tree construction algorithm

presented in this study is based on the basic paradigm of the

FP-tree construction algorithm of FP-growth (Han et al.,

2000). Unlike FP-tree, the Improved FP-tree is a

complete tree, i.e., it stores all the database transactions

without any information loss. The proposed Improved

FP-Growth algorithm customizes the conventional FP-

tree construction algorithm to enhance tree construction

performance. The performance enhancement is achieved

by maintaining each list of nodes containing the same

item of Improved FP-tree as a linked-list implemented as

stack instead of maintaining a simple linked-list as a

conventional FP-tree. The same item node-link from the

header table points to the most recently inserted, i.e., the

stack’s top node. The stack implementation of the same

item node list lets us access the top node without

traversing the whole list directly. The direct access

eliminates the same item node list traversal for every new

node inserted into the Improved FP-tree during its

construction. Which saves a significant of time. For

example, let Node(X) is the top node of the same item list

stack of item X. Therefore, the header table same item

node-link for item X will be pointing to the stack top node

Node(X). Whenever a new node Node(X) is inserted, we

can directly access the top node Node(X) of the stack with

header tables’ node-link, without traversing the whole list

for item X. Then the same item link of node Node(X) is

set to the existing top node Node(X). After that, the header

table’s node link is updated to the recently added node

Node(X). The complete step by step procedure for

constructing the Improved FP-tree is illustrated in

Algorithm 1 and Algorithm 2.
The working principle of Improved FP-tree

construction is illustrated in this section by considering a
small transactional dataset D [Table 2] and the minimum
support to be 1.

Like FP-tree, the Improved FP-tree construction

algorithm also requires two database scans to construct the

tree. Initially, the whole transactional database D is scanned

once to fetch the frequency of each item. Items with their

corresponding frequencies are shown in Table 3.

Table 1: Summary of FP-tree based incremental frequent itemset mining algorithms

Algorithm Update type Datset rescan Data structure

P-Tree, (Huang et al., 2002) Addition 1 FP-tree

Generalized FPtree, (Ezeife and Su, 2002) Addition  1 FP-tree

CATS-tree, (Cheung and Zaiane, 2003) Addition, Deletion 1 FP-tree

AFPIM, (Koh and Shieh, 2004) Addition, Deletion, Modification  0 FP-tree

IFP-tree, (Adnan et al., 2006a) Addition, Deletion, Modification 2 FP-tree

CanTree, (Leung et al., 2007) Addition, Deletion, Modification 0 FP-tree

FUFP, (Hong et al., 2008) Addition, Deletion  1 FP-tree

Pre-FUFP, (Lin et al., 2009) Addition, Deletion  0 FP-tree

CP-tree, (Tanbeer et al., 2009) Addition, Deletion 1 FP-tree

Improved CPtree, (Hamedanian et al., 2013) Addition  1 FP-tree

GM-tree, (Roul and Bansal, 2014) Addition 1 FP-tree

HUPIDGrowth, (Yun and Ryang, 2015) Addition, Deletion 1 FP-tree

SPFPtree, (Shahbazi et al., 2016) Addition 1 FP-tree

VSIFP, (Yu-Dong et al., 2016) Addition 1 FP-tree

SSP-tree, (Borah and Nath, 2018) Addition, Deletion 1 FP-tree

Shafiul Alom Ahmed and Bhabesh Nath / Journal of Computer Science 2021, 17 (3): 205.220

DOI: 10.3844/jcssp.2021.205.220

209

Table 2: Database (D)

Tid Transaction

T1 {b, d}

T2 {a, b, e}

T3 {a, c, d, e}

T4 {a, d, c}

T5 {b, d, e}

T6 {a, b, d, e}

T7 {d}

T8 {b, d, e}

T9 {a, b, d}

T10 {b, c, e}

Table 3: Item frequencies

Item Frequency count

‘a’ 5

‘b’ 7

‘c’ 3

‘d’ 8

‘e’ 6

Table 4: Sorted order

Item Frequency count

‘d’ 8

‘b’ 7

‘e’ 6

‘a’ 5

‘c’ 3

The items are then sorted with respect to their

frequency count in descending order. Since the minimum

support is 1, every item occurring at least once in the

database will be considered to construct the complete

Improved FP-tree. Hence all the items are inserted into

the header table. The items after sorting in descending

order according to their corresponding frequency counts

are represented in Table 4.

The frequency counts are set as zero after inserting the

frequent items into the header table in frequency descending

order. After that, the root node of the Improved FP-tree is

created. In the second database scan, the transactions of the

database are read and inserted into the Improved FP-tree

one by one. The steps required to be performed to insert the

transactions of D into the tree are as follows:

(a) All items of the first transaction {b, d} are frequent

are sorted according to the order of header table

items and the resulting sorted transaction is {d, b}.

Since the root node has no child branches yet, a

node (Node(d:1)) containing item = ‘d’ and count is

created and inserted as the first child_node of root.

Then the frequency count of item ‘d’ in the header

table is incremented by 1. Then the header table

same item link is updated to Node(d:1) and set

Node(d:1) as the top node of items ‘d’s stack.

