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Abstract: Incremental mining of frequent patterns has attracted the 

attention of researchers in the last two decades. The researchers have 

explored the frequent pattern mining from incremental database problems 

by considering that the complete database to be processed can be 

accommodated in systems’ main memory even after the database gets 

updated very frequently. The FP-tree-based approaches were able to draw 

more interest because of their compact representation and requirement of a 

minimum number of database scans. The researchers have developed a few 

FP-tree based methods to handle the incremental scenario by adjusting or 

restructuring the tree prefix paths. Although the approaches have managed 

to solve the re-computation problem by constructing a complete pattern tree 

data structure using only one database scan, restructuring the prefix paths 

for each transaction is a computationally costly task, leading to the high 

tree construction time. If the FP-tree construction process can be supported 

with suitable data structures, reconstruction of the FP-tree from scratch may 

be less time consuming than the restructuring approaches in case of 

incremental scenario. In this study, we have proposed a tree data structure 

called Improved Frequent Pattern tree (Improved FP-tree). The proposed 

Improved FP-tree construction algorithm has immensely improved the 

performance of tree construction time by resourcefully using node links, 

maintained in header table to manage the same item node list in the FP-tree. 

The experimental results emphasize the significance of the proposed 

Improved FP-tree construction algorithm over a few conventional 

incremental FP-tree construction algorithms with prefix path restructuring. 

 

Keywords: FP-tree, FP-Growth, Frequent Pattern, Pattern Mining, Data 

Mining, Frequent Itemset, Itemset Mining, Pattern Analysis 

 

Introduction 

In this 21st century, transactional databases are 

dynamic. Nowadays, researchers have focused on finding 

the hidden knowledge from these incremental databases. 

Frequent pattern mining is one of the most widely used 

knowledge retrieval techniques of data mining. The 

problem of mining frequent itemset was first brought to 

attention in the Apriori algorithm (Agrawal et al., 1993). 

Apriori algorithm is a level-wise computation, which 

employs multiple database scans and generates an 

enormous number of candidate itemsets. Moreover, it 

exercises costly testing and prune out approach to discard 

the redundant and infrequent candidate itemsets to 

generate the complete set of frequent patterns. Later on, 

many attempts have been made by the researchers to 

propose an efficient method to mine the frequent itemsets 

from large datasets by adopting the Apriori approach. 

However, most of the proposed approaches sustain the 

same multiple database scans, computation time 

(candidate itemsets) and space problems. 

To mitigate the multiple database scans and an 

enormous number of candidate itemsets generation, a 

group of researchers, (Han et al., 2000) came up with a 

prefix path tree-based data structure approach called FP-

Growth. FP-Growth handled the multiple scan problem 

by restricting it to only two. Moreover, it is capable of 

generating the complete set of frequent itemset without 

generating any candidate itemset. There have been many 

FP-tree based algorithms proposed by the researchers to 

improve the performance of FP-tree construction. 

However, those approaches primarily emphasize 
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efficiently constructing the FP-tree and generating useful 

frequent patterns from static databases. However, in 

dynamic or incremental databases, FP-tree cannot directly 

reflect the database modifications onto the FP-tree or the 

already generated frequent patterns. Reconstructing afresh 

FP-tree and incrementally restructuring the FP-tree are 

two possible ways to deal with the incremental scenarios. If 

only a few transactions are frequently added to the database, 

it becomes computationally infeasible to repeatedly 

reconstruct the FP-tree from scratch every time transactions 

are added to the database. Therefore, researchers have 

concentrated on incrementally restructuring the FP-tree 

without reconstructing the FP-tree from scratch. The main 

aim of the restructuring operation is to maintain the basic 

FP-tree structure and properties. The restructuring is 

performed to reflect the changes in the database directly 

onto the FP-tree. The restructuring is achieved by 

performing a sequence of costly swapping and merging 

of FP-tree prefix paths. Though incrementally 

restructuring the FP-tree requires only a single database 

scan, the restructuring using swap and merge for each 

transaction becomes much costlier than afresh FP-tree 

construction if the size of newly added transactions is 

enormous. It is required to perform the restructuring 

operation along all the prefix paths containing an item 

that is to be updated in the FP-tree. Therefore, if the 

updated database size and the dimensionality are huge, 

the incremental restructuring consumes a significant 

amount of time compared to afresh FP-tree construction. 

Depending on the database size and dimensionality, both 

approaches have their pros and cons. 
Most importantly, the data structures have a 

significant influence on the performance of frequent 
itemset mining algorithms. The data structure used by 
the FP-Growth algorithm is a compact prefix tree data 
structure named Frequent Pattern tree (FP-tree). FP-tree 
consists of nodes and each node contains a value pair of 
data or item and its count. The nodes containing the 
same item are maintained in the list. Therefore, every 
time a new node is created, it must traverse the whole 
same item list and add the newly created node at the 
list’s rear position. Hence, the FP-tree data structure 
performs well in dense databases as many transactions 
will share the common prefix paths in the tree. However, 
for sparse databases with higher dimensions and high 
average transaction lengths, the FP-tree size becomes 
vast. Therefore, traversing a long list every time a new 
node is inserted into the FP-tree demotes the tree 
construction performance drastically. Depending on 
specific characteristics of databases such as updated 
database size, dimensionality, the average length of 
transactions, dense and sparse, a few approaches perform 
well. However, it may not be feasible to handle the 
incremental scenarios with all cases. 

