

 © 2021 Wahyu Hidayat, Fitri Susanti and Dedy Rahman Wijaya. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 4.0 license.

 Journal of Computer Science

Original Research Paper

A Comparative Study of Informed and Uninformed Search

Algorithm to Solve Eight-Puzzle Problem

1Wahyu Hidayat, 2Fitri Susanti and 3Dedy Rahman Wijaya

1,3Department of Information System, School of Applied Science, Telkom University, Bandung, Indonesia
2Department of Multimedia Technology Engineering, School of Applied Science, Telkom University, Bandung, Indonesia

Article history

Received: 24-06-2021

Revised: 31-08-2021

Accepted: 09-10-2021

Corresponding Author:

Wahyu Hidayat

Department of Information

System, School of Applied

Science, Telkom University,

Bandung, Indonesia
Email: wahyuhidayat@telkomuniversity.ac.id

Abstract: Problems in artificial intelligence can be solved using intelligent

tracking methods through intelligent search mechanisms. Understandably,

search algorithm performances are highly dependent on the problem solved.

In this study, we evaluate and compare the performance of five uninformed and

informed search (breadth-first search, depth first search, optimal search and

best first search using two heuristic functions, namely mismatched tile and

Manhattan distance) algorithms to solve the eight-puzzle game problem.

For each algorithm, the numbers of raised and explored nodes were

assessed and analyzed. Our experiment demonstrates that informed

search with heuristic outperforms uninformed search significantly, both

in terms of memory usage efficiency and computational power efficiency.

On average, the informed search using heuristic requires only 5.33% of

memory used by uninformed search and only 4.45% of computational

power demanded by uninformed search. Boxplot analysis also confirms

that informed search using heuristic also delivers more stable

performance contrasted to uninformed search. These could be a concern

for researchers and game developers to consider implementing the

heuristically enhanced search algorithm to utilize memory and

computational power efficiently to solve similar problems.

Keywords: Comparative Study, Uninformed Search, Informed Search,

Heuristic, 8-Puzzle Game

Introduction

Artificial Intelligence (AI) is a branch of computer

science that studies the behavior of intelligence, learning

and adaptation in machines. The main purpose of AI is to

mimic and emulate human intelligence then applied it to

machines. Research on AI emphasizes the automation of

machine processes that require intelligent behavior.

Currently, artificial intelligence has promoted emerging

technology integrations and revolutionize a wide range of

applications and fields (Lu, 2019).

Problems in artificial intelligence can be solved by

using intelligent tracking methods through an intelligent

search mechanism. There are two types of search

algorithms, namely uninformed search and informed

search with heuristics. Uninformed search is a search

mechanism that can only distinguish a goal state from a

non-goal state, with no information on how far the goal

state from the current state is. On the other hand, the

informed search can estimate the cost of reaching the

goal from a particular state through a function that

calculates such cost estimates, called a heuristic

(Russell and Norvig, 2020).

In the past five years, a lot of research has been

focused on studies about uninformed and informed

search. Some research focuses on finding and developing

new search algorithms or improving well-known

algorithms, while others focus more on implementing

search algorithms in various fields.

However, search algorithm performances are highly

dependent on the problem being solved. For one particular

case, several algorithms show different performances.

Therefore, it is necessary to study the comparison of

search algorithm performance for various case studies.
In this study, a various search algorithm is applied to

the 8-puzzle problem. We evaluate five search

algorithms, namely breadth-first search, depth-first

search, optimal search and best-first search using two

heuristic functions; mismatched tile and Manhattan

distance function. The purpose of this study was to

evaluate and compare the performances of uninformed

(represented by breadth and depth first search) and

Wahyu Hidayat et al. / Journal of Computer Science 2021, 17 (11): 1147.1156

DOI: 10.3844/jcssp.2021.1147.1156

1148

informed search (represented by Best First Search)

algorithms to solve the 8-puzzle game problem.

The 8-puzzle was one of the earliest heuristic search

problems and it is a perfect case to compare informed with

uninformed search. With an average solution of 20 steps

and an average branching factor of 3, puzzle-8 can

easily cause an exhaustive uninformed search to find a

solution among almost 3.5 billion states (Russell and

Norvig, 2020).

Using the heuristic is much more promising because

the number of unique possible states in 8-puzzle is

much lower than the number of states that are evaluated

using an exhaustive uninformed search.

