

 © 2021 HungChun Lin, Chen Chen, GaoFeng Huang and Amir Jafari. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Stock price prediction using Generative Adversarial Networks

1HungChun Lin, 1Chen Chen, 2GaoFeng Huang and 1Amir Jafari

1Department of Data Science, Columbian College of Arts & Sciences,

The George Washington University, District of Columbia, USA
2Department of Algorithm, Carina Medical LLC, Maryland, USA

Article history

Received: 03-12-2020

Revised: 24-02-2021

Accepted: 05-03-2021

Corresponding Author:

HungChun Lin

Department of Data Science,

Columbian College of Arts and

Sciences, The George

Washington University,

District of Columbia, USA
Email: hungchun_lin@gwmail.gwu.edu

Abstract: Deep learning is an exciting topic. It has been utilized in many areas

owing to its strong potential. For example, it has been widely used in the

financial area which is vital to the society, such as high-frequency trading,

portfolio optimization, fraud detection and risk management. Stock market

prediction is one of the most popular and valuable areas in finance. In this

paper, it proposes a stock prediction model using Generative Adversarial

Network (GAN) with Gated Recurrent Units (GRU) used as a generator that

inputs historical stock price and generates future stock price and Convolutional

Neural Network (CNN) as a discriminator to discriminate between the real

stock price and generated stock price. Different from the traditional methods,

which limited the forecasting on one-step-ahead only, by contrast, using the

deep learning algorithm is possible to conduct the multi-step ahead prediction

more accurately. In this study, it chose the Apple Inc. stock closing price as the

target price, with features such as S&P 500 index, NASDAQ Composite index,

U.S. Dollar index, etc. In addition, FinBert has been utilized to generate a news

sentiment index for Apple Inc. as an additional predicting feature. Finally, this

paper compares the proposed GAN model results with the baseline model.

Keywords: Stock price prediction; GAN; WGAN-GP; NLP

Introduction

Stock price prediction is an interesting and

challenging topic as a time series prediction. Many

studies have shown that the stock price is predictable and

many classic algorithms such as Long Short-Term

Memory (LSTM) and ARIMA are used in time-series

predictions. Generative Adversarial Network (GAN) is

one of the most powerful models to conduct prediction.

The generator and discriminator in the model are

adversarial, which helps increase the result's accuracy.

GAN is widely used in image generating, but not in

time series prediction. Since there are few studies on

time series prediction using GAN, their conclusions

are inconsistent according to their studies. This paper

aims to use GAN to predict the stock price and check

whether the adversarial system can help improve the

time series prediction. Also, it includes the

comparison between the traditional models, LSTM

and GRU with the basic GAN and Wasserstein GAN

with Gradient Penalty (WGAN-GP) model.

The main contribution of this paper can be

summarized in the followings:

 In our experiments, we found the adversarial training

with a 1D-CNN discriminator will enhance the

performance of basic recurrent models; and the GRU-

based generator is recommended in the aspects of

training stabilization and testing performance.

 Different from the related work, most of them used a

plain GAN model. This project applied the loss

function from WGAN-GP. Our model is more stable

and gives good performance even when making

multi-step ahead predictions.

 This project also extracted the daily news topic

through the Natural Language Processing, which is

one of the vital indexes in the features, especially if

there is an unexpected incident like COVID-19.

Thus, this paper compared the model performance in

the normal periods and the COVID-19 period.

Related Works

Stock prediction is widely used in traditional models

such as LSTM, Gated Recurrent Units (GRU) and

ARIMA. But there are few studies that make the

prediction using GAN. And the result of using GAN to

make the stock prediction is inconsistent. For example,

Ricardo and Carrillo (2019) compared the performance of

HungChun Lin et al. / Journal of Computer Science 2021, 17 (3): 188.196

DOI: 10.3844/jcssp.2021.188.196

189

the GAN model with traditional deep learning model

LSTM. They used LSTM as the generator and

Convolutional Neural Network (CNN) as the

discriminator. Their specific goal was to predict

whether the price would increase one day after the

sample period. The result showed no significant

differences between GAN and traditional model

LSTM. Accuracy on the GAN model is 72.68%

compared with 74.16% on shallow LSTM. The

performance of GAN is even a little bit worse.

