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Abstract: Deep learning is an exciting topic. It has been utilized in many areas 

owing to its strong potential. For example, it has been widely used in the 

financial area which is vital to the society, such as high-frequency trading, 

portfolio optimization, fraud detection and risk management. Stock market 

prediction is one of the most popular and valuable areas in finance. In this 

paper, it proposes a stock prediction model using Generative Adversarial 

Network (GAN) with Gated Recurrent Units (GRU) used as a generator that 

inputs historical stock price and generates future stock price and Convolutional 

Neural Network (CNN) as a discriminator to discriminate between the real 

stock price and generated stock price. Different from the traditional methods, 

which limited the forecasting on one-step-ahead only, by contrast, using the 

deep learning algorithm is possible to conduct the multi-step ahead prediction 

more accurately. In this study, it chose the Apple Inc. stock closing price as the 

target price, with features such as S&P 500 index, NASDAQ Composite index, 

U.S. Dollar index, etc. In addition, FinBert has been utilized to generate a news 

sentiment index for Apple Inc. as an additional predicting feature. Finally, this 

paper compares the proposed GAN model results with the baseline model. 
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Introduction  

Stock price prediction is an interesting and 

challenging topic as a time series prediction.  Many 

studies have shown that the stock price is predictable and 

many classic algorithms such as Long Short-Term 

Memory (LSTM) and ARIMA are used in time-series 

predictions. Generative Adversarial Network (GAN) is 

one of the most powerful models to conduct prediction. 

The generator and discriminator in the model are 

adversarial, which helps increase the result's accuracy. 

GAN is widely used in image generating, but not in 

time series prediction. Since there are few studies on 

time series prediction using GAN, their conclusions 

are inconsistent according to their studies. This paper 

aims to use GAN to predict the stock price and check 

whether the adversarial system can help improve the 

time series prediction. Also, it includes the 

comparison between the traditional models, LSTM 

and GRU with the basic GAN and Wasserstein GAN 

with Gradient Penalty (WGAN-GP) model.  

The main contribution of this paper can be 

summarized in the followings: 

 In our experiments, we found the adversarial training 

with a 1D-CNN discriminator will enhance the 

performance of basic recurrent models; and the GRU-

based generator is recommended in the aspects of 

training stabilization and testing performance. 

 Different from the related work, most of them used a 

plain GAN model. This project applied the loss 

function from WGAN-GP. Our model is more stable 

and gives good performance even when making 

multi-step ahead predictions. 

 This project also extracted the daily news topic 

through the Natural Language Processing, which is 

one of the vital indexes in the features, especially if 

there is an unexpected incident like COVID-19. 

Thus, this paper compared the model performance in 

the normal periods and the COVID-19 period. 
 

Related Works 

Stock prediction is widely used in traditional models 

such as LSTM, Gated Recurrent Units (GRU) and 

ARIMA. But there are few studies that make the 

prediction using GAN. And the result of using GAN to 

make the stock prediction is inconsistent. For example, 

Ricardo and Carrillo (2019) compared the performance of 
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the GAN model with traditional deep learning model 

LSTM. They used LSTM as the generator and 

Convolutional Neural Network (CNN) as the 

discriminator. Their specific goal was to predict 

whether the price would increase one day after the 

sample period. The result showed no significant 

differences between GAN and traditional model 

LSTM. Accuracy on the GAN model is 72.68% 

compared with 74.16% on shallow LSTM. The 

performance of GAN is even a little bit worse. 

However, according to the study from Zhang et al. 

(2019), they proposed a GAN model with the LSTM 

as the generator and Multi-Layer Perceptron (MLP) as 

the discriminator to forecasting the one day closing 

price of the stock, and also compared the result with 

baseline LSTM. The result showed that GAN 

performs better than their traditional baseline model. 

The GAN model's accuracy is about 75.54%, while 

for baseline, LSTM is 68.59%.  

Theoretical Background 

LSTM 

Long short-term memory (LSTM) is a specific recurrent 

neural network (RNN) architecture. It was proposed in 

1997 by Hochreiter and Schmidhuber (Hochreiter et al., 

1997). Unlike a traditional feed-forward neural network, it 

includes feedback connections. Furthermore, it can be 

utilized on single-point data and the sequence of data as 

well. The essential components of LSTM are an input gate, 

an output gate and a forget gate, and the LSTM network 

was developed to resolve the vanishing gradient problem 

while training the traditional RNNs. LSTM is a cell 

memory unit that means that LSTM can remove or add 

information to the cell state.  