Understandably, the number of evaluated states is

highly related to memory and computational power

requirements. Thus, experimenting on the 8-puzzle by

evaluating the number of raised and explored nodes can

show the different performances among algorithms in

terms of memory and computational power efficiency.

The contribution of this study is to find which search

algorithm that provides the best performance to solve the

8-puzzle problem both in terms of memory usage

efficiency and in terms of computational power

efficiency. By knowing the most efficient search

algorithm, game developers can choose the right

algorithm to solve 8-puzzle problems and similar

searching and pathfinding problems in the field of

computer game development. Thus, the games created

will be more efficient in terms of memory requirements

and computational power requirements and can be applied

in devices with limited resources.

Related Works

Intelligent tracking methods through an intelligent

search mechanism can be used to solve various problems

and implemented in many different scenarios. Problems

that can be solved using intelligent search are ranging

from a very simple problem such as block architecture

problem (Rahim et al., 2018a) to a more advanced

polyhedra puzzle (Iordan, 2018) and even up to

sophisticated problems such as to help an unmanned air

vehicle navigate using as efficient energy as possible

(Debnath et al., 2019).

Gaming is one of many scenarios where intelligence

search is mostly used. For example, in a classic

TicTacToe game (Hutahaean, 2018), an Indonesian

popular traditional game of "Congklak" (Rahim et al.,

2018b) and general pathfinding task in the game

(Zafar et al., 2018).

While some studies implement intelligent search in

gaming, other studies presented interesting

implementations of intelligent search that are closer to a

real-life scenario. Among them are the implementation of

intelligence search to facilitate smart shopping experience

in groceries using dynamic pathfinding (Ada et al., 2019),

fast and safe food delivery by a robot (Navya and Ranjith,

2021) and even to find the path for the facility staff to

travel with the minimum cumulative radiation dose within

nuclear facilities (Chen et al., 2020). Meanwhile, some

other research focus on attempting to solve multicriteria

decision problem such as to assess the security (Kumar et al.,

2021) (Kumar et al., 2021), durability (Sahu et al., 2020)

and reliability(Sahu et al., 2021) of software.

Some research focuses on finding and developing new

search algorithms or improving previously known

algorithms. Meister (2020) proposed best first beam

search, which is an upgrade from a basic Beam search that

is derived from Breadth-First Search. It is claimed to

perform ten times faster than basic Beam Search to solve

a decoding problem in a natural language processing task.

Hatem et al. (2018) propose a modification of the A*

search algorithm to solve large general-purpose problems

using parallel external memory and disk-based search.

Iordan (2019) investigates Chebyshev distance, Hamming

distance and Manhattan distance heuristic to improve the

A* search algorithm. Meanwhile, (Hu and Sturtevant,

2019) optimizes Breadth-First Search with an external

memory heuristic to build and store 5.8 trillion entries of

heuristic pattern to solve the Rubik’s Cube problem.

One of many ways to improve the performance of

search algorithms is by adding a heuristic function to

make the algorithm smarter by emulating the way humans

think. Chowdhary (2020) describes various search

algorithms that utilize heuristic, for instance, Hill-Climbing

search, A* Search and genetic algorithm-based search.

Some heuristics can be applied in real-time and (Ismail and

Agwu, 2019) have investigated the effect of heuristic

function properties on traditional and real-time

heuristic search methods.

Due to so many variations among search algorithm

and their enhancements, some studies have done

comparison studies to find the most effective and efficient

search algorithm. Pathak et al. (2018) compares

breadth-first search, depth first search, uniform cost

search, A* and greedy search based on their time and

space complexity, optimality and completeness. Iordan

(2016) and (Menon and Amali, 2018) compare various

search algorithms to solve the 8-puzzle problem. Iordan

(2016) measure the effective branching factor and

running time to solve the puzzle while (Menon and

Amali, 2018) focus on the number of nodes explored

and the time required to solve the puzzle.

Methodology

Eight-puzzle is a simple game consisting of eight tiles

that can be moved that are numbered 1 to 8 and placed on

a "floor" measuring 3 × 3 tiles. One of the tiles of the

"floor" is always empty and any tiles next to it

(horizontally or vertically) can be moved into that empty

tile. The object of the game is to start from a certain

Wahyu Hidayat et al. / Journal of Computer Science 2021, 17 (11): 1147.1156

DOI: 10.3844/jcssp.2021.1147.1156

1149

configuration and end it with the tiles lying in order

according to the number on them.