However, according to the study from Zhang et al.

(2019), they proposed a GAN model with the LSTM

as the generator and Multi-Layer Perceptron (MLP) as

the discriminator to forecasting the one day closing

price of the stock, and also compared the result with

baseline LSTM. The result showed that GAN

performs better than their traditional baseline model.

The GAN model's accuracy is about 75.54%, while

for baseline, LSTM is 68.59%.

Theoretical Background

LSTM

Long short-term memory (LSTM) is a specific recurrent

neural network (RNN) architecture. It was proposed in

1997 by Hochreiter and Schmidhuber (Hochreiter et al.,

1997). Unlike a traditional feed-forward neural network, it

includes feedback connections. Furthermore, it can be

utilized on single-point data and the sequence of data as

well. The essential components of LSTM are an input gate,

an output gate and a forget gate, and the LSTM network

was developed to resolve the vanishing gradient problem

while training the traditional RNNs. LSTM is a cell

memory unit that means that LSTM can remove or add

information to the cell state.

LSTM has overcome the vanishing gradients and the

exploding gradients problem that appeared in RNN

through the units' specific internal structure built in the

model. Nowadays, LSTM has been known as a powerful

method capable of processing, classifying, and making

predictions based on time series data.

GRU

Gated recurrent unit (GRU) is a kind of RNN that uses

gating mechanisms to control the flow of information

between cells in the neural network derived from LSTM

and was introduced in 2014 By Kyunghyun Cho et al.

(1997). GRU is composed of two gates, an update gate and

a reset gate. These gates are used to filter out what

information should remain and what should be disposed of.

Different from traditional RNN, GRUs solve the vanishing

and exploding gradient problems. Unlike LSTM, GRU has

fewer parameters than LSTM due to the lack of one gate.

Another difference is that GRUs also lack the cell state

from LSTM so that GRU can only store both long and

short-term memory in the hidden state. Recently, GRUs

have been shown to perform better than LSTM on certain

smaller and less frequent datasets.

GAN

Generative adversarial network (GAN) is a minimax

problem, which is based on zero-sum non-cooperative

games. In general, GAN is composed of two

components, a generator and a discriminator. The

generator is aimed to generate examples that can look as

real as possible, and the goal for the discriminator is to

distinguish the examples as real or fake (generated).

GAN is a technique that has been rapidly explored in

the deep learning field. Based on the basic structure,

people are developing different methods for improving

the result by adjusting the structure and loss function.

Nowadays, various types of GAN have been proposed.

Conditional GAN (CGAN) uses extra-label information

to improve the generator. Wasserstein GAN (WGAN)

includes Wasserstein distance to the loss function.

WGAN with Gradient Penalty, which adds the

regularization to their loss function. Cycle GAN,

PGGAN and SAGAN change the structure.

Basic GAN

In the original GAN, the loss function is based on

KL-JS divergence, in the training process, the GAN

model will use cross-entropy loss to minimize the

difference between two distributions which is equivalent

to minimizing the KL-JS divergence.

In this project, the objective of discriminator is to

maximize the probability of assigning the correct label to

the samples. The mathematical objective function for

discriminator is defined as:

     1 1

1
1

m mi i

i i
logD y log D x

m
V G

 
    (1)

and then we train generator to minimize its objective

function which is:

   1

1
1

m i

i
log D G x

m
V


  (2)

Where x is the input data for generator, y is the target

from the real dataset, G(xi) is the generated data (fake

target) from the generator.

For present the calculating through the training

process in GAN, the loss function of discriminator is:

HungChun Lin et al. / Journal of Computer Science 2021, 17 (3): 188.196

DOI: 10.3844/jcssp.2021.188.196

190

     1 1

1 1
 1

m mi i

i i
log D y log D G x

m m 
    (3)

The loss function of generator is:

   1

1

m i

i
log D G x

m 
  (4)

Through the training process, it always needs to

minimize the loss function to get the better result.