LSTM has overcome the vanishing gradients and the 

exploding gradients problem that appeared in RNN 

through the units' specific internal structure built in the 

model. Nowadays, LSTM has been known as a powerful 

method capable of processing, classifying, and making 

predictions based on time series data. 

GRU 

Gated recurrent unit (GRU) is a kind of RNN that uses 

gating mechanisms to control the flow of information 

between cells in the neural network derived from LSTM 

and was introduced in 2014 By Kyunghyun Cho et al. 

(1997). GRU is composed of two gates, an update gate and 

a reset gate. These gates are used to filter out what 

information should remain and what should be disposed of. 

Different from traditional RNN, GRUs solve the vanishing 

and exploding gradient problems. Unlike LSTM, GRU has 

fewer parameters than LSTM due to the lack of one gate. 

Another difference is that GRUs also lack the cell state 

from LSTM so that GRU can only store both long and 

short-term memory in the hidden state. Recently, GRUs 

have been shown to perform better than LSTM on certain 

smaller and less frequent datasets.  

GAN 

Generative adversarial network (GAN) is a minimax 

problem, which is based on zero-sum non-cooperative 

games. In general, GAN is composed of two 

components, a generator and a discriminator. The 

generator is aimed to generate examples that can look as 

real as possible, and the goal for the discriminator is to 

distinguish the examples as real or fake (generated). 

GAN is a technique that has been rapidly explored in 

the deep learning field. Based on the basic structure, 

people are developing different methods for improving 

the result by adjusting the structure and loss function. 

Nowadays, various types of GAN have been proposed. 

Conditional GAN (CGAN) uses extra-label information 

to improve the generator. Wasserstein GAN (WGAN) 

includes Wasserstein distance to the loss function. 

WGAN with Gradient Penalty, which adds the 

regularization to their loss function. Cycle GAN, 

PGGAN and SAGAN change the structure. 

Basic GAN 

In the original GAN, the loss function is based on 

KL-JS divergence, in the training process, the GAN 

model will use cross-entropy loss to minimize the 

difference between two distributions which is equivalent 

to minimizing the KL-JS divergence. 

In this project, the objective of discriminator is to 

maximize the probability of assigning the correct label to 

the samples. The mathematical objective function for 

discriminator is defined as: 

 

     1 1

1
1  

m mi i

i i
logD y log D x

m
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and then we train generator to minimize its objective 

function which is: 

 

   1

1
1  

m i

i
log D G x

m
V


   (2) 

 

Where x is the input data for generator, y is the target 

from the real dataset, G(xi ) is the generated data (fake 

target) from the generator. 

For present the calculating through the training 

process in GAN, the loss function of discriminator is: 
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The loss function of generator is: 
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Through the training process, it always needs to 

minimize the loss function to get the better result. 

WGAN-GP 

The discriminator in Basic GAN is not powerful 

enough. The training process is known to be slow and 

unstable. WGAN-GP is proposed to help stabilize and 

improve the training of GAN. 

WGAN-GP proposed the Wasserstein distance to 

solve this problem. The Wasserstein distance (or Earth-

Mover Distance (EMD)) is the minimum cost of 

transporting mass in converting the data distribution to 

the data distribution. The Wasserstein distance for the 

real data distribution Pr and the generated data 

distribution Pg is mathematically defined as the greatest 

lower bound (infimum) for any transport plan (i.e., the 

cost for the cheapest plan) (Zhou et al., 2018): 
 

     , ~,
, inf

r g
r g x yP P

W P P E x y


   ‖ ‖  (5) 

 
Where Π(Pr, Pg) denotes the set of all joint distributions 

between P_r and P_g, Π contains all the possible 

transport plan γ. Using the Kantorovich-Rubinstein 

duality, we can simplify the calculation to: 
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where sup is the least upper bound and f is a 1-Lipschitz 

function following Lipschitz constraint:  
 

 1 2 1 2( )f x f x x x    (7) 

 
WGAN-GP uses gradient penalty to enforce the 

Lipschitz constraint. A differentiable function f is 1-

Lipschitz if and only if it has gradients with norm at 

most 1(||f||2≤1) everywhere (Zhou et al., 2018). The 

model is penalized if the gradient norm moves away 

from its target norm value 1. 