Similarly, for item ‘b’, Node(b:1) is created and

inserted as child_node of Node(d:1). Thereafter, the

frequency count of item ‘b’ in the header table is

incremented by 1 and the header table same item

link is updated to Node(b:1), the top node of items

‘b’s stack. The resultant Improved FP-tree after

inserting first transaction is shown in Fig. 1

(b) For the second transaction {a, b, e}, the transaction

is sorted as {b, e, a}. Since the root has no

child_node with item label ‘b’, a new node

Node(b:1) is created and inserted as a child_node

of root. The frequency count of item ‘b’ in the

header table is incremented by 1. Since the same

item node link is already pointing to the same item

stacks top node, the top Node(b:1) is directly

accessed and set it as the same item next node of

newly inserted node Node(b:1). The header table

node link is then updated to the newly created node

Node(b:1) as top. Rest of the items ‘e’ and ‘a’ are

inserted as a child branch of Node(b:1) and their

header table node links are also set. The Improved

FP-tree generated after inserting the second

transaction is shown in Fig. 2

(c) All the items of third transaction are sorted

according to the order of header table and the

resulting sorted transaction is {d, e, a, c}. In Fig. 2,

we can see that the root node of Improved FP-tree

has a child_node Node(d:1). Thus, for the first item

‘d’ of sorted transaction, the count of Node(d:1) and

the corresponding frequency count in header table is

incremented by 1. Since Node(d:2) has no

child_node with item label ‘e’, therefore a new

Node(e:1) is created and inserted as child_node of

Node(d:2). The same item link of newly created

Node(e:1) is set to the already existing node pointed

by header table node link and header table node link

is then updated to Node(e:1). Similarly, Node(a:1)

and Node(c:1) are created and inserted as a child

branch of Node(e:1). Their header table frequency

counts, header table node links and same item node

links are updated accordingly. The resultant

Improved FP-tree is portrayed in Fig. 3
(d) For the first item ‘d’ of sorted forth transaction

{d, a, c}, root node of Improved FP-tree in Fig. 3

already has a child_node Node(d:2). Therefore,

count of the node and corresponding header table

frequency count are simply incremented by 1. But

Node(d:3) does not have any child_node with

item label ‘a’. A new Node(a:1) is created and

inserted as a child_node of Node(d:3). Their

header table frequency counts, header table node

links and same item node links are updated

accordingly. Similarly, item ‘c’ is also handled

and the resultant Improved FP-tree after inserting

forth transaction is shown in Fig. 4

Shafiul Alom Ahmed and Bhabesh Nath / Journal of Computer Science 2021, 17 (3): 205.220

DOI: 10.3844/jcssp.2021.205.220

210

Algorithm 1: Improved_FP_Tree-Construction

(minsupp, D)

1 input: Minimum support count (minsupp),

Transactional Database D;

2 output: Improved FP-tree;

3 Header Table Item Insertion

4 Create an empty header table and the root node of the

Improved FP-tree;

5 Scan the database and derive the frequency counts of

each individual item;

6 Insert the items into the header table based on their

frequency descending order;

7 Improved FP-tree Insertion

8 Read the transactions T of D, one at a time during the

second database scan;

9 for each transaction Ti do

10 Sort the frequent items Ij of Ti according to the

header table item order;

11 Set tempRoot = root;

12 for each item Ij in sorted Ti do

13 Call tempRoot = insertInto-Improved FP-tree

(Ij, tempRoot);

14 end

15 end

Algorithm 2: insertInto-Improved_FP-tree(I, Root)

1 if Root has a child_node with item label I then

2 Increment the frequency count of the child_node

and corresponding header table frequency by 1;

3 else

4 Create a new child_node of Root with item label

I and increment corresponding header table item

frequency by 1;

5 if the node link pointer of corresponding header

table position is NULL then

6 Set the header table node link pointer to

child_node;

7 Set child_node as stack top;

8 else

9 Set the same item node link pointer of

child_node to the top node pointed by header

table node link pointer;

10 Update the header table node link pointer to

child_node and set child_node as the new

stack top;

11 end

12 end

13 return child_node;

(e) After sorting the fifth transaction as {d, b, e}, it can

be seen in Fig. 4 that, items ‘d’ and ‘b’ are already

shared by a prefix path. Therefore, the node counts

and the corresponding header table frequency counts

are simply incremented by 1. Since, Node(b:2) has

no child_node, so for item ‘e’, Node(e:1) is created

and inserted as child_node of Node(b:2). Thereafter,

the header table frequency count, header table node

link and same item node link of newly created

Node(e:1) are updated. The resultant Improved FP-

tree is illustrated in Fig. 5

(f) Likewise, for the items ‘d’, ‘b’ and ‘e’ of sorted

sixth transaction {a, b, d, e}, the counts of the

shared nodes of the prefix path in Fig. 5 are just

incremented by 1. The header table frequency

counts of the corresponding items are also

incremented by 1. Then Node(a:1) is created and

inserted as child_node of Node(e:2) and the

corresponding header table frequency count, header

table node link and same item node link is updated.

The resultant Improved FP-tree after inserting sixth

transaction is illustrated in Fig. 6

(g) Identically, after inserting all transactions of the

database D, the final resultant Improved FP-tree is

shown in Fig. 7

Fig. 1: Improved FP-tree after inserting T1

Item Count Link

d 1

b 1

e 0

a 0

c 0

Root

d:1

b:1

Header table

Shafiul Alom Ahmed and Bhabesh Nath / Journal of Computer Science 2021, 17 (3): 205.220

DOI: 10.3844/jcssp.2021.205.220

211

Fig. 2: Improved FP-tree after inserting T2

Fig. 3: Improved FP-tree after inserting T3

Fig. 4: Improved FP-tree after inserting T4

Item Count Link

d 1

b 2

e 1

a 1

c 0

Root

d:1

b:1

Header table

b:1

e:1

a:1

Item Count Link

d 2

b 2

e 2

a 2

c 1

Root

d:2

b:1

Header table

b:1

e:1

a:1

e:1

a:1

c:1

Item Count Link

d 3

b 2

e 2

a 3

c 2

Root

d:3

b:1

b:1

a:1

a:1

e:1

a:1

c:1

e:1

c:1
Header table

Shafiul Alom Ahmed and Bhabesh Nath / Journal of Computer Science 2021, 17 (3): 205.220