Therefore, in this study, we have addressed a new 

two scan based FP-tree construction algorithm named 

Improved FP-tree (IFP-tree) from scratch by 

manipulating the same item node links to handle the 

incremental scenarios. Instead of the linked list, we have 

maintained the nodes containing the same items in a 

stack. Stack enables to directly access the top node so 

that the newly created node can be inserted at the top of 

the stack without traversing the whole stack. Which 

saves a significant amount of time. Hence improves the 

IFP-tree construction time significantly. The IFP-tree 

construction algorithm’s strength is that if the size of 

newly added transactions to the database is very high 

irrespective of dense or sparse, it outperforms few 

incremental restructuring algorithms and constructs the 

FP-tree from scratch approaches. The experimental 

results are significantly promising and establish the 

novelty of the proposed IFP-tree. 

Frequent pattern tree construction algorithm plays an 

essential role in frequent pattern mining. The proposed 

Improved FP-tree data structure can efficiently mine 

frequent patterns and association rules from static and 

incremental datasets. Frequent patterns and association 

rules are used in different application domains such as 

market-basket analysis, risk analysis in commercial 

environments, disease factor analysis and patients 

survivability possibility analysis. 

Preliminaries 

The main objective of FIM is to generate the 

frequently occurring patterns or itemsets from 

transactional databases that are useful and meet users 

criteria in decision making. The usefulness and 

interestingness of patterns generated is gauged by some 

popular and most widely used measures discussed below: 

Let D be a transactional database with items I = [i1, 

i2….im} and set of all transactions T = {t1, t2….tn}. Each 

transaction tj is a subset of I. A transaction tj is said to 

contain an itemset say i, if i is a subset of tj. 

Definition 1. Support Count () 

Support count is the total number of transactions in 

the database that contain an itemset. Mathematically, the 

support count  of an itemset P can be represented as: 
 

   | ;j j jP t P t t T      (1) 

 

Definition 2. Support (Supp) 

Support of an itemset P can be defined as the 

percentage of transactions in the transactional database D 

that contains the itemset P. Mathematically, the support 

of an itemset P can be represented as: 
 

 
 p

Supp P
T


   (2) 
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Definition 3. Frequent Pattern or Frequent Itemset 

An itemset is said to be frequent if the support of the 

itemset is greater than or equal to the user specified 

minimum support threshold minSupp. Formally, an 

itemset P is said to be frequent if it satisfies the 

following constraint: 

 

 Supp P minSupp  (3) 

 

Related Work 

The problem of mining frequent itemsets from static 
databases was first coined by Agrawal et al., named Apriori 
(Agrawal et al., 1993). There are several variants of Apriori 
based incremental algorithms have been proposed by the 
researchers, for instance, FUP (Cheung et al., 1996), FUP-
2 (Cheung et al., 1997), Border algorithm (Aumann et al., 
1999), Modified borders (Das and Bhattacharyya, 2004), 
Update With Early Pruning (Ayan et al., 1999) (UWEP), 
DEMON (Ganti et al., 2001), Incremental Constrained 
APriori (ICAP) (Ayad, 2000), Maintaining Association 
Rules with Apriori Property (Zhou and Ezeife, 2001) 
(MAAP), Maximal Frequent Trend Pattern (MFTP) 
(Guirguis et al., 2006), PRE-HU (Lin et al., 2014). Like 
Apriori, if the length of the maximum frequent itemset is 
K, the approaches require at least K number of scans 
over the database. Several limitations, such as multiple 
database scans and the generation of an enormous 
number of candidate itemset of the Apriori algorithm 
makes it computationally infeasible to handle the 
incremental scenario of frequent pattern mining. Later 
on, (Han et al., 2000) propose an efficient approach, 
“FP-growth,” using a prefix tree data structure called 
FP-tree. The researchers have exhaustively exploited 
the FP-tree of the FP-growth algorithm to mine frequent 
patterns as it can improve the mining performance 
compared to the candidate itemset generation and prune 
out mechanism of Apriori using multiple databases 
scans. FP-growth requires only two database scans. 
Since FP-tree is dependant on the user-defined minimum 
support threshold and the FP-tree contains information 
about only those items, it cannot be easily made 
compatible with the dynamic scenario. Reconstructing 
the FP-tree from scratch using two database scans every 
time new transactions are added to the database, or the 
minimum support change is not feasible. Although a 
significant number of approaches viz. nonordfp (Rácz, 
2004), IFP Growth (Lin et al., 2011), LP Growth   
(Pyun et al., 2014), Incremental FP Tree (Adnan et al., 
2006b), Alternative FP Tree (Alhajj and Barker, 2008), 
DB-tree (Ezeife and Su, 2002), FUFP (Hong et al., 
2008) and Pre-FUFP (Lin et al., 2009) have been 
proposed in the last two decades. However, most of the 
approaches suffer from the same problems as FP-tree. 
Therefore, to deal with constructing afresh FP-tree, 
researchers have developed few new approaches, 

basically improvements over the FP-tree, to generate 
frequent patterns from incremental databases efficiently. 
The incremental approaches take only one database 
scan and apply a split, swap and merge operations 
sequence to construct the FP-tree incrementally. Few 
FP-tree based single scan incrementally restructuring 
approaches are discussed below. 

FP-Tree based Incremental Approaches 

Incremental Frequent Pattern Tree (Adnan et al., 

2006a) does not reconstruct the FP-tree from scratch 

whenever the database changes. To achieve this, a 

complete FP-tree (assuming the minimum support 

threshold as one) is constructed. The complete reflects all 

the occurrences of items in the database onto the FP-tree. 

As the database gets updated, this algorithm incrementally 

updates the FP-tree without re-scanning the old database 

or reconstructing the FP-tree from scratch. This algorithm 

uses two primary operations: “Shuffling” and “merging” 

to maintain the FP-tree structure. However, this algorithm 

scans the original database twice to construct the initial 

FP-tree also scans twice the newly added set of 

transactions every time the database gets updated. The 

Fast Updated FP-tree (FUFP) (Hong et al., 2008) is an 

improvement over FP-tree based on the FUFP concept to 

mine incremental frequent patterns. This algorithm first 

divides the items into four groups based on whether the 

items are large or small in the old database and new 

transactions. Whenever these sets get changed, the 

Header-Table and the FUFP-tree are updated accordingly. 