WGAN-GP

The discriminator in Basic GAN is not powerful

enough. The training process is known to be slow and

unstable. WGAN-GP is proposed to help stabilize and

improve the training of GAN.

WGAN-GP proposed the Wasserstein distance to

solve this problem. The Wasserstein distance (or Earth-

Mover Distance (EMD)) is the minimum cost of

transporting mass in converting the data distribution to

the data distribution. The Wasserstein distance for the

real data distribution Pr and the generated data

distribution Pg is mathematically defined as the greatest

lower bound (infimum) for any transport plan (i.e., the

cost for the cheapest plan) (Zhou et al., 2018):

     , ~,
, inf

r g
r g x yP P

W P P E x y


   ‖ ‖ (5)

Where Π(Pr, Pg) denotes the set of all joint distributions

between P_r and P_g, Π contains all the possible

transport plan γ. Using the Kantorovich-Rubinstein

duality, we can simplify the calculation to:

     ~ ~1
, sup []

r gLr g x P x Pf
W P P E f x E f x


    ‖ ‖ (6)

where sup is the least upper bound and f is a 1-Lipschitz

function following Lipschitz constraint:

 1 2 1 2()f x f x x x   (7)

WGAN-GP uses gradient penalty to enforce the

Lipschitz constraint. A differentiable function f is 1-

Lipschitz if and only if it has gradients with norm at

most 1(||f||2≤1) everywhere (Zhou et al., 2018). The

model is penalized if the gradient norm moves away

from its target norm value 1.

Compared with Basic GAN, the network is without

the sigmoid function and outputs a scalar score rather

than a probability. This score can be interpreted as how

real the input data are (Zhou et al., 2018). In addition, a

gradient penalty is used in the discriminator. Table 1

and 2 shows the comparison between the Basic GAN

and WGAN-GP with their loss function of

discriminator and generator.

Table 1: Comparison of Basic GAN and WGAN-GP

discriminator loss function

 Discriminator loss

GAN      
1

1
log 1

m
i i

i

logD y D G x
m 

   
  

WGAN-GP       
2

2~
1

1
1i i

m
i i

y x
i

D y D G x E D
m




 
   

  
 ‖ ‖

Table 2: Comparison of Basic GAN and WGAN-GP generator

loss function

 Generator loss

GAN    
1

1
log

m
i

i

D G x
m 

 

WGAN-GP   
1

1 m
i

i

D G x
m 

 

Methodology

The Generator

In our GAN model, we set the GRU as the generator
according to its stability. Our dataset includes the past 10
years' history of the stock price and also consists of 36
features, includes Open, High, Low, Close, Volume,
NASDAQ, NYSE, S&P 500, FTSE100, NIKKI225, BSE
SENSEX, RUSSELL2000, HENG SENG, SSE, Crude Oil,
Gold, VIX, USD index, Amazon, Google, Microsoft, MA7,
MA21, MACD, 20SD, upper_band, lower_band, EMA, log
momentum, absolute of 3 comps, angle of 3 comps,
absolute of 6 comps, angle of 6 comps, absolute of 9
comps, angle of 9 comps and News. This project will make
the multi-step ahead prediction. Therefore, in the generator,
the input step and the output step need to be defined. The
input of the generator will be three-dimensional data: batch
size, input-step and features, and the output will be two-
dimensional data: batch size and output-step. For building
up a generator with good performance, this model uses
three layers of GRU, the numbers of the neuron are 1024,
512 and 256, and then add two layers of Dense, and the
neuron number of the latest layer will be the same as the
output step we are going to predict.