DOI: 10.3844/jcssp.2021.205.220

212

Fig. 5: Improved FP-tree after inserting T5

Fig. 6: Improved FP-tree after inserting T6

Fig. 7: Improved FP-tree after inserting all transactions

Item Count Link

d 4

b 3

e 3

a 3

c 2

Root

d:4

b:2

b:1

a:1

a:1 e:1

c:1

e:1

c:1

Header table

e:1

a:1

Item Count Link

d 5

b 4

e 4

a 4

c 2

Root

d:5

b:3

b:1

a:1

a:1

e:2

c:1

e:1

c:1
e:1

a:1

Item Count Link

d 8

b 7

e 6

a 5

c 3

Root

d:8

b:5

b:2

a:1
a:1

e:3

c:1

e:2

c:1

e:1

a:1

a:1

Header table

Header table

a:1
a:1

c:1

Shafiul Alom Ahmed and Bhabesh Nath / Journal of Computer Science 2021, 17 (3): 205.220

DOI: 10.3844/jcssp.2021.205.220

213

Experimental Results Evaluation

In this section, we are going to analyze the

performance of the proposed Improved FP-tree

construction. The Improved FP-tree algorithm’s

significance is established by comparing its

performance with FP-tree with two databases scan-

based tree construction and two incrementally

restructuring single scan-based approaches viz. CP-tree

and SSP-tree. Several experiments have been carried

out to assess the Improved FP-tree construction

algorithm’s effectiveness by considering the total tree

construction time, the effect of updated database size

and minimum support threshold change.

Experimental Environment and Datasets

All the tree construction and pattern growth algorithms

are coded in C and run on Ubuntu-18.04.2 with 2.67 GHz

CPU and 8 GB main memory. To assess the significance

of the Improved FP-tree construction algorithm over other

alternative tree construction algorithms, we have

conducted experiments on both real and synthetic datasets,

as well as dense and sparse datasets. The datasets

presented in Table 5 are retrieved from the UCI Machine

Learning Repository and FIMI Repository.

Complete Tree Construction Time

The initial experiment has been carried out to analyze

the total time taken by the proposed tree construction

algorithm to construct the Improved FP-tree. The total

time taken by the Improved FP-tree construction

algorithm has been compared to the total tree

construction time of FP-tree, CP-tree and SSP-tree for

different datasets mentioned in Table 5. As mentioned

above, Improved FP-tree, as well as CP-tree and SSP-

tree, are complete trees. That means all three tree data

structures are independent of the user-defined minimum

support threshold. Therefore, all the items appearing in a

database are considered for constructing the trees,

irrespective of their frequency counts. Hence for

performing a proper comparison, though the FP-tree

construction algorithm takes two database scans, we

have considered the minimum support 1 to construct the

FP-tree. SSP-tree construction algorithm constructs the

tree in a single scan over the database and processes the

database transactions one by one. The algorithm

performs some restructuring operations based on the

updated header table item counts to maintain the FP-tree

properties for each transaction. Which consumes a

significant amount of time. On the other hand, the CP-

tree algorithm also constructs the tree by taking a single

database scan. However, instead of performing

restructuring for each transaction periodically, i.e., after

inserting a certain number of transactions (slot), the

restructuring is performed to improve the tree

construction time. For this experiment, we have

considered the slot size to be 10K for CP-tree

construction. Therefore, the CP-tree construction

algorithm performs the restructuring after inserting 10K

transactions into the CP-tree. Table 6 depicts the total

time taken by all the above-mentioned tree construction

algorithms to construct or restructure the complete trees.

From Fig. 8, it can be observed that Improved FP-tree

outperforms all the other three tree construction

algorithms for both dense and sparse databases. However,

for sparse databases, the performance of the Improved FP-

tree is more prominent. The number of items in a sparse

database is very high as compared to a dense database.

The possibility of sharing the tree prefix paths less,

resulting in expanse the same item lists, increases the tree

size. Therefore, every time a new node is inserted into the

tree, the FP-tree construction algorithm has to traverse a

long list of the same item nodes. In addition to the same

item list traversals, CP-tree and SSP-tree construction

algorithms also have to restructure the tree prefix paths.

Table 6 represents the number of same item list

traversals performed by different algorithms to construct

the trees for different databases.

From Table 7, it can be observed that all three

algorithms perform several traversals over the same item

lists. Simultaneously, the proposed Improved FP-tree

construction algorithm does not perform the traversal a

single time. Though it constructs the Improved FP-tree

from scratch using two database scans, neither it

performs any same item list traversal nor requires

incremental restructuring of the Improved FP-tree to

handle incremental scenarios.

Effect of Updated Database Size

To assess the Improved FP-tree construction

algorithm’s performance concerning database update, i.e.,

in the incremental scenario, we have initially conducted

experiments in one dense real-life database, “Connect-4”

and one sparse synthetic database, “T40I10D100K”. For

the “Connect-4” database, to begin with, we have

considered the first 15K transactions as input and executed

the tree construction algorithm. Each time, the size of the

input database size is updated with the next set of 15K

transactions. Finally, the remaining 7557 transactions are

set as input. For a fair comparison, we have considered the

minimum support to be 1 for FP-tree, i.e., if an item

occurs at least once in the database, it will be taken into

account to construct the tree. Since the CP-tree performs

the restructuring periodically, we have performed the

restructuring after inserting every 2.5K transactions in

this experiment. The time taken by the proposed

Improved FP-tree construction algorithm and the other

tree construction algorithms for a different-sized set of

transactions of “Connect-4” is illustrated in Fig. 9.