When a sufficiently large number of transactions are 

inserted, then the entire tree needs to be reconstructed in a 

batch way. Pre-FUFP (Lin et al., 2009) is a modification 

over FUFP based on the concept of “pre-large” itemsets. 

This algorithm uses two threshold values; one is a lower 

support threshold and another one is an upper support 

threshold to define the pre-large itemsets. However, this 

algorithm requires an extra minimum support threshold 

input. The CATS-tree (Cheung and Zaiane, 2003) is an 

extension over FP-tree to improve storage compression 

so that it can be quickly adapted to mine frequent 

itemsets from incremental databases without candidate 

generation. The CATS-tree (Cheung and Zaiane, 2003) 

requires only a single pass over the dataset to construct 

the CATS-tree and each path from the root node to the 

leaf node represents a set of transactions. When the 

database gets updated, the new transactions are added at 

the root level. Then, the transactions’ items are 

compared with the child_nodes in each level to 

determine the common items in both the new transaction 

and the child_nodes. If there are common items, then the 

transaction is merged with the nodes. The frequencies of 

the node are incremented. However, this algorithm 

consumes a considerable amount of time to update the 

tree when the database gets incremented. Adjusting FP-

tree for Incremental Mining (AFPIM) (Koh and Shieh, 
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2004) is also an improvement over the FP-tree structure; 

it uses two support thresholds to mine incremental 

frequent itemsets. It is an O(n2) algorithm and also it 

requires extra pre-minimum support. Later on, to solve 

the problems of AFPIM, (Leung et al., 2005; 2007) 

developed a tree data structure called CANonical-order 

Tree (CanTree). However, the ordering of the items in 

the CanTree should be unaffected even if the frequency 

of the items changes due to incremental database updates 

to maintain the items’ canonical order. Which may not 

be possible in all cases of real-life scenarios. Though 

CanTree does not require any prefix path adjustment or 

restructuring, it requires a huge memory space to store 

the database information. Afterward, (Tanbeer et al., 

2009) developed a tree data structure named CP-tree or 

Compact Pattern tree. CP-tree is constructed using only 

one database scan. A pre-defined number of transactions 

(slot) are inserted into the CP-tree one by one according 

to the pre-defined item order. After inserting a slot of 

transactions, if the frequency-dependent item order gets 

changes up to a pre-defined degree, the CP-tree 

construction algorithm restructures the tree by adjusting 

and sorting the prefix paths. Even if the CP-tree is 

periodically restructured, it still requires a considerable 

amount of time. The researchers proposed several FP-

tree-based incremental approaches with both single and 

multiple database scans during the last two decades. A 

summary of a few incremental approaches found in the 

literature is briefly discussed in Table 1. 

Proposed Method 

Improved FP-tree Construction 

The Improved FP-tree construction algorithm 

presented in this study is based on the basic paradigm of the 

FP-tree construction algorithm of FP-growth (Han et al., 

2000). Unlike FP-tree, the Improved FP-tree is a 

complete tree, i.e., it stores all the database transactions 

without any information loss. The proposed Improved 

FP-Growth algorithm customizes the conventional FP-

tree construction algorithm to enhance tree construction 

performance. The performance enhancement is achieved 

by maintaining each list of nodes containing the same 

item of Improved FP-tree as a linked-list implemented as 

stack instead of maintaining a simple linked-list as a 

conventional FP-tree. The same item node-link from the 

header table points to the most recently inserted, i.e., the 

stack’s top node. The stack implementation of the same 

item node list lets us access the top node without 

traversing the whole list directly. The direct access 

eliminates the same item node list traversal for every new 

node inserted into the Improved FP-tree during its 

construction. Which saves a significant of time. For 

example, let Node(X) is the top node of the same item list 

stack of item X. Therefore, the header table same item 

node-link for item X will be pointing to the stack top node 

Node(X). Whenever a new node Node(X) is inserted, we 

can directly access the top node Node(X) of the stack with 

header tables’ node-link, without traversing the whole list 

for item X. Then the same item link of node Node(X) is 

set to the existing top node Node(X). After that, the header 

table’s node link is updated to the recently added node 

Node(X). The complete step by step procedure for 

constructing the Improved FP-tree is illustrated in 

Algorithm 1 and Algorithm 2.  
The working principle of Improved FP-tree 

construction is illustrated in this section by considering a 
small transactional dataset D [Table 2] and the minimum 
support to be 1. 

Like FP-tree, the Improved FP-tree construction 

algorithm also requires two database scans to construct the 

tree. Initially, the whole transactional database D is scanned 

once to fetch the frequency of each item. Items with their 

corresponding frequencies are shown in Table 3. 

 
Table 1: Summary of FP-tree based incremental frequent itemset mining algorithms 

Algorithm Update type Datset rescan Data structure 

P-Tree, (Huang et al., 2002) Addition  1  FP-tree 

Generalized FPtree, (Ezeife and Su, 2002) Addition  1 FP-tree 

CATS-tree, (Cheung and Zaiane, 2003) Addition, Deletion  1  FP-tree 

AFPIM, (Koh and Shieh, 2004) Addition, Deletion, Modification  0 FP-tree 

IFP-tree, (Adnan et al., 2006a) Addition, Deletion, Modification 2 FP-tree 

CanTree, (Leung et al., 2007) Addition, Deletion, Modification 0 FP-tree 

FUFP, (Hong et al., 2008) Addition, Deletion  1 FP-tree 

Pre-FUFP, (Lin et al., 2009) Addition, Deletion  0 FP-tree 

CP-tree, (Tanbeer et al., 2009) Addition, Deletion 1 FP-tree 

Improved CPtree, (Hamedanian et al., 2013) Addition   1 FP-tree 

GM-tree, (Roul and Bansal, 2014) Addition  1 FP-tree 

HUPIDGrowth, (Yun and Ryang, 2015) Addition, Deletion 1 FP-tree 

SPFPtree, (Shahbazi et al., 2016) Addition 1 FP-tree 

VSIFP, (Yu-Dong et al., 2016) Addition 1 FP-tree 

SSP-tree, (Borah and Nath, 2018) Addition, Deletion 1 FP-tree 
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Table 2: Database (D) 