The Discriminator

The discriminator in our GAN model is a Convolution
Neural Network that aimed to distinguish whether the input
data of the discriminator is real or fake. The input for the
discriminator will be from the original data or the generated
data from the generator. This discriminator includes three
1D Convolution layers with 32, 64, and 128 neurons
separately add three other Dense layers in the end, which
have 220, 220 and 1 neuron. The Leaky Rectified Linear
Unit (ReLU) has been set as the activation function among
all layers, but not in the output layer which is with the
Sigmoid activation function for Basic GAN and linear
activation for WGAN-GP. The sigmoid function will give a
single scalar output, 0 and 1, which means real or fake, and
the linear function will give a scalar score.

HungChun Lin et al. / Journal of Computer Science 2021, 17 (3): 188.196

DOI: 10.3844/jcssp.2021.188.196

191

Fig. 1: GAN Architecture

The Architecture of GAN

The combination of the above generator and

discriminator consists of our proposed GAN model.

Figure 1 indicated the architecture of GAN which had

been utilized.

In our GAN model structure, cross-entropy has

been used to calculate the loss for both generator and

discriminator, and the function has been defined in the

Theoretical Background section. Especially in the

discriminator, we combined the generated stock price

with the historical stock price of input steps as our

input for the discriminator, this step enhances the data

length and increases the accuracy for the discriminator

to learn the classification.

Hyperparameter tuning

In a machine learning algorithm, each model has a

certain number of parameters that need to be defined

through the training process, the number of layers, the

learning rate, the number of the neuron, and some other

parameters, that contain in the different types of the

layers. Hyperparameter optimization is a process of

tuning hyperparameters to achieve the highest

performance score with the limited time.

In this study, Bayesian Optimization has been utilized in

the training, which uses Bayes Theorem to find parameters

that can produce the minimum or maximum score of the

given objective function.Our model tuned the learning rate

between 0.0001 to 0.0008, the number of epochs between

100 to 300, and the batch size between 64 to 512.

Dataset and Features

Dataset Descriptions

The stock price data and stock index data are from

Yahoo Finance, the dollar index is from Fred, and the

news data are scrapped from SeekingAlpha. The target

stock price in the model is Apple.Inc. Stock closing

price. The statistical data are calculated using the stock

closing price. There are a total of 2497 observations and

36 variables in the dataset. The train data and test data

are split into 7:3.

Feature Engineering

Some technical indicators have been calculated by

downloading various asset historical data and some

extracted trend features. In addition, this project uses

NLP methods to sentiment values of relevant news.

Technical indicators: this study calculated the most

popular technical indicators for investors (7 days and 21

days moving average, exponential moving average,

momentum, Bollinger bands, MACD.).

News sentiment analysis: news can indicate potential

stock price movements. This project scrapped all the

daily news of Apple.Inc, and used FinBert to analyze the

news into positive, neutral or negative by giving a score

between -1 to 1.

Real dataset

Real_price

(Bs, 33, 1)
Original

data

Fake dataset

Generated_price

(Bs, 3, 1)

Real_price

(Bs, 30, 1)

Original

data

Generator
Discriminator

In
p
u

t
(B

s,
 3

0
,
3
6

)

G
R

U
 (

B
s,

 3
0

,
1
0

2
4

)

G
R

U
 (

B
s,

 3
0

,
5
1

2
)

G
R

U
 (

B
s,

 2
5
6

)

D
en

se
 (

B
s,

 1
2
8

)

D
en

se
 (

B
s,

 6
4

)

D
en

se
 (

B
s,

 3
)

R
es

h
ap

e
(B

s,
 3

,
1

)

In
p
u

t
(B

s,
 3

3
,
1

)

C
o

n
v
1

d
 (

B
s,

 1
,

3
2

)

C
o

n
v
1

d
 (

B
s,

 1
,

6
4

)

C
o

n
v
1

d
 (

B
s,

 1
,

1
2

8
)

F
la

tt
en

D
en

se
 (

B
s,

 2
2
0

)

D
en

se
 (

B
s,

 2
2
0

)

D
en

se
 (

B
s,

 1
)

HungChun Lin et al. / Journal of Computer Science 2021, 17 (3): 188.196

DOI: 10.3844/jcssp.2021.188.196

192

Fig. 2: Input data

Fig. 3: Output data

Fourier transforms: along with the daily closing

price, we created Fourier transforms to extract long term

and short-term trends in the Apple stock. Fourier

transforms take a function and create a series of sine

waves; when combined, these sine waves approximate

the original function, helping the GRU network pick its

prediction trends more accurately (Banushev, 2020).