Shafiul Alom Ahmed and Bhabesh Nath / Journal of Computer Science 2021, 17 (3): 205.220

DOI: 10.3844/jcssp.2021.205.220

214

Table 5: Databases used

Database Category Average length Number of transaction Number of item Type

Mushroom Real 23 8,124 119 Dense
Connect-4 Real 43 67,557 129 Dense
Retail Real 10 88,162 16,470 Sparse
T10I4D100K Synthetic 10 100,000 870 Sparse
T40I10D100K Synthetic 40 100,000 1000 Sparse

Table 6: Execution time (in seconds) of different algorithms

Algorithm Mushroom Connect-4 Retail T10I4D100K T40I10D100K

FP-tree 0.11 19.608 29.108 20.014 724.816
SSP-tree 0.562 71.372 52.434 45.18 794.574
CP-tree 0.294 53.404 41.212 29.036 714.944
Improved FP-tree 0.076 0.972 25.314 2.058 7.514

Table 7: Same item node list traversed by different algorithms

Algorithm Mushroom Connect-4 Retail T10I4D100K T40I10D100K

FP-tree 27269 359292 677466 714185 3562155
SSP-tree 27358 392270 677469 714733 3562959
CP-tree 81859 769332 728643 752914 3619722
Improved FP-tree 0 0 0 0 0

Fig. 8: Execution time comparison of FP-tree, SSP-tree, CP-tree and proposed Improved FP-tree construction algorithms for all the

datasets of Table 5

FP-tree

SSP-tree

CP-tree

Improved FP-tree

0.5

0.4

0.3

0.2

0.1

0.0

E
x

ec
u

ti
o

n
 t

im
e

in
 s

ec
o

n
d

s

Dataset: Mushroom

Dataset: Connect-4 Dataset: Retail

50

40

30

20

10

0

E
x

ec
u

ti
o

n
 t

im
e

in
 s

ec
o

n
d

s

70

60

50

40

30

20

10

0

E
x

ec
u

ti
o

n
 t

im
e

in
 s

ec
o

n
d

s

40

30

20

10

0

E
x
ec

u
ti

o
n
 t

im
e

in
 s

ec
o
n
d
s

800

700

600

500

400

300

200

100

0

E
x
ec

u
ti

o
n
 t

im
e

in
 s

ec
o
n
d
s

Dataset: T10I4D100K Dataset: T40I10D100K

Shafiul Alom Ahmed and Bhabesh Nath / Journal of Computer Science 2021, 17 (3): 205.220

DOI: 10.3844/jcssp.2021.205.220

215

Fig. 9: Execution time (Connect-4)

Fig. 10: Execution time (T40I10D100K)

From Fig. 9, it can be observed that in the

incremental scenario, our proposed Improved FP-tree

construction the algorithm outperforms the approaches

with reconstruction from scratch as well as incrementally

restructuring approaches. The dense databases contain a

small number of attribute values or items. Therefore, the

possibility of sharing the items in transactions is very

high. Therefore, a tree prefix path or its sub-part is

shared by multiple database transactions. Which

maximizes the compactness of the tree. Since most of the

tree nodes are shared by multiple transaction items, a

minimum number of tree nodes creation and relatively

smaller same item node lists lead to a minimum number

of tree nodes creation. The same item node list is

traversed if a new node is created and inserted into the

tree. Though the same item node lists are relatively

smaller for dense databases, it does not prevent the FP-

tree, SSP-tree, or CP-tree from traversing the list

25

20

15

10

5

0

E
x

ec
u
ti

o
n

 t
im

e
in

 s
ec

o
n

d
s

15 K 30 K 45 K 60 K 67.5 K

FP-tree

SSP-tree

CP-tree

Improved FP-tree

Number of transaction

700

600

500

400

300

200

100

0

E
x

ec
u
ti

o
n

 t
im

e
in

 s
ec

o
n

d
s

20 K 40 K 60 K 80 K 100 K

FP-tree

SSP-tree

CP-tree

Improved FP-tree

Number of transaction

Shafiul Alom Ahmed and Bhabesh Nath / Journal of Computer Science 2021, 17 (3): 205.220

DOI: 10.3844/jcssp.2021.205.220

216

whenever a new node is inserted into the tree. On the

contrary, in our proposed Improved FP-tree

construction algorithm, it is not required to traverse the

whole same item node list every time a new node is

inserted into the Improved FP-tree. The stack

implementation of the same item node list prevents it

from traversing the same item node list. As the same

item node-link points to the most recently inserted or

the top node of the stack, we can directly access the last

top node and insert the new node as the new top node. It

saves a significant amount of time compared to

conventional FP-tree, SSP-tree and CP-tree.

A sparse database can be considered as contradictory

to a dense database. That means the database contains a

relatively large number of distinct items. Therefore, the

possibility of sharing a prefix path is significantly less as

compared to the dense database, which increases the size

(breadth) of the FP-tree and leads to relatively longer

same item node lists. Therefore, in the case of a sparse

database, the performance of the FP-tree, SSP-tree and

Cptree construction algorithms atrophy drastically. For

the sparse database “T40I10D100K”, we have

considered the minimum support to be 1 and each time

20K transactions increment the input database slot size.

Similarly, for CPtree construction, we have performed

the restructuring after inserting 5K transactions. The

time is taken by the proposed Improved FP-tree

construction algorithm and the conventional FP-tree,

SSP-tree and CP-tree construction algorithms for the

different sized sets of transactions for the

“T40I10D100K” database is illustrated in Fig. 10.