Tid Transaction 

T1 {b, d} 

T2 {a, b, e} 

T3 {a, c, d, e} 

T4 {a, d, c} 

T5 {b, d, e} 

T6 {a, b, d, e} 

T7 {d} 

T8 {b, d, e} 

T9 {a, b, d} 

T10 {b, c, e} 

 
Table 3: Item frequencies 

Item Frequency count 

‘a’  5 

‘b’  7 

‘c’  3 

‘d’  8 

‘e’  6 

 
Table 4: Sorted order 

Item Frequency count 

‘d’  8 

‘b’  7 

‘e’  6 

‘a’  5 

‘c’  3 

 

The items are then sorted with respect to their 

frequency count in descending order. Since the minimum 

support is 1, every item occurring at least once in the 

database will be considered to construct the complete 

Improved FP-tree. Hence all the items are inserted into 

the header table. The items after sorting in descending 

order according to their corresponding frequency counts 

are represented in Table 4. 

The frequency counts are set as zero after inserting the 

frequent items into the header table in frequency descending 

order. After that, the root node of the Improved FP-tree is 

created. In the second database scan, the transactions of the 

database are read and inserted into the Improved FP-tree 

one by one. The steps required to be performed to insert the 

transactions of D into the tree are as follows: 
 
(a) All items of the first transaction {b, d} are frequent 

are sorted according to the order of header table 

items and the resulting sorted transaction is {d, b}. 

Since the root node has no child branches yet, a 

node (Node(d:1)) containing item = ‘d’ and count is 

created and inserted as the first child_node of root. 

Then the frequency count of item ‘d’ in the header 

table is incremented by 1. Then the header table 

same item link is updated to Node(d:1) and set 

Node(d:1) as the top node of items ‘d’s stack. 

Similarly, for item ‘b’, Node(b:1) is created and 

inserted as child_node of Node(d:1). Thereafter, the 

frequency count of item ‘b’ in the header table is 

incremented by 1 and the header table same item 

link is updated to Node(b:1), the top node of items 

‘b’s stack. The resultant Improved FP-tree after 

inserting first transaction is shown in Fig. 1 

(b) For the second transaction {a, b, e}, the transaction 

is sorted as {b, e, a}. Since the root has no 

child_node with item label ‘b’, a new node 

Node(b:1) is created and inserted as a child_node 

of root. The frequency count of item ‘b’ in the 

header table is incremented by 1. Since the same 

item node link is already pointing to the same item 

stacks top node, the top Node(b:1) is directly 

accessed and set it as the same item next node of 

newly inserted node Node(b:1). The header table 

node link is then updated to the newly created node 

Node(b:1) as top. Rest of the items ‘e’ and ‘a’ are 

inserted as a child branch of Node(b:1) and their 

header table node links are also set. The Improved 

FP-tree generated after inserting the second 

transaction is shown in Fig. 2 

(c) All the items of third transaction are sorted 

according to the order of header table and the 

resulting sorted transaction is {d, e, a, c}. In Fig. 2, 

we can see that the root node of Improved FP-tree 

has a child_node Node(d:1). Thus, for the first item 

‘d’ of sorted transaction, the count of Node(d:1) and 

the corresponding frequency count in header table is 

incremented by 1. Since Node(d:2) has no 

child_node with item label ‘e’, therefore a new 

Node(e:1) is created and inserted as child_node of 

Node(d:2). The same item link of newly created 

Node(e:1) is set to the already existing node pointed 

by header table node link and header table node link 

is then updated to Node(e:1). Similarly, Node(a:1) 

and Node(c:1) are created and inserted as a child 

branch of Node(e:1). Their header table frequency 

counts, header table node links and same item node 

links are updated accordingly. The resultant 

Improved FP-tree is portrayed in Fig. 3 
(d) For the first item ‘d’ of sorted forth transaction 

{d, a, c}, root node of Improved FP-tree in Fig. 3 

already has a child_node Node(d:2). Therefore, 

count of the node and corresponding header table 

frequency count are simply incremented by 1. But 

Node(d:3) does not have any child_node with 

item label ‘a’. A new Node(a:1) is created and 

inserted as a child_node of Node(d:3). Their 

header table frequency counts, header table node 

links and same item node links are updated 

accordingly. Similarly, item ‘c’ is also handled 

and the resultant Improved FP-tree after inserting 

forth transaction is shown in Fig. 4 
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Algorithm 1: Improved_FP_Tree-Construction 

(minsupp, D) 

1 input: Minimum support count (minsupp), 

Transactional Database D; 

2 output: Improved FP-tree; 

3 Header Table Item Insertion 

4 Create an empty header table and the root node of the 

Improved FP-tree; 

5 Scan the database and derive the frequency counts of 

each individual item; 

6 Insert the items into the header table based on their 

frequency descending order; 

7 Improved FP-tree Insertion 

8 Read the transactions T of D, one at a time during the 

second database scan; 

9 for each transaction Ti do 

10 Sort the frequent items Ij of Ti according to the 

header table item order; 

11 Set tempRoot = root; 

12 for each item Ij in sorted Ti do 

13 Call tempRoot = insertInto-Improved FP-tree 

(Ij, tempRoot); 

14 end 

15 end 

 