Data Structure

The method this model prepared the dataset for

supervised learning is to divide the dataset with the

rolling window equals 1. The illustration has been

shown in Fig. 2. The original dataset is 2 dimensional,

and it needs to be reshaped to 3 dimensions according

to the timesteps.

Figure 3 illustrates the output of the dataset that will be

obtained from the generator. Here, the number of output

units equals 1. In our model, the time step can be modified

in Fig. 2 and the output step in Fig. 3. This paper built a

many to many model with timestep 30 and output step 3

(use 30 days historical price to predict 3 days stock price).

Experimental Results

Experimental Setup

The framework of this experiment has been set up with

Keras with Tensorflow backend. The computational devices

contain one NVIDIA Tesla M60 GPU with 8GB memory

and one CPU with 16 GB memory. For the activation

functions, linear (non-activation) is used in the generator,

while Leaky ReLU with a low threshold of 0.01 in the

discriminator experimentally results in a good performance.

Train the Model

The purpose of this paper is to predict the stock

closing price in the following three days with the data of

the past 30 days. For training the forecasting model, this

project will input the historical closing price and 36

features that might affect the price. In the training

process, the dataset will be split into a training set and a

testing set as 70% (1726 data) and 30% (739 data).

During the testing process, this study will do two

different parts, a prediction with an unexpected event,

and a prediction without an unexpected event, in this

project, the unexpected event is COVID-19 for 2020.

Experimental and Results

In this paper, it evaluated the performance of each

model by Root Mean Square Error (RMSE), and the

indicator is defined as:

 
2

1
ˆ

N

i ii
x x

RMSE
N





 (8)

The N is the number of the data points, xi is actual

stock price, and ˆ
ix denotes the predicted stock price, to

evaluate the models we built in this project, this study

compared all the models of their RMSE on testing data

(with 2020 and without 2020).

LSTM

In our LSTM model, Bidirectional LSTM has been

utilized in the first layer. The optimizer for our models in

this work is the Adam algorithm with a learning rate of

0.001. The batch size is 64, and then the model trains 50

epochs on this stock price dataset.

ŷ3 ŷ2 ŷ1

t33 t32 t31

t34 t33 t32

t35 t34 t33

Output step

N of output unit

N of samples

X3

X2

X1

t0

t1

t2

t3

X3

X2

X1

X3

X2

X1

X3

X2

X1

t2

t3

t31

t1

t2

t30

TimeSteps

N of features

N of samples

Reshape

Original Dataset

Create the input

data by moving the

window one step

down each time

HungChun Lin et al. / Journal of Computer Science 2021, 17 (3): 188.196

DOI: 10.3844/jcssp.2021.188.196

193

As the input of the GAN model, in this baseline

model, the whole dataset includes the past 10 years'

historical data and 36 correlative features. After splitting

the data into the train set and test set, the testing dataset

started on 07/21/2017.

Figure 4 shows that the result of LSTM includes the
forecasting of the year 2020, the RMSE is 6.60, the blue
line is the actual stock price, and the red line indicates
the predicted stock price. Obviously, all the predicted
stock price is slightly higher than the actual stock price
till the end of May 2020. And after May 2020, the
forecasting is much closer to the actual stock price.
Furthermore, we calculate the result excluding 2020, and
then the RMSE is increased to 9.42, which is much
higher than the result that includes 2020.

GRU

GRU model, the second basic model in this paper.

Building this model utilized 2 layers of GRU, and the

optimizer for the GRU model is the Adam algorithm

with a learning rate of 0.0001, and the size of the

batch is 128, and then train this model for 50 epochs.