From Fig. 10, it can observe that in the case of the

sparse database, the performance of the Improved FP-

tree construction algorithm is much prominent than FP-

tree, SSP-tree and CP-tree construction algorithms. For a

sparse database, the same item node lists’ length is

relatively more extensive compared to dense databases.

Therefore, FP-tree, SSP-tree and CP-tree consume a

considerable amount of time to traverse those lists.

Moreover, SSP-tree and CP-tree need to restructure the

tree data structures. Fig. 10 shows that when the CP-tree

is restructured after inserting every 5K transactions,

SSP-tree and CP-tree take almost the same amount of

time to construct the trees in the incremental scenario.

Therefore, if the CP-tree will be structured after inserting

a lesser number of transactions, i.e., it will increase the

number of CP-tree restructuring and demote the tree

construction performance. At some point in time, CP-

tree may require more time than SSP-tree restructures

the tree. On the other hand, Improved FP-tree acquired

great convenience concerning execution time over other

tree construction algorithms by avoiding the same item

node lists’ repetitive traversal. Figure 9 and 10 show that

though the Improved FP-tree is reconstructed from

scratch every time the database gets updated, it takes

significantly less time to construct the Improved FP-tree

than other tree construction algorithms.

Effect of Minimum Support Threshold Change

Except for FP-tree, SSP-tree, CP-tree and the

proposed Improved FP-tree are complete trees. But in

our experiment, we have constructed the FP-tree also by

considering the minimum support to be 1. Therefore, like

complete trees, FP-tree also maintains all the database

transactions without any information loss. Hence, even if

the support threshold changes, it does not affect the tree

construction algorithms’ performance. The significant

advantage of constructing a complete tree is that neither

it is required to reconstruct the tree from scratch nor

restructure the tree even if the support threshold changes.

Moreover, it enables generating frequent patterns for any

set of minimum support threshold without intrusion to

the tree data structure. However, the complete tree has a

significant disadvantage also. If the minimum support

threshold is very high, only a few database items will be

frequent. Therefore, the complete tree will consume a

considerable amount of physical memory to maintain

less interesting or infrequent items. Which will

unnecessarily increase the tree size.

Computational Complexity Analysis

The conventional FP-tree and the proposed Improved

FP-tree construction algorithms can be defined in three

phases: Header table management, sort transaction and

transaction insertion. On the other hand, prefix-path

restructuring based SSP-tree and CP-tree construction

algorithms require an additional phase, “prefix-path

restructuring” to maintain the FP-tree properties.

Therefore, the time complexity for each phase is

analysed subsequently. Let D be a dataset of T

transactions and containing N number of items. Let M is

the longest transaction size, where 2  M  N. Therefore,

M will also be the tree height:

 Header Table Management: The frequent pattern

tree is a compact representation of a dataset’s

required information. The header table plays a vital

role in the pattern generation phase. The

construction of the Conditional FP-trees from the

FP-tree to generate frequent patterns will be very

time consuming without the header table’s support.

Hence, the header table is to be constructed during the

construction of the FP-tree. The header table items

are always maintained in descending order of their

frequency counts to maintain the FP-tree properties.

In the case of FP-tree and Improved FP-tree, the

dataset is scanned once to compute each item’s

frequency counts. The items are then sorted in

descending order concerning their frequency counts.

After sorting, all the items are accordingly inserted

Shafiul Alom Ahmed and Bhabesh Nath / Journal of Computer Science 2021, 17 (3): 205.220

DOI: 10.3844/jcssp.2021.205.220

217

into the header table. In the worst-case scenario, the

sorting costs O(N logN) and inserting the header table

items require linear time. Therefore, this phase’s total

time complexity is O(N logN) and additionally the

time taken for a complete scan of the dataset

On the contrary, for each transaction, the SSP-tree

construction algorithm re-arranges the header table

items in frequency descending order due to the

relative changes in the header table’s items. It

helps in reducing the dataset scan to one but at the

cost of on memory computation. In the worst-case

scenario, the longest transaction of the dataset will

contain N number of items. Hence, the SSP-tree

construction algorithm’s total time complexity for

this phase is O(TN2)

CP-tree performs the header table restructuring

periodically after inserting some transactions into

the tree to reduce the execution time. Let CP-tree re-

arranges the header table after inserting P

transactions into the tree. Therefore, the total time

complexity of the CP-tree construction algorithm for

this phase is 2T
O N

P

 
 
 

= O(QN2), where Q < T.

However, in the worse case, P = 1  Q = T, i.e., the

restructuring will be performed for each transaction.

Hence the total time complexity of the CP-tree

construction algorithm for this phase is O(TN2)

 Prefix-path Restructuring: In the worst-case

scenario, the tree nodes’ order will be in the reverse

order of the corresponding header table item order.

If the longest path of the tree contains N items, for

each item, it will perform N-1 number of

restructuring operation. For N items, it will require

N  (N-1), i.e., O(N2) time. Therefore, for all T

transactions, the total time complexity of SSP-tree

construction for this phase is O(TN2).

On the other hand, CP-tree performs the restructuring

only
T

P
 = Q times. Hence, the total time complexity

of this phase is O(QN2). In the worst-case scenario,

the total time complexity of the CP-tree construction

algorithm for this phase will be O(TN2)

 Transaction Sorting: Since the items of a transaction

are sorted according to the descending frequency

order of the header table, searching an item into the

header table requires linear time and for each item

of the transaction, it will take the same amount of

time. In the worst-case scenario, the length of each

transaction will be N. Therefore, the total time

complexity of this phase for all the tree construction

algorithms again lead to O(TN2).