Algorithm 2: insertInto-Improved_FP-tree(I, Root) 

1 if Root has a child_node with item label I then 

2 Increment the frequency count of the child_node 

and corresponding header table frequency by 1; 

3 else 

4 Create a new child_node of Root with item label 

I and increment corresponding header table item 

frequency by 1; 

5 if the node link pointer of corresponding header 

table position is NULL then 

6 Set the header table node link pointer to 

child_node; 

7 Set child_node as stack top; 

8 else 

9 Set the same item node link pointer of 

child_node to the top node pointed by header 

table node link pointer; 

10 Update the header table node link pointer to 

child_node and set child_node as the new 

stack top; 

11 end 

12 end 

13 return child_node; 

 

(e) After sorting the fifth transaction as {d, b, e}, it can 

be seen in Fig. 4 that, items ‘d’ and ‘b’ are already 

shared by a prefix path. Therefore, the node counts 

and the corresponding header table frequency counts 

are simply incremented by 1. Since, Node(b:2) has 

no child_node, so for item ‘e’, Node(e:1) is created 

and inserted as child_node of Node(b:2). Thereafter, 

the header table frequency count, header table node 

link and same item node link of newly created 

Node(e:1) are updated. The resultant Improved FP-

tree is illustrated in Fig. 5 

(f) Likewise, for the items ‘d’, ‘b’ and ‘e’ of sorted 

sixth transaction {a, b, d, e}, the counts of the 

shared nodes of the prefix path in Fig. 5 are just 

incremented by 1. The header table frequency 

counts of the corresponding items are also 

incremented by 1. Then Node(a:1) is created and 

inserted as child_node of Node(e:2) and the 

corresponding header table frequency count, header 

table node link and same item node link is updated. 

The resultant Improved FP-tree after inserting sixth 

transaction is illustrated in Fig. 6 

(g) Identically, after inserting all transactions of the 

database D, the final resultant Improved FP-tree is 

shown in Fig. 7 

 

 
 

Fig. 1: Improved FP-tree after inserting T1 
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Fig. 2: Improved FP-tree after inserting T2 

 

 
 

Fig. 3: Improved FP-tree after inserting T3 

 

 
 

Fig. 4: Improved FP-tree after inserting T4 
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Fig. 5: Improved FP-tree after inserting T5 

 

 
 

Fig. 6: Improved FP-tree after inserting T6 

 

 
 

Fig. 7: Improved FP-tree after inserting all transactions 
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Experimental Results Evaluation 

In this section, we are going to analyze the 

performance of the proposed Improved FP-tree 

construction. The Improved FP-tree algorithm’s 

significance is established by comparing its 

performance with FP-tree with two databases scan-

based tree construction and two incrementally 

restructuring single scan-based approaches viz. CP-tree 

and SSP-tree. Several experiments have been carried 

out to assess the Improved FP-tree construction 

algorithm’s effectiveness by considering the total tree 

construction time, the effect of updated database size 

and minimum support threshold change. 

Experimental Environment and Datasets 

All the tree construction and pattern growth algorithms 

are coded in C and run on Ubuntu-18.04.2 with 2.67 GHz 

CPU and 8 GB main memory. To assess the significance 

of the Improved FP-tree construction algorithm over other 

alternative tree construction algorithms, we have 

conducted experiments on both real and synthetic datasets, 

as well as dense and sparse datasets. The datasets 

presented in Table 5 are retrieved from the UCI Machine 

Learning Repository and FIMI Repository. 

Complete Tree Construction Time 

The initial experiment has been carried out to analyze 

the total time taken by the proposed tree construction 

algorithm to construct the Improved FP-tree. The total 

time taken by the Improved FP-tree construction 

algorithm has been compared to the total tree 

construction time of FP-tree, CP-tree and SSP-tree for 

different datasets mentioned in Table 5. As mentioned 

above, Improved FP-tree, as well as CP-tree and SSP-

tree, are complete trees. That means all three tree data 

structures are independent of the user-defined minimum 

support threshold. Therefore, all the items appearing in a 

database are considered for constructing the trees, 

irrespective of their frequency counts. Hence for 

performing a proper comparison, though the FP-tree 

construction algorithm takes two database scans, we 

have considered the minimum support 1 to construct the 

FP-tree. SSP-tree construction algorithm constructs the 

tree in a single scan over the database and processes the 

database transactions one by one. The algorithm 

performs some restructuring operations based on the 

updated header table item counts to maintain the FP-tree 

properties for each transaction. Which consumes a 

significant amount of time. On the other hand, the CP-

tree algorithm also constructs the tree by taking a single 

database scan. However, instead of performing 

restructuring for each transaction periodically, i.e., after 

inserting a certain number of transactions (slot), the 

restructuring is performed to improve the tree 

construction time. For this experiment, we have 

considered the slot size to be 10K for CP-tree 

construction. Therefore, the CP-tree construction 

algorithm performs the restructuring after inserting 10K 

transactions into the CP-tree. Table 6 depicts the total 

time taken by all the above-mentioned tree construction 

algorithms to construct or restructure the complete trees. 

From Fig. 8, it can be observed that Improved FP-tree 

outperforms all the other three tree construction 

algorithms for both dense and sparse databases. However, 

for sparse databases, the performance of the Improved FP-

tree is more prominent. The number of items in a sparse 

database is very high as compared to a dense database. 

The possibility of sharing the tree prefix paths less, 

resulting in expanse the same item lists, increases the tree 

size. Therefore, every time a new node is inserted into the 

tree, the FP-tree construction algorithm has to traverse a 

long list of the same item nodes. In addition to the same 

item list traversals, CP-tree and SSP-tree construction 

algorithms also have to restructure the tree prefix paths. 

Table 6 represents the number of same item list 

traversals performed by different algorithms to construct 

the trees for different databases. 

