
 

 

 © 2021 Faisal Bin Al Abid, A.N.M. Rezaul Karim and Golam Rahman Chowdhury. This open access article is distributed 

under a Creative Commons Attribution (CC-BY) 4.0 license. 

 Journal of Computer Science 

 

 

Original Research Paper 

Geometrical Approach to a New Hybrid Grid-Based 

Gravitational Clustering Algorithm 
 

Faisal Bin Al Abid, A.N.M. Rezaul Karim and Golam Rahman Chowdhury 

 
Department of Computer Science and Engineering, International Islamic University Chittagong, Bangladesh 

 
Article history 

Received: 09-07-2020 

Revised: 03-11-2020 

Accepted: 06-02-2021 

 

Corresponding Author: 
A.N.M. Rezaul Karim 

Department of Computer 

Science and Engineering, 

International Islamic University 

Chittagong, Bangladesh 
Email: zakianaser@yahoo.com 
DOI: 10.3844/jcssp.2021.197.204 

Abstract: In the past years, several clustering algorithms have been developed, 

for example, K-means, K-medoid. Most of these algorithms have the common 

problem of selecting the appropriate number of clusters and these algorithms 

are sensitive to noisy data and would cause less accurate clustering of the data 

set. Therefore, this paper introduces a new Hybrid Grid-based Gravitational 

Clustering Algorithm (HGGCA) geometrically, which can automatically detect 

the number of clusters of the targeted data set and find the clusters with any 

arbitrary forms and filter the noisy data. This proposed clustering algorithm is 

used to move the cluster centers to the areas where the data density is high 

based on Newton’s law of gravity and Newton’s laws of motion. Also, the 

proposed method has higher accuracy than the existing K-means and K-

medoids methods which is shown in the experimental result. In this study, we 

used cluster-validity-indicators to verify the validity of the proposed and 

existing methods of clustering. Experimental results show that the proposed 

algorithm massively creates high-quality clusters. 
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01. Introduction 

Clustering is arguably the most significant 

unsupervised learning problem. Clustering is a task of 

combining similar objects in one group and dissimilar 

objects in another group (Han, 2006). Finding 

similarities between data according to their 

characteristics can be done by cluster analysis. 

Nowadays, clustering is commonly used in a wide 

variety of applications, including pattern recognition, 

image processing and market research and data analysis. 

The classifier also differentiates between data points in a 

dataset but requires labeling and data collection is costly 

during supervised learning. Clustering is more flexible 

than classification (Piasta and Lenarcik, 1996). The 

current challenges of clustering such as high 

dimensionality, a large number of samples and 

significant outliers are remaining the same. In literature, 

many clustering techniques exist to date. A few of them 

are the partitioning method, hierarchical method and 

density-based method, Grid-based method, Gravitational 

clustering method (Thammano and Sangkapas, 2011; 

Gomez et al., 2003), Model-based method, Constrained-

based method (Jain et al., 1999). In a broad 

multidimensional space where clusters are regarded as 

denser regions than their surroundings, Gravitational and 

Grid-based approaches are common. In existing k-means 

and k-medoids methods, the determination of the value of k 

(number of clusters) is required before clustering is a 

difficult task. Our proposed method can automatically 

determine the value of k without any difficulties. Our 

focus was on grid-based and gravitational clustering 

methods. We have connected both to one. 

02. Existing Method 

There are several clustering methods are using 

nowadays. Among them, k-means and k-medoids are 

very popular. But the value of k has to be pre-determined 

which is a difficult task: 

 

 The variance of each attribute's (variable) distribution 

is considered to be spherical by K-means. 

 All variables have the same variance 

 There are approximately equivalent numbers of 

observations in each cluster. For all k clusters, the 

prior probability is the same.  

 

K-means would fail if any of these three 

assumptions are broken. k-medoid has a high 

computation cost but is not sensitive to noisy data 

whereas K-means has a low computation cost but is 
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sensitive to noisy data (Tiwari and Singh, 2012). 

Since the first k medoids are chosen randomly in k-

medoids, it's possible to get dissimilar results for 

dissimilar runs on the same dataset. 

03. Proposed Method 

A new approach to hybrid grid-based gravitational 

clustering algorithm. 

The proposed Hybrid Grid-based Gravitational 

Clustering Algorithm (HGGCA) is based on Newton’s law 

of gravity and Newton’s laws of motion (Halliday et al., 

1993; Rashedi et al., 2009). At first, every data point in a 

grid attracts every other data point in the same grid with a 

force that varies directly as the product of the masses of the 

data points and inversely as the square of the distance 

between them (Thammano and Sangkapas, 2011). The 

higher data point density area has a more attractive force 

than the one with lower data point density. That is, all data 

points dispersed throughout the world are drawn together 

by attractive forces of high data point density areas. This 

research is about the above idea to move the cluster centers 

to the high data density area.  