 Transaction Insertion: The time complexity of

inserting a transaction into a tree depends on

searching each item of the transaction in the header

table, the length of the same item list of each item in

the tree and the depth of the tree. The maximum

depth of the tree is upper-bounded by N for each of

the prefix sub-trees. The maximum length of the

same item list is upper-bounded by T, i.e., the total

number of transactions.

Therefore, the transaction insertion phase’s total time

complexity can be represented as O(Total number of

transactions  Number of items in header table 

depth of the tree  maximum length of same item list)

Since FP-tree, SSP-tree and CP-tree traverse the

whole same item list to insert a transaction item into

the tree. Therefore, the total time complexity of all

these three tree construction algorithms for this

phase is O(T  N  N  T) = O(T2N2).

On the other hand, the proposed Improved FP-tree

can directly insert a node without traversing the

same item node list (constant time). Therefore, the

total time complexity of Improved FP-tree

construction algorithm for this phase is O(T  N  N

 1) = O(TN2).

Therefore, the total time complexity of all the tree

construction algorithms can be asymptotically

represented as:

 For FP-tree: O(N logN + TN2 + T2N2) = O(T2N2)

 For SSP-tree: O(TN2 + TN2 + TN2 + T2N2) = O(T2N2)

 For CP-tree: O(TN2 + TN2 + TN2 + T2N2) = O(T2N2)

 For Improved FP-tree: O(N logN + TN2 + TN2) =

O(TN2)

From the time complexity analysis of the tree

construction algorithms, it can be observed that the

proposed Improved FP-tree construction algorithm is

much faster than the other tree construction algorithms.

Discussion

The requirement of two database scans and its

dependency on the user-defined minimum support

threshold makes the conventional FP-tree technically

infeasible for incremental frequent pattern mining. The

FP-tree maintains only those database information or

items which satisfy the user-defined minimum support

threshold value. The items having a frequency count

greater than or equal to the minimum support threshold

are called frequent items. So, FP-tree excludes the

infrequent items, which do not meets the minimum

support threshold. Later on, if the database gets updated,

it must reconstruct a fresh FP-tree from scratch. The

infrequent items excluded while constructing the FP-tree

for the original database may become frequent after the

database gets updated. Therefore, to solve these

problems, researchers came up with a new concept called

the complete tree, which uses only single database scans.

Shafiul Alom Ahmed and Bhabesh Nath / Journal of Computer Science 2021, 17 (3): 205.220

DOI: 10.3844/jcssp.2021.205.220

218

The main idea behind constructing a complete tree is

maintaining all the database information without any

information loss. A complete tree’s most significant

advantage is that it is not required to reconstruct the FP-

tree from scratch even if the database gets updated or the

support threshold changes. Whenever the database gets

updated, the tree can be incrementally updated by

performing some prefix path restructuring operations. It

has been observed that the approaches use split, swap

and merge operations to reflect the database update to

the complete tree. Most of the incremental approaches

perform the restructuring before inserting each

transaction. Since restructuring is a very costly

computation in terms of execution time, a few

approaches construct the complete tree by periodically

restructuring the tree data structure to minimize the

computation cost. Figure 8 shows that though the

incrementally restructuring approaches take only one

database scan, they still require more time to construct

the complete trees than the complete FP-tree. However,

in cases of incremental scenario, from Fig. 9 and 10, it

can be observed that the incremental approaches take

comparatively less amount of time than FP-tree.

Therefore, we initially experimented with analyzing the

impact of database scans on tree construction. It has been

observed that though FP-tree performs two database

scans, but the total time required only to scan the

database twice is very nominal as compared to complete

tree construction time. Therefore, we have proposed and

demonstrated an effective tree data structure (Improved

FP-tree) construction algorithm in this manuscript.

Improved FP-tree is a complete tree constructed

using two database scans. It is an improvement over the
conventional FP-tree data structure; therefore, it is

named Improved FP-tree. The main aim of our
experiment is to minimize tree construction time. The

Improved FP-tree construction algorithm has achieved

a remarkable performance gain in terms of total tree
construction time. It has been gained by intelligently

maintaining the same item list as a stack instead of a
simple linked list. The stack implementation of the

same item list bypasses the whole list traversal and

directly accesses the most recently inserted same item
node in the tree. A new item can be directly added as

the new top same item node since it removes the
overhead of traversing the whole same item list every

time a new node is inserted into the Improved FP-tree.
It saves a significant amount of time. From Fig. 8, it

can be observed that Improved FP-tree outperforms

all the other three tree construction algorithms
concerning complete tree construction. The Improved

FP-tree construction algorithm constructs the tree
from scratch using two database scans over the

updated (original database + newly added

transactions) database. Still, from the experimental
results shown in Fig. 9 and 10, it can be observed that

the performance of the Improved FP-tree construction
algorithm is much prominent in the case of

incremental scenario also. The Improved FP-tree
outperforms conventional FP-tree, SSP-tree and CP-

tree construction algorithms in terms of runtime in all
cases of incremental updates for both sparse and dense

databases. However, there may be a situation when

the updated database size is huge, then reconstructing
the Improved FP-tree from scratch may not be a

suitable approach to handle the incremental scenario.