From Table 7, it can be observed that all three 

algorithms perform several traversals over the same item 

lists. Simultaneously, the proposed Improved FP-tree 

construction algorithm does not perform the traversal a 

single time. Though it constructs the Improved FP-tree 

from scratch using two database scans, neither it 

performs any same item list traversal nor requires 

incremental restructuring of the Improved FP-tree to 

handle incremental scenarios. 

Effect of Updated Database Size 

To assess the Improved FP-tree construction 

algorithm’s performance concerning database update, i.e., 

in the incremental scenario, we have initially conducted 

experiments in one dense real-life database, “Connect-4” 

and one sparse synthetic database, “T40I10D100K”. For 

the “Connect-4” database, to begin with, we have 

considered the first 15K transactions as input and executed 

the tree construction algorithm. Each time, the size of the 

input database size is updated with the next set of 15K 

transactions. Finally, the remaining 7557 transactions are 

set as input. For a fair comparison, we have considered the 

minimum support to be 1 for FP-tree, i.e., if an item 

occurs at least once in the database, it will be taken into 

account to construct the tree. Since the CP-tree performs 

the restructuring periodically, we have performed the 

restructuring after inserting every 2.5K transactions in 

this experiment. The time taken by the proposed 

Improved FP-tree construction algorithm and the other 

tree construction algorithms for a different-sized set of 

transactions of “Connect-4” is illustrated in Fig. 9. 
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Table 5: Databases used 

Database  Category  Average length  Number of transaction  Number of item Type 

Mushroom  Real  23  8,124  119  Dense 
Connect-4  Real  43  67,557  129  Dense 
Retail  Real  10  88,162  16,470  Sparse 
T10I4D100K  Synthetic  10  100,000  870  Sparse 
T40I10D100K  Synthetic  40  100,000  1000  Sparse 
 
Table 6: Execution time (in seconds) of different algorithms 

Algorithm  Mushroom  Connect-4  Retail  T10I4D100K  T40I10D100K 

FP-tree  0.11  19.608  29.108  20.014  724.816 
SSP-tree  0.562  71.372  52.434 45.18  794.574 
CP-tree  0.294  53.404  41.212  29.036  714.944 
Improved FP-tree  0.076  0.972  25.314  2.058  7.514 
 
Table 7: Same item node list traversed by different algorithms 

Algorithm  Mushroom  Connect-4  Retail  T10I4D100K  T40I10D100K 

FP-tree  27269  359292  677466  714185  3562155 
SSP-tree  27358  392270  677469  714733  3562959 
CP-tree  81859  769332  728643  752914  3619722 
Improved FP-tree  0  0  0  0  0 
 

 
 
Fig. 8: Execution time comparison of FP-tree, SSP-tree, CP-tree and proposed Improved FP-tree construction algorithms for all the 

datasets of Table 5 
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Fig. 9: Execution time (Connect-4) 

 

 
 

Fig. 10: Execution time (T40I10D100K) 
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shared by multiple database transactions. Which 
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smaller same item node lists lead to a minimum number 

of tree nodes creation. The same item node list is 

traversed if a new node is created and inserted into the 
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whenever a new node is inserted into the tree. On the 

contrary, in our proposed Improved FP-tree 

construction algorithm, it is not required to traverse the 

whole same item node list every time a new node is 

inserted into the Improved FP-tree. The stack 

implementation of the same item node list prevents it 

from traversing the same item node list. As the same 

item node-link points to the most recently inserted or 

the top node of the stack, we can directly access the last 

top node and insert the new node as the new top node. It 

saves a significant amount of time compared to 

conventional FP-tree, SSP-tree and CP-tree. 

A sparse database can be considered as contradictory 

to a dense database. That means the database contains a 

relatively large number of distinct items. Therefore, the 

possibility of sharing a prefix path is significantly less as 

compared to the dense database, which increases the size 

(breadth) of the FP-tree and leads to relatively longer 

same item node lists. Therefore, in the case of a sparse 

database, the performance of the FP-tree, SSP-tree and 

Cptree construction algorithms atrophy drastically. For 

the sparse database “T40I10D100K”, we have 

considered the minimum support to be 1 and each time 

20K transactions increment the input database slot size. 

Similarly, for CPtree construction, we have performed 

the restructuring after inserting 5K transactions. The 

time is taken by the proposed Improved FP-tree 

construction algorithm and the conventional FP-tree, 

SSP-tree and CP-tree construction algorithms for the 

different sized sets of transactions for the 

“T40I10D100K” database is illustrated in Fig. 10. 

From Fig. 10, it can observe that in the case of the 

sparse database, the performance of the Improved FP-

tree construction algorithm is much prominent than FP-

tree, SSP-tree and CP-tree construction algorithms. For a 

sparse database, the same item node lists’ length is 

relatively more extensive compared to dense databases. 

Therefore, FP-tree, SSP-tree and CP-tree consume a 

considerable amount of time to traverse those lists. 

Moreover, SSP-tree and CP-tree need to restructure the 

tree data structures. Fig. 10 shows that when the CP-tree 

is restructured after inserting every 5K transactions, 

SSP-tree and CP-tree take almost the same amount of 

time to construct the trees in the incremental scenario. 

Therefore, if the CP-tree will be structured after inserting 

a lesser number of transactions, i.e., it will increase the 

number of CP-tree restructuring and demote the tree 

construction performance. At some point in time, CP-

tree may require more time than SSP-tree restructures 

the tree. On the other hand, Improved FP-tree acquired 

great convenience concerning execution time over other 

tree construction algorithms by avoiding the same item 

node lists’ repetitive traversal. Figure 9 and 10 show that 

though the Improved FP-tree is reconstructed from 

scratch every time the database gets updated, it takes 

significantly less time to construct the Improved FP-tree 

than other tree construction algorithms. 