In this study, a various search algorithm is applied

to solve the 8-puzzle problem. We evaluate five search

algorithms, namely breadth-first search, depth-first

search, optimal search and best-first search using two

heuristic functions; mismatched tile and Manhattan

Distance function.

For each algorithm, the numbers of raised and

explored nodes are assessed and analyzed. The

distribution and the ratio of explored to raised nodes are

also assessed to measure the performance and efficiency

of each algorithm in terms of memory usage and

computational power requirements.

Breadth-First Search (BFS)

In the Breadth-First Search tracking method, all nodes

at level n will be expanded first before visiting nodes at

level n+1. Tracing starts from the root node is continued

at the first level from left to right, then moves to the next

level is done the same thing.

Each time a node is visited, the conditions at that node

are matched with the conditions in the goal state. If the

conditions at the visited node are different from the target

conditions, it means that a solution has not been found.

The tracking process is then carried out on all nodes to a

predetermined depth.

On the other hand, if the condition of the visited node

is the same as the target condition, it means that a solution

has been found and the tracking is stopped. The illustration

of the breadth-first search can be Fig. 1.

To apply the Breadth-First Search method, the

pseudo-code that is executed is as follows:

1. Give the starting node to the open list L

2. Loop: If the open list L is empty, then tracking is

stopped

3. Put n at the beginning of the open list L

4. If n is a goal, then the tracking has been

successful

5. Remove n from the open list L

6. Put n on the closed list C

7. Expand n. Give the tail an open list L of all child

nodes that have not appeared in open list L or

closed list C and assign a pointer to n

8. Back to Loop

Depth First Search (DFS)

In the depth first search tracking method, the tracking

process will be carried out on all the left nodes of the first

child before tracking to nodes of the same level. This

process is repeated to a certain depth. If the depth limit

has not been found, then the tracking is continued at the

node that is right next to it and has one parent with it. If

the node of one parent is exhausted, the trace continues to

the node that is right next to its current parent, as

illustrated in Fig. 2.

To apply the depth-first search method, the

pseudo-code that is executed is as follows:

1. Give the starting node to the open list L

2. Loop: If the open list L is empty, it means it failed

3. Put n at the beginning of the open list L

4. If n is a goal, then the tracking is successful

5. Remove n from the open list L

6. Expand n then assign all child nodes to the open head

and add a pointer from the nth-child node

7. Back to Loop

Optimal Search

Breadth-first search and depth-first search only track

based on the position of the child of each level in the tree

diagram. One strategy that can be used to improve this is

by prioritizing the nodes explored using additional

information. One of the additional information that can be

used for tracking is the cost function calculation. The

illustration of the optimal search method is shown in Fig. 3.

In this study, the cost function C is the sum of the node

depth and the number of nodes explored to get from the

initial state to the current node, computed as follows:

  pp
Cp depth E  (1)

where, p is a vector of the current state and Ep is the

number of nodes explored to get from the initial state to p.

Based on the cost value information obtained in Fig. 3,

the node chosen for the next situation is node N1, because

it has the lowest cost. To determine the next node, all

raised nodes are sorted in ascending order based on their

cost function value, calculated using Eq. 1.

The node that has the lowest total cost is selected. In

this case, N5 which has a total cost of 2+2 = 4 is chosen

as the next explored node. This is repeated until the

desired goal state is reached.

Best First Search

Best first search works very similarly with optimal

search, but with a fundamental difference. In best first search,

additional information that can be used to assist the tracking

process is not just the value of the cost. Another additional

information that can be used is the heuristic value.

Best first search tries to mimic and emulate the human's

approach in solving problems by using a heuristic function

that measures the likeliness of reaching the goal state from

the currently evaluated state. In this method, it is possible to

return to the previous state if a solution fails to be obtained.

This process is called the backtracking mechanism.

An example of a heuristic evaluation process of three

different states is given in Fig. 4.