The steps of the HGGCA are defined as follows: 

 

Step 3.1: Calculate the value of grid size S by using the 

following equation: 

 

5

2
S

c N


  (1) 

 

where, σ indicates standard deviation, N indicates the 

number of data points and C is a constant in the interval 

(Han, 2006; Dua, 2017). Generally for small data set the 

value of constant is high and for large data set the value 

of constant is low. 

 

Step 3.1.1: Make SS size grid up to max x and max y. 

Here x and y are the value of 2D data points. 

 

Here, grid size constant C = 1.5: 

 

Step 3.2: Calculate the grid center Ci of each grid by 

the arithmetic mean of data points within that 

grid: 

 

 
1

,
P

i ii

i

x y
C

P




 (2) 

 

where, P is the total number of data points within the 

ith grid: 

 

Step 3.3: Update the grid center Ci of each grid by 

Newton’s law of gravity and Newton’s law 

of motion. 

Step 3.3.1: Calculate the total force acting on the grid 

center Ci: 
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where, Fcj(t) is the acting force on the grid center Ci due 

to the data Xj. Mj is the active gravitational mass linked 

to the jth data. Mc is the passive gravitational mass linked 

to the cluster center Ci. Rcj is the Euclidean distance 

between Ci and Xj. G(t) is the gravitational constant, 

whose value reduces over time (t). The value of G(t) is 

calculated by the following equation: 

 

 
100

t
G t S e   (9) 

 

densityc (t) is the density of the area adjacent the grid center 

Ci, which can be calculated by the following equation: 
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Step 3.3.2: Calculate the acceleration of the grid center 

Ci by using Newton’s 2nd law of motion: 

 

 
 c

c

cc

F t
a t

M
  (11) 

 

cc cM M  (12) 

 

where, Mcc is the inertial mass of the grid center Ci: 

 

Step 3.3.3: Calculate the velocity of the grid center Ci 

along with the following equation: 
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     1c c cv t rand v t t     (13) 

 

where, rand is a random number in the interval [0,1],  

(decay variable) is equal to 1 at the beginning and 

declines linearly to 0 while the center Ci moves closer to 

the high-density area: 

 

Step 3.3.4. Update the grid center Ci as follows: 
 

     1 1i i cC t C t v t     (14) 

 
If vc(t+1) < threshold; then go to step 4 otherwise 

go to step 3. 

Step 3.4: If the Euclidean distance between any two 

grid centers is less than Sc then merge 

them as follows: 

 

i kC C S C    (15) 

 
where, Ci and Ck are the two different grid centers and C 
is a constant in the interval (0,8]. Generally for small 
data set the value of constant is high and for large data 
set the value of constant is low. 

Here, if the distance between two centers is less than 

Sc, then both grids merged. For this data set, constant C 

= 0.92. 
 
Step 3.5: Each merged grid represents a cluster. Now 

calculate each cluster center Cci by the 
arithmetic mean of data points within that 
cluster by Eq. 2. Where P will be the total 
number of data points within a cluster. 

Step 3.6: Update the cluster center Cci by using the 
equations of step 3. Where P will be the total 
number of data points within a cluster. 

Step 3.7: Remove the cluster by the following 
equation. If any cluster satisfies Eq. (16) 
will be removed: 
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where, Si is the total number of data points within the 
ith cluster, N is the total number of data points in the 
data set and  is a vigilance parameter. Normally the 
range of  is [0.05, 0.2]. 

Once merging is finished, then we get several clusters 
with noise. Then the cluster reduction is done by the 
threshold value . If any cluster size is less than  percent, 
then it has been removed. For this data set  = 0.08. Finally, 
we got our expected clusters with their centers. 
 
Step 3.8: Check the performance of the cluster by using 

the following formula: 

2

1 1

1 k P

j cii j
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compactness
Vxb

separation
  (19) 

 

where, k is the number of clusters and P is the total number 

of data points in the kth cluster. Xj is the data points in the jth 

cluster and Cci is the center of the ith cluster. 

04. Performance Evaluation 

The accuracy of a cluster is calculated by a cluster 

validity index. In this research paper, we present Xie-

Beni index (Xie and Beni, 1991), which measure the 

average intra-cluster compactness and inter-cluster 

separation. Vxb is the ratio of compactness to separation 

which is the description of Xie-Beni index. Generally, the 

result of best clustering is an optimal division with minimal 

intra-cluster distances and maximal intra-cluster distances. 