Effect of Minimum Support Threshold Change 

Except for FP-tree, SSP-tree, CP-tree and the 

proposed Improved FP-tree are complete trees. But in 

our experiment, we have constructed the FP-tree also by 

considering the minimum support to be 1. Therefore, like 

complete trees, FP-tree also maintains all the database 

transactions without any information loss. Hence, even if 

the support threshold changes, it does not affect the tree 

construction algorithms’ performance. The significant 

advantage of constructing a complete tree is that neither 

it is required to reconstruct the tree from scratch nor 

restructure the tree even if the support threshold changes. 

Moreover, it enables generating frequent patterns for any 

set of minimum support threshold without intrusion to 

the tree data structure. However, the complete tree has a 

significant disadvantage also. If the minimum support 

threshold is very high, only a few database items will be 

frequent. Therefore, the complete tree will consume a 

considerable amount of physical memory to maintain 

less interesting or infrequent items. Which will 

unnecessarily increase the tree size. 

Computational Complexity Analysis 

The conventional FP-tree and the proposed Improved 

FP-tree construction algorithms can be defined in three 

phases: Header table management, sort transaction and 

transaction insertion. On the other hand, prefix-path 

restructuring based SSP-tree and CP-tree construction 

algorithms require an additional phase, “prefix-path 

restructuring” to maintain the FP-tree properties. 

Therefore, the time complexity for each phase is 

analysed subsequently. Let D be a dataset of T 

transactions and containing N number of items. Let M is 

the longest transaction size, where 2  M  N. Therefore, 

M will also be the tree height: 

 

 Header Table Management: The frequent pattern 

tree is a compact representation of a dataset’s 

required information. The header table plays a vital 

role in the pattern generation phase. The 

construction of the Conditional FP-trees from the 

FP-tree to generate frequent patterns will be very 

time consuming without the header table’s support. 

Hence, the header table is to be constructed during the 

construction of the FP-tree. The header table items 

are always maintained in descending order of their 

frequency counts to maintain the FP-tree properties. 

In the case of FP-tree and Improved FP-tree, the 

dataset is scanned once to compute each item’s 

frequency counts. The items are then sorted in 

descending order concerning their frequency counts. 

After sorting, all the items are accordingly inserted 
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into the header table. In the worst-case scenario, the 

sorting costs O(N logN) and inserting the header table 

items require linear time. Therefore, this phase’s total 

time complexity is O(N logN) and additionally the 

time taken for a complete scan of the dataset 

On the contrary, for each transaction, the SSP-tree 

construction algorithm re-arranges the header table 

items in frequency descending order due to the 

relative changes in the header table’s items. It 

helps in reducing the dataset scan to one but at the 

cost of on memory computation. In the worst-case 

scenario, the longest transaction of the dataset will 

contain N number of items. Hence, the SSP-tree 

construction algorithm’s total time complexity for 

this phase is O(TN2) 

CP-tree performs the header table restructuring 

periodically after inserting some transactions into 

the tree to reduce the execution time. Let CP-tree re-

arranges the header table after inserting P 

transactions into the tree. Therefore, the total time 

complexity of the CP-tree construction algorithm for 

this phase is 2T
O N

P

 
 
 

= O(QN2), where Q < T. 

However, in the worse case, P = 1  Q = T, i.e., the 

restructuring will be performed for each transaction. 

Hence the total time complexity of the CP-tree 

construction algorithm for this phase is O(TN2) 

 Prefix-path Restructuring: In the worst-case 

scenario, the tree nodes’ order will be in the reverse 

order of the corresponding header table item order. 

If the longest path of the tree contains N items, for 

each item, it will perform N-1 number of 

restructuring operation. For N items, it will require 

N  (N-1), i.e., O(N2) time. Therefore, for all T 

transactions, the total time complexity of SSP-tree 

construction for this phase is O(TN2). 

On the other hand, CP-tree performs the restructuring 

only 
T

P
 = Q times. Hence, the total time complexity 

of this phase is O(QN2). In the worst-case scenario, 

the total time complexity of the CP-tree construction 

algorithm for this phase will be O(TN2) 

 Transaction Sorting: Since the items of a transaction 

are sorted according to the descending frequency 

order of the header table, searching an item into the 

header table requires linear time and for each item 

of the transaction, it will take the same amount of 

time. In the worst-case scenario, the length of each 

transaction will be N. Therefore, the total time 

complexity of this phase for all the tree construction 

algorithms again lead to O(TN2). 

 Transaction Insertion: The time complexity of 

inserting a transaction into a tree depends on 

searching each item of the transaction in the header 

table, the length of the same item list of each item in 

the tree and the depth of the tree. The maximum 

depth of the tree is upper-bounded by N for each of 

the prefix sub-trees. The maximum length of the 

same item list is upper-bounded by T, i.e., the total 

number of transactions. 

Therefore, the transaction insertion phase’s total time 

complexity can be represented as O(Total number of 

transactions  Number of items in header table  

depth of the tree  maximum length of same item list) 

Since FP-tree, SSP-tree and CP-tree traverse the 

whole same item list to insert a transaction item into 

the tree. Therefore, the total time complexity of all 

these three tree construction algorithms for this 

phase is O(T  N  N  T) = O(T2N2). 

On the other hand, the proposed Improved FP-tree 

can directly insert a node without traversing the 

same item node list (constant time). Therefore, the 

total time complexity of Improved FP-tree 

construction algorithm for this phase is O(T  N  N 

 1) = O(TN2). 

 

Therefore, the total time complexity of all the tree 

construction algorithms can be asymptotically 

represented as: 

 

 For FP-tree: O(N logN + TN2 + T2N2) = O(T2N2) 

 For SSP-tree: O(TN2 + TN2 + TN2 + T2N2) = O(T2N2) 

 For CP-tree: O(TN2 + TN2 + TN2 + T2N2) = O(T2N2) 

 For Improved FP-tree: O(N logN + TN2 + TN2) = 

O(TN2) 

 

From the time complexity analysis of the tree 

construction algorithms, it can be observed that the 

proposed Improved FP-tree construction algorithm is 

much faster than the other tree construction algorithms. 