Compared with Basic GAN, the network is without 

the sigmoid function and outputs a scalar score rather 

than a probability. This score can be interpreted as how 

real the input data are (Zhou et al., 2018). In addition, a 

gradient penalty is used in the discriminator. Table 1 

and 2 shows the comparison between the Basic GAN 

and WGAN-GP with their loss function of 

discriminator and generator. 

Table 1: Comparison of Basic GAN and WGAN-GP 

discriminator loss function 

 Discriminator loss 
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Table 2: Comparison of Basic GAN and WGAN-GP generator 

loss function 

 Generator loss 

GAN    
1

1
log

m
i

i

D G x
m 

   

WGAN-GP   
1

1 m
i

i

D G x
m 

   

 

Methodology 

The Generator 

In our GAN model, we set the GRU as the generator 
according to its stability. Our dataset includes the past 10 
years' history of the stock price and also consists of 36 
features, includes Open, High, Low, Close, Volume, 
NASDAQ, NYSE, S&P 500, FTSE100, NIKKI225, BSE 
SENSEX, RUSSELL2000, HENG SENG, SSE, Crude Oil, 
Gold, VIX, USD index, Amazon, Google, Microsoft, MA7, 
MA21, MACD, 20SD, upper_band, lower_band, EMA, log 
momentum, absolute of 3 comps, angle of 3 comps, 
absolute of 6 comps, angle of 6 comps, absolute of 9 
comps, angle of 9 comps and News. This project will make 
the multi-step ahead prediction. Therefore, in the generator, 
the input step and the output step need to be defined. The 
input of the generator will be three-dimensional data: batch 
size, input-step and features, and the output will be two-
dimensional data: batch size and output-step. For building 
up a generator with good performance, this model uses 
three layers of GRU, the numbers of the neuron are 1024, 
512 and 256, and then add two layers of Dense, and the 
neuron number of the latest layer will be the same as the 
output step we are going to predict. 

The Discriminator 

The discriminator in our GAN model is a Convolution 
Neural Network that aimed to distinguish whether the input 
data of the discriminator is real or fake. The input for the 
discriminator will be from the original data or the generated 
data from the generator.  This discriminator includes three 
1D Convolution layers with 32, 64, and 128 neurons 
separately add three other Dense layers in the end, which 
have 220, 220 and 1 neuron. The Leaky Rectified Linear 
Unit (ReLU) has been set as the activation function among 
all layers, but not in the output layer which is with the 
Sigmoid activation function for Basic GAN and linear 
activation for WGAN-GP. The sigmoid function will give a 
single scalar output, 0 and 1, which means real or fake, and 
the linear function will give a scalar score. 
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Fig. 1: GAN Architecture 

 

The Architecture of GAN 

The combination of the above generator and 

discriminator consists of our proposed GAN model. 

Figure 1 indicated the architecture of GAN which had 

been utilized. 

In our GAN model structure, cross-entropy has 

been used to calculate the loss for both generator and 

discriminator, and the function has been defined in the 

Theoretical Background section. Especially in the 

discriminator, we combined the generated stock price 

with the historical stock price of input steps as our 

input for the discriminator, this step enhances the data 

length and increases the accuracy for the discriminator 

to learn the classification. 

Hyperparameter tuning 

In a machine learning algorithm, each model has a 

certain number of parameters that need to be defined 

through the training process, the number of layers, the 

learning rate, the number of the neuron, and some other 

parameters, that contain in the different types of the 

layers. Hyperparameter optimization is a process of 

tuning hyperparameters to achieve the highest 

performance score with the limited time.  

In this study, Bayesian Optimization has been utilized in 

the training, which uses Bayes Theorem to find parameters 

that can produce the minimum or maximum score of the 

given objective function.Our model tuned the learning rate 

between 0.0001 to 0.0008, the number of epochs between 

100 to 300, and the batch size between 64 to 512. 

Dataset and Features 

Dataset Descriptions 

The stock price data and stock index data are from 

Yahoo Finance, the dollar index is from Fred, and the 

news data are scrapped from SeekingAlpha. The target 

stock price in the model is Apple.Inc. Stock closing 

price. The statistical data are calculated using the stock 

closing price. There are a total of 2497 observations and 

36 variables in the dataset. The train data and test data 

are split into 7:3.  