Wahyu Hidayat et al. / Journal of Computer Science 2021, 17 (11): 1147.1156

DOI: 10.3844/jcssp.2021.1147.1156

1150

Fig. 1: Illustration of breadth-first search

Fig. 2: Illustration of depth first search

Fig. 3: Illustration of optimal search

Fig. 4: Illustration of best first search with heuristic function h

In this study, two different heuristic information

implemented to enhance the Best First Search algorithm

are (Russell and Norvig, 2020):

a) H1: The number of boxes that do not match the target

(mismatched tile), computed as follows:

 
1

,
n

i
m p q x


 (2)

where, p is a vector of the current state, q is a vector of the

goal state and x = 0 if pi = qi and x = 1 if pi ≠ qi

b) H2: The sum of the vertical and horizontal distances

of the boxes that do not match (Manhattan Distance)

computed as follows:

 
1

,
n

i
d p q qi pi


  (3)

where p is a vector of the current state, q is a vector of the

goal state and n = 9 since there are nine available positions

of tile in the 8-puzzle.

Based on the heuristic information obtained in Fig. 4,

the node selected for the next state is node N1. This

process is repeated until all nodes are found or all nodes

are examined to a predetermined depth.

By using the heuristic function, it is possible to return

to the previous state through a backtracking mechanism if

a solution fails to be obtained.

Test Scenario and Performance Metrics

We prepared a total of 30 eight-puzzle cases to solve
using five different algorithms. Each case has an initial
state in the form of a vector p that consists of nine puzzle
elements that are positioned randomly. Each initial state
is ensured to be able to reach its goal state, which is a vector
q that consists of nine puzzle elements with an arrangement
of 123456780. The limit of node explored is set to 1000 and
the limit of depth explored is set to 25 levels.

The total number of trials is 5 × 30 = 150 trials.
During each trial t, a linked list data structure is
constructed and the numbers of Add Head(), Add Tail()
and Get Head() operations performed in that linked list
determine how many Raised (Rt) and Explored (Et)
nodes during the search process:

t t tR AH AT  (4)

t tE GH (5)

where, AHt is the number of Add Head() operations, ATt is

the number of Add Tail() operations and GHt is the number

of Get Head() operations that is performed during trial t.
Similar to (Zhang et al., 2021) and (Iordan, 2018), in this

study, after the search algorithm has found a solution to solve
the problem, the number of raised nodes Rt and the number
of explored nodes Et are recorded. A ratio r of explored to
raised node for each trial is computed as follows:

Wahyu Hidayat et al. / Journal of Computer Science 2021, 17 (11): 1147.1156

DOI: 10.3844/jcssp.2021.1147.1156

1151

t
t

t

E
r

R
 (6)

To help visualize the distribution of each Et and Rt across

different trials and to detect outliers, all values of Et and Rt

are grouped and sorted in ascending order to construct a

boxplot diagram using the following quartile formula:

  1 1 / 4Q n thTerm  (7)

  2 1 / 2Q n thTerm  (8)

  3 1 / 4Q n thTerm  (9)

3 1IQR Q Q  (10)

where, Q1, Q2, Q3 and IQR are first quartile, second

quartile, third quartile and interquartile range,

respectively. Outliers are extreme values that are defined

as any value that falls below Q1 - 1.5 IQR or any value

that falls above Q3 + 1.5 IQR.

Results and Discussion

Our experiment results clearly show that on

average, best first search raised and explore fewer

nodes compared to Breadth-First Search, depth first

search and optimal search. Table 1 below shows the

number of raised nodes while Table 2 shows the

number of explored nodes.

The number of raised nodes correlated with memory

usage while the number of explored nodes correlated

with the number of operations done by the processor.

Thus, a significantly lower average number of raised

nodes means that both best first search using

mismatched tile and using Manhattan distance are far

superior to breadth-first search, depth first search and

optimal search in terms of memory usage. Additionally, an

also significantly lower average number of explored nodes

indicates that best first search outperforms other algorithms

in terms of computational power requirement.

Uninformed search algorithms generate high numbers

of raised and explored nodes but depth first search

performs worst in both memory usage and computational

power requirement. Meanwhile, best first search using

both Manhattan distance and mismatched tile heuristic

function perform best in both memory usage and

computational power requirement.

Figure 5 above shows the distribution of the number

of raised dan explored nodes in breadth-first search. It

shows the uneven distribution of both raised and explored

nodes, although the number of raised nodes seems to have

more variance than the number of explored nodes.

Both boxplots are heavily skewed to the lower

values while some outliers are detected at the top

values. These heavily skewed boxplots indicate that in

most cases, the number of raised and explored cases

tend to be on the lower side but the variance is quite

high and some occasional extreme values do occur,

confirming that breadth-first search somewhat gives

inconsistent results.