Conclusion

As mentioned above, the FP-tree-based incremental

frequent pattern mining approaches perform frequent

pattern mining by considering that the complete database

to be processed can be accommodated in the systems

main memory even after the database gets updated very

frequently. Most of the existing algorithms use at least

two database scans to construct the FP-tree. A few

methods have been found, using only a single scan over

the newly added transactions to restructure tree data

structure to handle incremental databases. In this

research work, we have proposed a two scan based tree

data structure called Improved FP-tree. From the

experimental results, it can be observed that though it is

required to reconstruct the Improved FP-tree from

scratch whenever the database gets updated, it still

requires less time to construct the tree. The proposed

Improved FP-tree construction algorithm outperforms all

the FP-tree, SSP-tree and CP-tree construction

algorithms in incremental scenarios for dense and sparse

databases. Since all the approaches and the Improved

FP-tree is main memory dependent and it is not always a

suitable approach to use the restructuring approaches to

construct the tree. Only if a few transactions are added to

the database can the restructuring approaches be

recommended. Nevertheless, if the number of newly

added transaction is very high, then constructing the tree

using our proposed Improved FP-tree construction

algorithm will save a significant amount of time. The

computational complexity analysis also shows that our

proposed Improved FP-tree construction algorithm

outperforms the other frequent pattern tree construction

algorithms. The main limitation of the proposed

Improved FP-tree is that it is main memory dependent. If

the Improved FP-tree tree size exhausts the available

main memory during construction, the algorithm will fail

to construct the complete Improved FP-tree. To solve the

main memory dependent problem of the proposed

Improved FP-tree, shortly we will make an effort to

develop an approach that can efficiently mine the

frequent patterns from large scan databases even if the

tree data structure cannot be accommodated in the

computer’s main memory.

Shafiul Alom Ahmed and Bhabesh Nath / Journal of Computer Science 2021, 17 (3): 205.220

DOI: 10.3844/jcssp.2021.205.220

219

Acknowledgment

The authors would like to acknowledge Tezpur

University for supporting the whole research. Moreover,

we would like to thank all friends and colleagues in the

Department of Computer Science and Engineering,

Tezpur University, for their supports. The authors would

also like to acknowledge Maulana Azad National

Fellowship (MANF), UGC, Govt. of India for the

financial support to successfully conduct the research.

Author’s Contributions

Shafiul Alom Ahmed: Participated in all experiments,

coordinated the data-analysis and contributed to the writing

of the manuscript.

Bhabesh Nath: Designed the research plan,

organized the study and participated in complexity and

result-analysis.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Adnan, M., Alhajj, R., & Barker, K. (2006a, September).
Alternative Method for Increnentally Constructing
the FP-Tree. In 2006 3rd International IEEE
Conference Intelligent Systems (pp. 494-499).
IEEE. https://doi.org/10.1109/IS.2006.348469

Adnan, M., Alhajj, R., & Barker, K. (2006b, June).
Constructing complete FP-tree for incremental
mining of frequent patterns in dynamic databases. In
International Conference on Industrial, Engineering
and Other Applications of Applied Intelligent
Systems (pp. 363-372). Springer, Berlin,
Heidelberg. https://doi.org/10.1007/11779568_40

Agrawal, R., Imieliński, T., & Swami, A. (1993, June).

Mining association rules between sets of items in

large databases. In Proceedings of the 1993 ACM

SIGMOD international conference on Management

of data (pp. 207-216).
https://doi.org/10.1145/170036.170072

Alhajj, R., & Barker, K. (2008). Alternative method for

incrementally constructing the fp-tree. In Intelligent

Techniques and Tools for Novel System Architectures

(pp. 361-377). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-77623-9_21

Aumann, Y., Feldman, R., Lipshtat, O., & Manilla, H.

(1999). Borders: An efficient algorithm for

association generation in dynamic databases. Journal

of Intelligent Information Systems, 12(1), 61-73.
https://doi.org/10.1023/A:1026482903537

Ayad, A. M. (2000). A new algorithm for incremental

mining of constrained association rules (Doctoral

dissertation, Master Thesis, Department of

Computer Sciences and Automatic Control,

Alexandria University).

http://pages.cs.wisc.edu/~ahmed/publications/Thesis

.pdf

Ayan, N. F., Tansel, A. U., & Arkun, E. (1999, August).

An efficient algorithm to update large itemsets with

early pruning. In Proceedings of the fifth ACM

SIGKDD international conference on Knowledge

discovery and data mining (pp. 287-291).
https://doi.org/10.1145/312129.312252

Borah, A., & Nath, B. (2018). Identifying risk factors for

adverse diseases using dynamic rare association rule

mining. Expert systems with applications, 113, 233-

263. https://doi.org/10.1016/j.eswa.2018.07.010

Cheung, D. W., Han, J., Ng, V. T., & Wong, C. Y. (1996,

February). Maintenance of discovered association rules

in large databases: An incremental updating technique.

In Proceedings of the twelfth international conference

on data engineering (pp. 106-114). IEEE.
https://doi.org/10.1109/ICDE.1996.492094

Cheung, D. W., Lee, S. D., & Kao, B. (1997). A general

incremental technique for maintaining discovered

association rules. In Database Systems For

Advanced Applications' 97 (pp. 185-194).
https://doi.org/10.1142/9789812819536_0020

Cheung, W., & Zaiane, O. R. (2003, July). Incremental

mining of frequent patterns without candidate

generation or support constraint. In Seventh

International Database Engineering and

Applications Symposium, 2003. Proceedings. (pp.

111-116). IEEE.
https://doi.org/10.1109/IDEAS.2003.1214917

Das, A., & Bhattacharyya, D. K. (2004, December). Rule

mining for dynamic databases. In International

Workshop on Distributed Computing (pp. 46-51).

Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-30536-1_6

Ezeife, C. I., & Su, Y. (2002, May). Mining incremental

association rules with generalized FP-tree. In

Conference of the Canadian society for computational

studies of intelligence (pp. 147-160). Springer, Berlin,

Heidelberg. https://doi.org/10.1007/3-540-47922-8_13
Ganti, V., Gehrke, J., & Ramakrishnan, R. (2001).