Feature Engineering 

Some technical indicators have been calculated by 

downloading various asset historical data and some 

extracted trend features. In addition, this project uses 

NLP methods to sentiment values of relevant news.  

Technical indicators: this study calculated the most 

popular technical indicators for investors (7 days and 21 

days moving average, exponential moving average, 

momentum, Bollinger bands, MACD.). 

News sentiment analysis: news can indicate potential 

stock price movements. This project scrapped all the 

daily news of Apple.Inc, and used FinBert to analyze the 

news into positive, neutral or negative by giving a score 

between -1 to 1.  
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Fig. 2: Input data 
 

 
 

Fig. 3: Output data 
 

Fourier transforms: along with the daily closing 

price, we created Fourier transforms to extract long term 

and short-term trends in the Apple stock. Fourier 

transforms take a function and create a series of sine 

waves; when combined, these sine waves approximate 

the original function, helping the GRU network pick its 

prediction trends more accurately (Banushev, 2020). 

Data Structure 

The method this model prepared the dataset for 

supervised learning is to divide the dataset with the 

rolling window equals 1. The illustration has been 

shown in Fig. 2. The original dataset is 2 dimensional, 

and it needs to be reshaped to 3 dimensions according 

to the timesteps.  

Figure 3 illustrates the output of the dataset that will be 

obtained from the generator. Here, the number of output 

units equals 1. In our model, the time step can be modified 

in Fig. 2 and the output step in Fig. 3. This paper built a 

many to many model with timestep 30 and output step 3 

(use 30 days historical price to predict 3 days stock price). 

Experimental Results 

Experimental Setup 

The framework of this experiment has been set up with 

Keras with Tensorflow backend. The computational devices 

contain one NVIDIA Tesla M60 GPU with 8GB memory 

and one CPU with 16 GB memory. For the activation 

functions, linear (non-activation) is used in the generator, 

while Leaky ReLU with a low threshold of 0.01 in the 

discriminator experimentally results in a good performance. 

Train the Model 

The purpose of this paper is to predict the stock 

closing price in the following three days with the data of 

the past 30 days. For training the forecasting model, this 

project will input the historical closing price and 36 

features that might affect the price. In the training 

process, the dataset will be split into a training set and a 

testing set as 70% (1726 data) and 30% (739 data). 

During the testing process, this study will do two 

different parts, a prediction with an unexpected event, 

and a prediction without an unexpected event, in this 

project, the unexpected event is COVID-19 for 2020. 

Experimental and Results 

In this paper, it evaluated the performance of each 

model by Root Mean Square Error (RMSE), and the 

indicator is defined as:  
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The N is the number of the data points, xi is actual 

stock price, and ˆ
ix  denotes the predicted stock price, to 

evaluate the models we built in this project, this study 

compared all the models of their RMSE on testing data 

(with 2020 and without 2020). 

LSTM 

In our LSTM model, Bidirectional LSTM has been 

utilized in the first layer. The optimizer for our models in 

this work is the Adam algorithm with a learning rate of 

0.001. The batch size is 64, and then the model trains 50 

epochs on this stock price dataset. 
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As the input of the GAN model, in this baseline 

model, the whole dataset includes the past 10 years' 

historical data and 36 correlative features. After splitting 

the data into the train set and test set, the testing dataset 

started on 07/21/2017. 

Figure 4 shows that the result of LSTM includes the 
forecasting of the year 2020, the RMSE is 6.60, the blue 
line is the actual stock price, and the red line indicates 
the predicted stock price. Obviously, all the predicted 
stock price is slightly higher than the actual stock price 
till the end of May 2020. And after May 2020, the 
forecasting is much closer to the actual stock price. 
Furthermore, we calculate the result excluding 2020, and 
then the RMSE is increased to 9.42, which is much 
higher than the result that includes 2020.  

GRU 

GRU model, the second basic model in this paper. 

Building this model utilized 2 layers of GRU, and the 

optimizer for the GRU model is the Adam algorithm 

with a learning rate of 0.0001, and the size of the 

batch is 128, and then train this model for 50 epochs. 

Figure 5 shows the result of GRU, including 2020, 

the RMSE is 5.33, and from the result, it indicates that 

the GRU model performs better than the LSTM model 

before May 2020. From this figure, we can observe 

the collapse of the forecasting after May 2020. Next, 

the result excluding 2020 for GRU, the RMSE is 4.08. 