Figure 6 shows the uneven distribution of the number

of raised dan explored nodes in depth first search. While

breadth-first search shows a higher variance in the number

of raised nodes compared to explored nodes, depth first

search shows a similar variance between the number of

raised dan explored nodes.

The number of raised and explored cases in Depth

First Search tends to be on the lower side and although

the boxplots are still skewed, they are not as skewed as

in breadth-first search. Some extreme values are spotted

on the top values, but not as much as in breadth-first

search. These skewed boxplots indicate that depth first

search also gives some inconsistent results, but what

more important is the fact that depth first search has a

very wide boxplot, indicating a very high variance

among the results.

Figure 7 above shows the distribution of the number

of raised dan explored nodes in Optimal Search which is

quite similar to Breadth-First Search. It shows the uneven

distribution of both raised and explored nodes, where the

number of raised nodes seems to have more variance than

the number of explored nodes.

It also shows that the number of raised and explored cases

tend to be on the lower side but the variance is high and some

extreme values do occur, indicated by both boxplots that are

heavily skewed to the lower values and some outliers that are

caught at the top values. These heavily skewed boxplots

indicate that in most cases, optimal search somewhat gives

inconsistent results. This should be confirmed by further

research whether it is indeed caused by its cost function and

whether it could have been avoided by choosing a better-

suited cost function in optimal search.

Figure 8 above shows the distribution of the number

of raised dan explored nodes in best first search using the

mismatched tile heuristic function. Both boxplots are

narrow and show no significant skewness although some

outliers are spotted in the top and bottom values of the

number of raised nodes.

A narrow boxplot indicates that best first search

using the mismatched tile heuristic promises a stable

result across different test cases. Some outliers are

detected in the number of raised nodes, while no outliers

are found in the number of explored nodes, indicating that

best first search using the mismatched tile heuristic

delivers more consistent results in terms of computational

power requirements compared to its memory usage.

Wahyu Hidayat et al. / Journal of Computer Science 2021, 17 (11): 1147.1156

DOI: 10.3844/jcssp.2021.1147.1156

1152

Fig. 5: Distribution of raised and explored nodes in breadth-first

search

Fig. 6: Distribution of raised and explored nodes in depth first search

Fig. 7: Distribution of raised and explored nodes in optimal search

Fig. 8: Distribution of raised and explored nodes in best first

search using mismatched tile

Figure 9 shows the distribution of the number of raised

dan explored nodes in best first search using the

Manhattan distance heuristic function. Both boxplots are

narrower than the boxplots in the mismatched tile

heuristic function. However, more outliers are spotted,

both in the number of raised dan explored nodes. This

indicates that the Manhattan distance heuristic function

performs almost as well as mismatched tiles heuristic

functions, albeit a bit more inconsistent at times. Further

research with a larger number of cases and or improved

functions should confirm whether these inconsistencies

are permanent and/or avoidable.

To better illustrate the performance differences

among the five search algorithms, Fig.10 and 11 depict

the distribution of the number of raised and explored

nodes, respectively.

Figure10 shows that breadth-first search, depth first

search and optimal search raised significantly more nodes

than Best First Search. Both heuristic functions used in

Best First Search generate significantly fewer raised

nodes. The same thing also happened with the number

of explored nodes. Figure 11 shows that breadth-first

search, depth first search and optimal search explore

significantly more nodes than best first search. Both

heuristic functions used in Best First Search also

explore significantly fewer nodes.

Figure 10 and 11 reveal that uninformed search

algorithms tend to have significantly wider boxplots.

Uninformed search algorithms also appear with occasional

outliers detected, indicating high variance in the result and

somewhat inconsistent performances. Meanwhile, best first

search using both heuristic functions show narrow boxplots

and no outliers, confirming stable performance.

The comparison of the average number of raised and

explored nodes among different algorithms is presented in

the following Table 3.

Wahyu Hidayat et al. / Journal of Computer Science 2021, 17 (11): 1147.1156

DOI: 10.3844/jcssp.2021.1147.1156

1153

Fig. 9: Distribution of raised and explored nodes in best first

search using Manhattan distance

Fig. 10: Comparison of the distribution of the number of raised

nodes among different algorithms

Fig. 11: Comparison of the distribution of the number of raised

nodes

Fig. 12: The average number of raised and explored nodes

In general, all uninformed search algorithms raised
and explored more nodes than informed search with
heuristics. This confirms that the informed search
algorithm with heuristic is far more efficient than
uninformed search algorithms.