Figure 5 shows the result of GRU, including 2020,

the RMSE is 5.33, and from the result, it indicates that

the GRU model performs better than the LSTM model

before May 2020. From this figure, we can observe

the collapse of the forecasting after May 2020. Next,

the result excluding 2020 for GRU, the RMSE is 4.08.

The GRU model performs better when making

predictions without predicting unexpected events.

Basic GAN

The structure of the GAN model in this paper has

been proposed in the methodology section. In this model,

the optimizer for our models in this paper is the Adam

algorithm with a learning rate of 0.00016. The batch size

is 128 and then the model on this dataset has been

trained for 165 epochs.

Figure 6 is the loss plot of the basic GAN model, and

the blue line is the loss path of the discriminator and the

orange line is the loss path of the generator. From the

beginning, the loss of discriminator is higher than the

loss of generator, and through the training process, both

loss paths are becoming flat.

Figure 7 is the predicted result of the basic GAN

model, and the RMSE is 5.36. This figure shows the

prediction started having a large gap between the

actual price and the predicted price in 2020 while

there is a sudden surge in actual price, which might be

due to the unexpected event, COVID-19. In this

model, we calculated the result of the basic GAN

model excluding 2020 forecasting as well, and the

RMSE turned out to decrease to 3.09. It indicates that

the basic GAN for forecasting performs better without

unexpected events than both basic models.

WGAN-GP

The structure of the WGAN-GP model in this paper has

been proposed in the methodology section. In this model,

the optimizer is also an Adam algorithm with a learning rate

of 0.0001. The batch size is 128 and the model has been

trained on this dataset for 100 epochs. In this study, we

trained the discriminator once and the generator three times.

Figure 8 is the loss plot of the WGAN-GP model, the

blue line is the loss path of the discriminator and the orange

line is the loss path of the generator. The discriminator loss

decreases towards 0. Compared with the Basic GAN, the

discriminator in WGAN-GP learns better.
Figure 9 is the predicted result of the WGAN-GP

model. The RMSE is 4.77, which is the best one in all
the models. Like basic GAN in 2020, the prediction
starts to have a large gap between the actual price and
the predicted price due to the unexpected COVID-19.
When removing the test data in 2020, the RMSE of
the forecasting decreases to 3.88, which performs
worse than the basic GAN model.

Fig. 4: LSTM test data plot

Real price

Predicted price

90

80

70

60

50

40

S
to

ck
 p

ri
ce

2017-09 2018-01 2018-05 2018-09 2019-01 2019-05 2019-09 2020-01 2020-05

Date

HungChun Lin et al. / Journal of Computer Science 2021, 17 (3): 188.196

DOI: 10.3844/jcssp.2021.188.196

194

Fig. 5: GRU test data plot

Fig. 6: Basic GAN loss plot

Fig. 7: Basic GAN test data plot

Real price

Predicted price 90

80

70

60

50

40

S
to

ck
 p

ri
ce

2017-09 2018-01 2018-05 2018-09 2019-01 2019-05 2019-09 2020-01 2020-05

Date

0 25 50 75 100 125 150

Epoch

1.4

1.2

1.0

0.8

0.6

L
o

ss

D_loss

G_loss

Real price

Predicted price 90

80

70

60

50

40

S
to

ck
 p

ri
ce

2017-09 2018-01 2018-05 2018-09 2019-01 2019-05 2019-09 2020-01 2020-05

Date

HungChun Lin et al. / Journal of Computer Science 2021, 17 (3): 188.196

DOI: 10.3844/jcssp.2021.188.196

195

Fig. 8: WGAN-GP loss plot

Fig. 9: WGAN-GP test data plot

Evaluation

Table 3: Model summary RSME

 LSTM GRU Basic GAN WGAN-GP

RMSE 1.52 1.00 1.64 1.74

(Train data)
RMSE 6.60 5.33 5.36 4.77

(Test data include 2020)

RMSE 9.45 4.08 3.09 3.88

(Test data exclude 2020)

The Table 3 compares the training RSME and testing

RMSE for different models.

For the training dataset, GRU performs the best.