The GRU model performs better when making 

predictions without predicting unexpected events. 

Basic GAN 

The structure of the GAN model in this paper has 

been proposed in the methodology section. In this model, 

the optimizer for our models in this paper is the Adam 

algorithm with a learning rate of 0.00016. The batch size 

is 128 and then the model on this dataset has been 

trained for 165 epochs.  

Figure 6 is the loss plot of the basic GAN model, and 

the blue line is the loss path of the discriminator and the 

orange line is the loss path of the generator. From the 

beginning, the loss of discriminator is higher than the 

loss of generator, and through the training process, both 

loss paths are becoming flat.  

Figure 7 is the predicted result of the basic GAN 

model, and the RMSE is 5.36. This figure shows the 

prediction started having a large gap between the 

actual price and the predicted price in 2020 while 

there is a sudden surge in actual price, which might be 

due to the unexpected event, COVID-19. In this 

model, we calculated the result of the basic GAN 

model excluding 2020 forecasting as well, and the 

RMSE turned out to decrease to 3.09. It indicates that 

the basic GAN for forecasting performs better without 

unexpected events than both basic models. 

WGAN-GP 

The structure of the WGAN-GP model in this paper has 

been proposed in the methodology section. In this model, 

the optimizer is also an Adam algorithm with a learning rate 

of 0.0001. The batch size is 128 and the model has been 

trained on this dataset for 100 epochs. In this study, we 

trained the discriminator once and the generator three times. 

Figure 8 is the loss plot of the WGAN-GP model, the 

blue line is the loss path of the discriminator and the orange 

line is the loss path of the generator. The discriminator loss 

decreases towards 0. Compared with the Basic GAN, the 

discriminator in WGAN-GP learns better.  
Figure 9 is the predicted result of the WGAN-GP 

model. The RMSE is 4.77, which is the best one in all 
the models. Like basic GAN in 2020, the prediction 
starts to have a large gap between the actual price and 
the predicted price due to the unexpected COVID-19. 
When removing the test data in 2020, the RMSE of 
the forecasting decreases to 3.88, which performs 
worse than the basic GAN model. 

 

 
 

Fig. 4: LSTM test data plot 
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Fig. 5: GRU test data plot 

 

 
 

Fig. 6: Basic GAN loss plot 

 

 

 
Fig. 7: Basic GAN test data plot 
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Fig. 8: WGAN-GP loss plot 

 

 

 
Fig. 9: WGAN-GP test data plot 

 

Evaluation 

Table 3: Model summary RSME 

 LSTM GRU Basic GAN WGAN-GP 

RMSE 1.52 1.00 1.64  1.74 

(Train data) 
RMSE 6.60 5.33 5.36 4.77 

(Test data include 2020) 

RMSE 9.45 4.08 3.09 3.88 

(Test data exclude 2020) 

 

The Table 3 compares the training RSME and testing 

RMSE for different models.  

For the training dataset, GRU performs the best. 

While, for the testing dataset, when including COVID-

19 period data, WGAN-GP performs the best, when 

excluding that period, basic GAN performs the best. But 

overall, GANs models perform better than the baseline 

traditional models according to our result.  

Conclusion 

This paper proposed a GAN that sets GRU as a 
generator and CNN as a discriminator. According to 
the experimental result, some conclusions have been 
summed. First, compared to the GAN model with the 
traditional models, the GAN model can improve the GRU 
and LSTM models. Both basic GAN and WGAN-GP 
perform better than conventional models. One of the key 
findings of this work is that when there is an unexpected 
event like COVID-19, WGAN-GP performs better than 
basic GAN, but basic GAN performs better in normal 
periods. However, to our knowledge, a GAN model 
including RNN is unstable. It is challenging for these 
models to tune hyperparameters. Without suitable 
parameters, you may have bad results.  

Future research should be devoted to the development 

of hyperparameter tuning. In the GAN model, if each of the 
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parameters can be tuned more accurately in each layer and 

for the whole model, we believe the result would have been 

significantly improved.  

Many research teams proposed methods of 

reinforcement learning for hyperparameter optimization, 

such as Rainbow (Hessel et al., 2018) based on Q-

learning and Proximal Policy Optimization (PPO) 

(Schulman et al., 2017). Based on the basic structure in 

this paper and exploring further reinforce learning, we 

hope the GAN model with RNN can produce much more 

reliable forecasting of the stock price.  
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