The ratio of explored to raised nodes in uninformed

search also low, meaning a smaller fraction of raised

Wahyu Hidayat et al. / Journal of Computer Science 2021, 17 (11): 1147.1156

DOI: 10.3844/jcssp.2021.1147.1156

1154

nodes is needed to be explored to solve the puzzle. This

confirms that in solving 8-puzzle, in general, uninformed

search performs worse than informed search with

heuristics, both in terms of memory usage and

computational power requirements.

Figure 12 shows the bar chart comparing the average

number of raised and explored nodes. It is clearly shown

that both best first search using mismatched tile and

Manhattan distance heuristic functions raised and

explored far fewer nodes compared to breadth-first

search, depth first search and optimal search. This verifies

that in terms of memory usage and computational power

requirements, informed search algorithms represented by

best first search significantly outperform breadth-first

search, depth first search and optimal search that represent

uninformed search algorithms.

To illustrate the efficiency, we calculate the

percentage of raised and explored nodes in the informed

search algorithm relative to uninformed search

algorithms. Table 4 and 5 present the average percentage

of raised and explored nodes in best first search using the

mismatched tile heuristic function and manhattan distance

heuristic function, respectively.

Table 4 shows that to solve the same 8-puzzle

problem, best first search with mismatched tile heuristic

function requires to raise only 4.92% nodes and explore

4.15% nodes compared to the uninformed search of

breadth-first search and depth first search.

Meanwhile, Table 5 shows that Best First Search with

Manhattan distance heuristic function requires to raise

only 5.73% nodes and explore 4.76% nodes compared to

the uninformed search of Breadth-first search and depth

first search. Therefore, on average, best first search

requires only 5.33% memory and 4.45% of computational

power required by uninformed search.

Table 1: Comparison among the number of raised nodes

 Number of raised nodes

Search algorithm min max average

Breadth first search 6 800 196.57
Depth first search 63 1602 328.87
Optimal search 6 800 196.57
Best first search (mismatched tile) 4 20 12.1
Best first search (Manhattan distance) 4 49 14.1

Table 2: Comparison among the number of explored nodes

 Number of explored nodes

Search algorithm min max average

Breadth-first search 3 291 70.87
Depth first search 27 1571 294.63
Optimal search 3 291 70.87
Best first search (mismatched tile) 2 8 4.73
Best first search (Manhattan distance) 2 18 5.43

Table 3: Comparison of the average number of raised and explored nodes among different algorithms

 Average number of Average number Average ratio of
Search algorithm raised nodes of explored nodes explored to raised nodes

Breadth-first search 196.57 70.87 0.368
Depth first search 328.87 294.63 0.748
Optimal search 196.57 70.87 0.368
Best first search (Mismatched tile) 12.10 4.73 0.399
Best first search (Manhattan distance) 14.10 5.43 0.396

Table 4: The average percentage of raised nodes in Best First Search using mismatched tile heuristic compared to uninformed search

Best first search (mismatched The average percentage The average percentage

tile) compared to of raised nodes of explored nodes

Breadth first search 6.16% 6.68%

Depth first search 3.68% 1.61%

Table 5: The average percentage of raised nodes in best first search using Manhattan distance heuristic compared to uninformed search

Best first search (Manhattan The average percentage The average percentage
tile) compared to of raised nodes of explored nodes

Breadth first search 7.17% 7.67%
Depth first Search 4.29% 1.84%

Wahyu Hidayat et al. / Journal of Computer Science 2021, 17 (11): 1147.1156

DOI: 10.3844/jcssp.2021.1147.1156

1155

Conclusion and Future Work

Our research findings clearly show that to solve 8-puzzle,
in terms of memory usage and computational power
requirements, informed search algorithms represented by
best first search significantly outperform breadth-first
search, depth first search and optimal search that represent
uninformed search algorithms. All uninformed search

algorithms raised and explored more nodes than informed
search with heuristics. The ratio of explored to raised
nodes in uninformed search also low, meaning informed
search requires a smaller fraction of raised nodes to be
explored to solve the puzzle.