Demon: Mining and monitoring evolving data. IEEE
Transactions on Knowledge and Data Engineering,
13(1), 50-63. https://doi.org/10.1109/69.908980

Guirguis, S., Ahmed, K. M., El Makky, N. M., & Hafez,
A. M. (2006, December). Mining the Future:
Predicting Itemsets' Support of Association Rules
Mining. In Sixth IEEE International Conference
on Data Mining-Workshops (ICDMW'06) (pp.
474-478). IEEE.
https://doi.org/10.1109/ICDMW.2006.116

Shafiul Alom Ahmed and Bhabesh Nath / Journal of Computer Science 2021, 17 (3): 205.220

DOI: 10.3844/jcssp.2021.205.220

220

Hamedanian, M., Nadimi, M., & Naderi, M. (2013). An

efficient prefix tree for incremental frequent pattern

mining. International Journal of Information and

Communication Technology Research, 3(2), 49-55.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=1

0.1.1.457.3669&rep=rep1&type=pdf
Han, J., Pei, J., & Yin, Y. (2000). Mining frequent

patterns without candidate generation: a frequent-
pattern tree approach. Proceedings of
ACMSIGMOD, Dallas, TX, pages 1–12.
https://doi.org/10.1145/335191.335372

Hong, T. P., Lin, C. W., & Wu, Y. L. (2008).

Incrementally fast updated frequent pattern trees.

Expert Systems with Applications, 34(4), 2424-2435.

https://doi.org/10.1016/j.eswa.2007.04.009

Huang, H., Wu, X., & Relue, R. (2002, December).

Association analysis with one scan of databases. In

2002 IEEE International Conference on Data

Mining, 2002. Proceedings. (pp. 629-632). IEEE.
https://doi.org/10.1109/ICDM.2002.1184015

Koh, J. L., & Shieh, S. F. (2004, March). An efficient

approach for maintaining association rules based on

adjusting FP-tree structures. In International

Conference on Database Systems for Advanced

Applications (pp. 417-424). Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-540-

24571-1_38

Leung, C. K. S., Khan, Q. I., Li, Z., & Hoque, T. (2007).

CanTree: a canonical-order tree for incremental

frequent-pattern mining. Knowledge and

Information Systems, 11(3), 287-311.
https://doi.org/10.1007/s10115-006-0032-8

Leung, C. S., Khan, Q. I., & Hoque, T. (2005, November).

CanTree: a tree structure for efficient incremental

mining of frequent patterns. In Fifth IEEE International

Conference on Data Mining (ICDM'05) (pp. 8-pp).

IEEE. https://doi.org/10.1109/ICDM.2005.38

Lin, C. W., Hong, T. P., Lan, G. C., Wong, J. W., & Lin,

W. Y. (2014). Incrementally mining high utility

patterns based on pre-large concept. Applied

intelligence, 40(2), 343-357.
https://doi.org/10.1007/s10489-013-0467-z

Lin, C. W., Hong, T. P., & Lu, W. H. (2009). The Pre-

FUFP algorithm for incremental mining. Expert

Systems with Applications, 36(5), 9498-9505.
https://doi.org/10.1016/j.eswa.2008.03.014

Lin, K. C., Liao, I. E., & Chen, Z. S. (2011). An

improved frequent pattern growth method for

mining association rules. Expert Systems with

Applications, 38(5), 5154-5161.
https://doi.org/10.1016/j.eswa.2010.10.047

Pyun, G., Yun, U., & Ryu, K. H. (2014). Efficient

frequent pattern mining based on linear prefix tree.

Knowledge-Based Systems, 55, 125-139.
https://doi.org/10.1016/j.knosys.2013.10.013

Rácz, B. (2004, November). nonordfp: An FP-growth

variation without rebuilding the FP-tree. In FIMI.

Roul, R. K., & Bansal, I. (2014, December). GM-Tree:

An efficient frequent pattern mining technique for

dynamic database. In 2014 9th International

Conference on Industrial and Information Systems

(ICIIS) (pp. 1-6). IEEE.
https://doi.org/10.1109/ICIINFS.2014.7036626

Shahbazi, N., Soltani, R., Gryz, J., & An, A. (2016,

July). Building fp-tree on the fly: Single-pass

frequent itemset mining. In International Conference

on Machine Learning and Data Mining in Pattern

Recognition (pp. 387-400). Springer, Cham.
https://doi.org/10.1007/978-3-319-41920-6_30

Tanbeer, S. K., Ahmed, C. F., Jeong, B. S., & Lee, Y. K.

(2009). Efficient single-pass frequent pattern mining

using a prefix-tree. Information Sciences, 179(5),

559-583. https://doi.org/10.1016/j.ins.2008.10.027

Yu-Dong, G., Sheng-Lin, L., Yong-Zhi, L., Zhao-Xia,

W., & Li, Z. (2016). Large-scale dataset incremental

association rules mining model and optimization

algorithm. International Journal of Database Theory

and Application, 9(4), 195-208.
https://doi.org/10.14257/ijdta.2016.9.4.18

Yun, U., & Ryang, H. (2015). Incremental high utility

pattern mining with static and dynamic databases.

Applied intelligence, 42(2), 323-352.
https://doi.org/10.1007/s10489-014-0601-6

Zhou, Z., & Ezeife, C. I. (2001, June). A low-scan

incremental association rule maintenance method

based on the apriori property. In Conference of the

Canadian Society for Computational Studies of

Intelligence (pp. 26-35). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/3-540-45153-6_3