While, for the testing dataset, when including COVID-

19 period data, WGAN-GP performs the best, when

excluding that period, basic GAN performs the best. But

overall, GANs models perform better than the baseline

traditional models according to our result.

Conclusion

This paper proposed a GAN that sets GRU as a
generator and CNN as a discriminator. According to
the experimental result, some conclusions have been
summed. First, compared to the GAN model with the
traditional models, the GAN model can improve the GRU
and LSTM models. Both basic GAN and WGAN-GP
perform better than conventional models. One of the key
findings of this work is that when there is an unexpected
event like COVID-19, WGAN-GP performs better than
basic GAN, but basic GAN performs better in normal
periods. However, to our knowledge, a GAN model
including RNN is unstable. It is challenging for these
models to tune hyperparameters. Without suitable
parameters, you may have bad results.

Future research should be devoted to the development

of hyperparameter tuning. In the GAN model, if each of the

Real price

Predicted price 90

80

70

60

50

40

S
to

ck
 p

ri
ce

2017-09 2018-01 2018-05 2018-09 2019-01 2019-05 2019-09 2020-01 2020-05

Date

0 20 40 60 80 100

Epoch

8

6

4

2

0

L
o

ss

D_loss

G_loss

HungChun Lin et al. / Journal of Computer Science 2021, 17 (3): 188.196

DOI: 10.3844/jcssp.2021.188.196

196

parameters can be tuned more accurately in each layer and

for the whole model, we believe the result would have been

significantly improved.

Many research teams proposed methods of

reinforcement learning for hyperparameter optimization,

such as Rainbow (Hessel et al., 2018) based on Q-

learning and Proximal Policy Optimization (PPO)

(Schulman et al., 2017). Based on the basic structure in

this paper and exploring further reinforce learning, we

hope the GAN model with RNN can produce much more

reliable forecasting of the stock price.

Funding Information

This research received no specific grant from any

funding agency in the public, commercial, or not-for-

profit sectors.

Author’s Contributions

HungChun Lin: Supervised the project as a whole

and drafted the manuscript. Designed, presented and

wrote the LSTM, GRU and Basic GAN model used in

this study. Also did the data analysis work of the model.

Chen Chen: Supervised the project as a whole and

drafted the manuscript. Designed, presented and wrote

the Basic GAN and WGAN-GP model used in this

study. Also did the data analysis work of the model.

GaoFeng Huang: Contributed with his deep learning

and coding knowledge in this research work for

improving the result of the research.

Amir Jafari: Contributed with his expertise in this

research work. Guided all of us with his outstanding

experience in deep learning.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Banushev, B. (2020). Using the latest advancements in

AI to predict stock market movements.

https://github.com/borisbanushev/stockpredictionai

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau,

D., Bougares, F., Schwenk, H., & Bengio, Y.

(2014). Learning phrase representations using RNN

encoder-decoder for statistical machine translation.

arXiv preprint arXiv:1406.1078.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T.,

Ostrovski, G., Dabney, W., ... & Silver, D. (2018,

April). Rainbow: Combining improvements in deep

reinforcement learning. In Proceedings of the AAAI

Conference on Artificial Intelligence (Vol. 32, No. 1).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-

term memory. Neural computation, 9(8), 1735-1780.

Ricardo, A., Carrillo, R. (2019). Generative Adversarial

Network for Stock Market price Prediction. Stanford

University. United States.

https://cs230.stanford.edu/projects_fall_2019/reports

/26259829.pdf

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., &

Klimov, O. (2017). Proximal policy optimization

algorithms. arXiv preprint arXiv:1707.06347.

Zhang, K., Zhong, G., Dong, J., Wang, S., & Wang, Y.

(2019). Stock market prediction based on generative

adversarial network. Procedia computer science,

147, 400-406.

Zhou, X., Pan, Z., Hu, G., Tang, S., & Zhao, C. (2018).

Stock market prediction on high-frequency data

using generative adversarial nets. Mathematical

Problems in Engineering, 2018.