Our experiment shows that uninformed search
algorithms deliver inconsistent performance. In most
Breadth-First Search cases, the number of raised and
explored cases tend to be on the lower side but the
variance is quite high and some occasional extreme values
do occur, confirming that breadth-first search somewhat
gives inconsistent results. Depth first search performs
worst in both memory usage and computational power
requirement. Depth first search also delivers a very high
variance among the results, indicating inconsistent results.
Optimal Search performs similarly with breadth-first
search, where the number of raised and explored cases
tend to be on the lower side, high variance and some
extreme values do occur, indicating inconsistent results.

On contrary, in informed search algorithms, best first

search using the mismatched tile heuristic delivers

consistent results in terms of computational power

requirements compared to its memory usage. Meanwhile,

Best First Search using the Manhattan distance heuristic

performs almost as well as mismatched tiles heuristic

functions, albeit a bit more inconsistent at times.

This study is limited by a single cost function

implemented in optimal search. This might lead to

optimal search somewhat gives inconsistent results.

Further research whether it is indeed to verify whether

it is caused by its cost function and whether it could

have been avoided by choosing a better-suited cost

function in optimal search.

Additionally, further research with a larger number

of cases and or improved functions should confirm

whether some slight inconsistencies in best first search

using the Manhattan distance heuristic are permanent

and/or avoidable.

Acknowledgment

We thank all members of Applied Information System

(AIS) research groups and all System Information

laboratory staff for their support.

Funding

This research was funded by Telkom University grant

number PDT 2021-1.

Author’s Contributions

Wahyu Hidayat: Collecting relevant literature,

interpreting and analyzing test results, drafting and

revising manuscript contents.

Fitri Susanti: Conducting test and reporting test

results, reviewing manuscript contents.

Dedy Rahman Wijaya: Supervising and reviewing

manuscript contents.

Ethics

We confirm that we have read and approved the

manuscript and no ethical issues are involved.

References

Ada, A. H. D., Cortez, I. P. Q., Juvida, X. A. S.,

Linsangan, N. B., & Magwili, G. V. Dynamic Route

Optimization using A* Algorithm with Heuristic

Technique for a Grocery Store. In 2019 IEEE 11th

International Conference on Humanoid,

Nanotechnology, Information Technology,

Communication and Control, Environment and

Management (HNICEM) (pp. 1-6). IEEE.

 doi.org/10.1109/HNICEM48295.2019.9072759

Chen, C., Cai, J., Wang, Z., Chen, F., & Yi, W. (2020).

An improved A* algorithm for searching the

minimum dose path in nuclear facilities. Progress in

Nuclear Energy, 126, 103394.

 doi.org/10.1016/j.pnucene.2020.103394

Chowdhary, K. R. (2020). Fundamentals of artificial

intelligence. Springer Nature.

 doi.org/10.1007/978-81-322-3972-7_9

Debnath, S. K., Omar, R., Latip, N. B. A., Shelyna, S.,

Nadira, E., Melor, C. K. N. C. K., ... & Natarajan, E.

(2019). A review on graph search algorithms for

optimal energy efficient path planning for an

unmanned air vehicle. Indonesian Journal of

Electrical Engineering and Computer Science, 15(2),

743-749. doi.org/10.11591/ijeecs.v15.i2.pp743-749

Hatem, M., Burns, E., & Ruml, W. (2018). Solving Large

Problems with Heuristic Search: General-Purpose

Parallel External-Memory Search. Journal of

Artificial Intelligence Research, 62, 233-268.

 doi.org/10.1613/jair.1.11209

Hu, S., & Sturtevant, N. R. (2019). Direction-optimizing

breadth-first search with external memory storage.

IJCAI International Joint Conference on Artificial

Intelligence, 2019-Augus, 1258-1264.

 doi.org/10.24963/ijcai.2019/175

Hutahaean, H. D. (2018). Penerapan Metode Best first

search Pada Permainan Tic Tac Toe. Jurnal Mantik

Penusa, 2(2). doi.org/10.47709/cnapc.v1i1.3

Wahyu Hidayat et al. / Journal of Computer Science 2021, 17 (11): 1147.1156

DOI: 10.3844/jcssp.2021.1147.1156

1156

Iordan, A. E. (2018). A comparative study of the A*

heuristic search algorithm used to solve efficiently a

puzzle game. In IOP Conference Series: Materials

Science and Engineering (Vol. 294, No. 1, p.