Thus, the result of a better clustering has a less value of 

Vxb. The performance of the proposed (HGGCA) is 

compared to K-means and K-medoids algorithms. 

05. Dataset Description 

The datasets to calculate the performance is collected 

from UCI machine learning repository (Dua, 2017). 

Three datasets named Irish (Dua, 2017) and Synthetic 

2D data set (Fränti and Virmajoki, 2006) have been used 

to compare these three algorithms. The description of 

three datasets is given below: 

 

1. Irish data set: There are two classes in the data 

set, each with 100 instances; each class denotes 

an iris plant variety. One class can be linearly 

segregated from the other: 

 

Attribute Information: 

 1. Sepal length in cm  

 2. Petal length in cm  

 Class:  

 -- Iris Setosa  

 -- Iris Versicolour 

 2. Synthetic 2D data set: This data set 

contains classes with total 5000 instances.  

06. Pictorial Representation of Dataset 

The pictorial representation of each data set has been 

shown separately for proposed, k-means and k-medoids 

algorithms. For each data set, there are two pictorial 
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representations called before clustering and after 

clustering for each method respectively.  

For Irish Dataset 

K-means 

Here, the quality of clusters of the irish dataset is 

not optimal, because in Fig. 5 One data point is 

wrongly clustered.  

K-medoids 

K-medoids are noise sensitive. So the center of the 

cluster 1 or green dataset is not in the correct position. 

Because the effect of noisy data takes places. 

Proposed (HGGCA) 

Our proposed method automatically removes the 

noisy data points and the location of each cluster 

midpoint is in a more dense area. 

For Synthetic 2D Data Set 

K-means 

K-means cannot remove the noisy data which forces 

the cluster center to shift its actual position and some 

data points are MIS clustered. 

K-medoids 

In each run, k-medoids shows different performance. 

From multiple runs, we took the best one, but it also has 

some MIS clustered of some data points. 

Out proposed method remove the noisy data which 

may cause MIS clustered and may change the actual 

position of the cluster centers. 

07. Discussion  

The comparison through Cluster Validity Index 

among proposed, k-means and k-medoids are shown 

in Table 1. Figure 1 displays each grid with data set 

where Fig. 2 presents each grid center. Merged the 

grid center is displayed in Fig. 3 and removed the 

cluster less than a threshold value is presented in Fig. 

4. Representation of K-means and K-medoids, 

HGGCA of Irish data set are displayed in Figs. 5 to 7 

respectively. In addition, representation of K-means, 

K-medoids, HGGCA of synthetic data set are 

displayed in Figs. 8 to 10 respectively. Newton’s 

second law of motion and Newton’s law of gravity are 

used in the calculation of the HGGCA showed in this 

research paper. The HGGCA algorithm consists of 4 

main steps: (1) The process of calculating grid size, 

(2) the process of moving the grid centers to the high-

density areas by using Newton’s second law of motion 

and Newton’s laws of gravity, (3) the process of 

merging the grids and (4) the process of removing the 

redundant clusters. Users must define the total number 

of clusters in k-means and k-medoids methods but 

HGGCA can resolve the proper number of clusters 

and can remove the noises. 

 

Table 1: Comparison of Proposed, K-means and K-medoids 

Algorithms Vb 

 Irish data set  Synthetic 2D data set 

K-means 0.0361 0.0626 

K-medoids 0.0392 0.0627 

Proposed (HGGCA) 0.0307 0.0356

 

 

 
Fig. 1: Each grid with the data set 



Faisal Bin Al Abid et al. / Journal of Computer Science 2021, 17 (3): 197.204 

DOI: 10.3844/jcssp.2021.197.204 

 

201 

 
 

Fig. 2: Each grid center 
 

 
 

Fig. 3: Merged the grid center 

 

 
 

Fig. 4: Removed the cluster less than a threshold 
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Fig. 5: Representation of K-means of an Irish data set 

 

 

 
Fig. 6: Representation of K-medoids of an Irish data set 

 

 

 
Fig. 7: Representation of HGGCA of Irish data set 
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Fig. 8: Representation of K-means of the synthetic data set 

 

 

 
Fig. 9: Representation of K-medoids of a synthetic data set 

 

 
 

Fig. 10: Representation of HGGCA of a synthetic 2D data set 
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08. Conclusion  

The experimental findings in this study indicate 

that our proposed approach outperforms other 

clustering approaches. We used different types of data 

set to check our proposed method also comparing with 

some existing methods. 

Future Work  

 

 Reduce the number of constant variables 

 Remove the noisy data before clustering 

 Including the advantages of hierarchical clustering 

 Identify the shape of clusters 
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