Discussion 

The requirement of two database scans and its 

dependency on the user-defined minimum support 

threshold makes the conventional FP-tree technically 

infeasible for incremental frequent pattern mining. The 

FP-tree maintains only those database information or 

items which satisfy the user-defined minimum support 

threshold value. The items having a frequency count 

greater than or equal to the minimum support threshold 

are called frequent items. So, FP-tree excludes the 

infrequent items, which do not meets the minimum 

support threshold. Later on, if the database gets updated, 

it must reconstruct a fresh FP-tree from scratch. The 

infrequent items excluded while constructing the FP-tree 

for the original database may become frequent after the 

database gets updated. Therefore, to solve these 

problems, researchers came up with a new concept called 

the complete tree, which uses only single database scans. 
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The main idea behind constructing a complete tree is 

maintaining all the database information without any 

information loss. A complete tree’s most significant 

advantage is that it is not required to reconstruct the FP-

tree from scratch even if the database gets updated or the 

support threshold changes. Whenever the database gets 

updated, the tree can be incrementally updated by 

performing some prefix path restructuring operations. It 

has been observed that the approaches use split, swap 

and merge operations to reflect the database update to 

the complete tree. Most of the incremental approaches 

perform the restructuring before inserting each 

transaction. Since restructuring is a very costly 

computation in terms of execution time, a few 

approaches construct the complete tree by periodically 

restructuring the tree data structure to minimize the 

computation cost. Figure 8 shows that though the 

incrementally restructuring approaches take only one 

database scan, they still require more time to construct 

the complete trees than the complete FP-tree. However, 

in cases of incremental scenario, from Fig. 9 and 10, it 

can be observed that the incremental approaches take 

comparatively less amount of time than FP-tree. 

Therefore, we initially experimented with analyzing the 

impact of database scans on tree construction. It has been 

observed that though FP-tree performs two database 

scans, but the total time required only to scan the 

database twice is very nominal as compared to complete 

tree construction time. Therefore, we have proposed and 

demonstrated an effective tree data structure (Improved 

FP-tree) construction algorithm in this manuscript. 

Improved FP-tree is a complete tree constructed 

using two database scans. It is an improvement over the 
conventional FP-tree data structure; therefore, it is 

named Improved FP-tree. The main aim of our 
experiment is to minimize tree construction time. The 

Improved FP-tree construction algorithm has achieved 

a remarkable performance gain in terms of total tree 
construction time. It has been gained by intelligently 

maintaining the same item list as a stack instead of a 
simple linked list. The stack implementation of the 

same item list bypasses the whole list traversal and 

directly accesses the most recently inserted same item 
node in the tree. A new item can be directly added as 

the new top same item node since it removes the 
overhead of traversing the whole same item list every 

time a new node is inserted into the Improved FP-tree. 
It saves a significant amount of time. From Fig. 8, it 

can be observed that Improved FP-tree outperforms 

all the other three tree construction algorithms 
concerning complete tree construction. The Improved 

FP-tree construction algorithm constructs the tree 
from scratch using two database scans over the 

updated (original database + newly added 

transactions) database. Still, from the experimental 
results shown in Fig. 9 and 10, it can be observed that 

the performance of the Improved FP-tree construction 
algorithm is much prominent in the case of 

incremental scenario also. The Improved FP-tree 
outperforms conventional FP-tree, SSP-tree and CP-

tree construction algorithms in terms of runtime in all 
cases of incremental updates for both sparse and dense 

databases. However, there may be a situation when 

the updated database size is huge, then reconstructing 
the Improved FP-tree from scratch may not be a 

suitable approach to handle the incremental scenario. 

Conclusion 

As mentioned above, the FP-tree-based incremental 

frequent pattern mining approaches perform frequent 

pattern mining by considering that the complete database 

to be processed can be accommodated in the systems 

main memory even after the database gets updated very 

frequently. Most of the existing algorithms use at least 

two database scans to construct the FP-tree. A few 

methods have been found, using only a single scan over 

the newly added transactions to restructure tree data 

structure to handle incremental databases. In this 

research work, we have proposed a two scan based tree 

data structure called Improved FP-tree. From the 

experimental results, it can be observed that though it is 

required to reconstruct the Improved FP-tree from 

scratch whenever the database gets updated, it still 

requires less time to construct the tree. The proposed 

Improved FP-tree construction algorithm outperforms all 

the FP-tree, SSP-tree and CP-tree construction 

algorithms in incremental scenarios for dense and sparse 

databases. Since all the approaches and the Improved 

FP-tree is main memory dependent and it is not always a 

suitable approach to use the restructuring approaches to 

construct the tree. Only if a few transactions are added to 

the database can the restructuring approaches be 

recommended. Nevertheless, if the number of newly 

added transaction is very high, then constructing the tree 

using our proposed Improved FP-tree construction 

algorithm will save a significant amount of time. The 

computational complexity analysis also shows that our 

proposed Improved FP-tree construction algorithm 

outperforms the other frequent pattern tree construction 

algorithms. The main limitation of the proposed 

Improved FP-tree is that it is main memory dependent. If 

the Improved FP-tree tree size exhausts the available 

main memory during construction, the algorithm will fail 

to construct the complete Improved FP-tree. To solve the 

main memory dependent problem of the proposed 

Improved FP-tree, shortly we will make an effort to 

develop an approach that can efficiently mine the 

frequent patterns from large scan databases even if the 

tree data structure cannot be accommodated in the 

computer’s main memory. 
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