012049). IOP Publishing.

 doi.org/10.1088/1757-899X/294/1/012049

Iordan, A. E. (2019). Comparative Analysis of Four

Heuristic Functions that Optimizes the A* Search

Algorithm. doi.org/10.9734/bpi/amacs/v2

Iordan, A. E. (2016). A Comparative Study of Three

Heuristic Functions Used to Solve the 8-Puzzle.

British Journal of Mathematics & Computer Science,

16(1), 1-18. doi.org/10.9734/bjmcs/2016/24467

Ismail, I. M., & Agwu, N. N. (2019, February 4).

Influence of heuristic functions on real-time heuristic

search methods. 14th International Conference on

Electronics Computer and Computation, ICECCO

2018. doi.org/10.1109/ICECCO.2018.8634782

Kumar, R., Jamal Ansari, M. T., Baz, A., Alhakami, H.,

Agrawal, A., & Khan, R. A. (2021). A multi-perspective

benchmarking framework for estimating usable-

security of hospital management system software

based on fuzzy logic, ANP and TOPSIS methods.

KSII Transactions on Internet and Information

Systems, 15(1), 240–263.

 doi.org/10.3837/TIIS.2021.01.014

Lu, Y. (2019). Artificial intelligence: A survey on

evolution, models, applications and future trends.

Journal of Management Analytics, 6(1), 1-29.

doi.org/10.1080/23270012.2019.1570365

Meister, C. (2020). Best-First Beam Search. Transactions

of the Association for Computational Linguistics, 8,

795–809. doi.org/10.1162/tacl a 00346

Menon, V., & Amali, G. B. (2018). Performance Analysis

of Various Uninformed and Informed Search

Strategies on 8 Puzzle Problems - A Case Study.

World Wide Journal of Multidisciplinary Research

and Development, 4(12), 96–99.

Navya, P., & Ranjith, R. (2021). Performance Analysis of

BFS and DFS Algorithms for Food Serving Robot in

an Eatery Performance Analysis of BFS and DFS

Algorithms for Food Serving Robot in an Eatery.

EasyChair Preprints, 5638.

 https://easychair.org/publications/preprint/zVBw

Pathak, M. L., Patel, R. L., & Rami, S. P. (2018).

Comparative Analysis of Search Algorithms.

International Journal of Computer Applications,

179(50), 40-43. doi.org/10.5120/ijca2018917358

Rahim, R., Abdullah, D., Simarmata, J., Pranolo, A., Ahmar,

A. S., Hidayat, R., ... & Zamzami, Z. (2018a). Block

Architecture Problem with Depth First Search Solution

and Its Application. In Journal of Physics: Conference

Series (Vol. 954, No. 1, p. 012006). IOP Publishing.

doi.org/10.1088/1742-6596/954/1/012006

Rahim, R., Kurniasih, N., Hasibuan, A. andriany, L.,

Najmurrokhman, A., Supriyanto, S., ... & Abdullah,

D. (2018b). Congklak, a traditional game solution

approach with breadth first search. In MATEC Web

of Conferences (Vol. 197, p. 03007). EDP Sciences.

doi.org/10.1051/matecconf/201819703007

Russell, S., & Norvig, P. (2020). Artificial Intelligence:

A Modern Approach (4th ed.). Prentice Hall.

Sahu, K., Alzahrani, F. A., Srivastava, R. K., & Kumar, R.

(2020). Hesitant fuzzy sets based symmetrical model of

decision-making for estimating the durability of Web

application. Symmetry, 12(11), 1770.

 doi.org/10.3390/SYM12111770

Sahu, K., Alzahrani, F. A., Srivastava, R. K., & Kumar,

R. (2021). Evaluating the Impact of Prediction

Techniques: Software Reliability Perspective.

CMC-Computers Materials & Continua, 67(2),

1471-1488. doi.org/10.32604/cmc.2021.014868

Zafar, A., Agrawal, K. K., & Kumar, W. C. A. (2018).

Analysis of multiple shortest path finding

algorithm in novel gaming scenario. In Intelligent

Communication, Control and Devices (pp.

1267-1274). Springer, Singapore.

 doi.org/10.1007/978-981-10-5903-2_132

Zhang, W., Sauppe, J. J., & Jacobson, S. H. (2021).

Comparison of the number of nodes explored by

cyclic best first search with depth contour and best

first search. Computers & Operations Research, 126,

105-129. doi.org/10.1016/j.cor.2020.105129

