

 © 2021 Faisal Nabi, Jianming Yong, Xiaohui Tao, Muhammad Farhan and Nauman Naseem. This open access article

is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Review

Organizing Classification of Application Logic Attacks in

Component-based E-Commerce Systems

1Faisal Nabi, 2Jianming Yong, 3Xiaohui Tao, 4Muhammad Farhan and 5Nauman Naseem

1CIS, University of Southern Queensland, Australia
2CIS, USQ, Australia
3CS, USQ, Australia
4,5school of IT and Engineering, MIT, Australia

Article history

Received: 06-02-2021

Revised: 12-04-2021

Accepted: 27-05-2021

Corresponding Author:

Faisal Nabi

School of Management and

Enterprise, University of

Southern Queensland1West St,

Darling Heights QLD 4350,

Australia

Email: faisal.nabi@yahoo.com

Abstract: This research paper addresses the topic of application logic

attack taxonomy that is due to unclear and incorrect implementation in

component-based applications. The issue addresses the detection and

classification of two separate types of vulnerabilities in component-based

applications. The paper completes this aim through organising the

classification of each attack and then proposes the classification of

logical vulnerabilities and discusses the two distinct forms of weakness

and coding faults in the application software found in the mid-level of

the framework. The most important argument is to desegregate awareness

of attack patterns with boundary profile status relevant to an application

logic vulnerability and possible threats. Having review of two different

types of attack taxonomies, a logical vulnerability classification based

taxonomy is proposed.

Keywords: E-Commerce, Web Software Application, CBS Design Flaws,

Logical Attack, Vulnerability and Taxonomy, Software Security Flaw

Introduction

The implementation of advanced mechanisms for

managing asynchronous events in web browsers and the

advent of many frameworks for rapid prototyping of

server-side components have been stimulated by the

growth of emerging technologies and the shift from

'conditional' applications to Internet-based platforms

(e.g., mail readers). Although new technologies have

given significant funding, development, productivity and

interoperability advantages, little has been done to fix

security concerns. As a consequence, the web applications

become more complex, the risk of abuse is increasing

(Firesmith, 2005). The risk of violence also increases. An

overview of the CVE vulnerability database, for example,

reveals that web-based attacks rose from 25% in 2017 to

61% in 2018. The fact that component-based applications

are typically accessible through designer firewalls makes

it possible for developers with insufficient software

protection to build server-side logic more widely under

time-to-market pressure. As a result, web applications that

are unsafe created and made available over the Internet,

making it simple to exploit (Nabi and Nabi, 2017).

The use of best practises in industrial fields such as

firewalls, encryption (SSL/TSL), vulnerability scan,

security monitoring, etc. (e.g., intrusion, white box and

black box) has historically been promoted by security

engineering in existing systems to insure proper security.

Many security papers and books are unable to provide

much detail on the e-commerce framework's security

specifications and most of what is written seems to stress

the concept of ambiguous security objectives or

concentrate on architectural constraints. Usually is either

the amount required of a stated particular type of

security or the safety implications of non-security

Normally, either the amount appropriate to a given

security form or the safety effects of non-security

specifications are addressed in security processes. Cyber

attacks are essential to any component-based security

assessment of e-commerce application. In this context,

the characteriszation and classification of vulnerabilities is

one of the most important fields of study. Several models

suggest defining them; such models usually generally

describe attacks (Nabi and Nabi, 2017) In addition,

experience shows that attack profiles are highly dependent

on multiple frontier conditions. This study addresses the

problem of the absence of coherent vulnerabilities and

Faisal Nabi et al. / Journal of Computer Science 2021, 17 (11): 1046.1058

DOI: 10.3844/jcssp.2021.1046.1058

1047

taxonomies to identify and classify two distinct

vulnerability classes in the CSB's web-based e-commerce.

This is achieved by organizing the critical

classifications that suggest the classification of logical

vulnerabilities centred on design faults versus

technological faults focused on web application

deficiencies and defects at the implementation level from

a security evaluation perspective of component-based

software applications. Our research methodology relies

on grouping that separates or orders the component-based

software applications Classifications can be established as

either a priority (i.e., non-empirical from an abstract

model) or Posteriori Empirical by evaluating the CVE

vulnerability database for security breach cases.

Research Background

A taxonomy of recurrent vulnerabilities may contribute

to the organisation of today's safety-enhancing knowledge.

To detect possible attacks on web application software

before it is published to consumers; advanced awareness of

vulnerabilities can be useful. We reviewed 25 taxonomies

from 1974 to 2017 and analysed different levels of

vulnerabilities, property taxonomies, web application

vulnerabilities, network vulnerability taxonomy and

software vulnerability taxonomy of e-commerce threat

classifications before restricting the main scope of this

study to address the logical problems of the web software

application due to mismatch between design and

architecture. However, it depends on web software

application during development. Our attack patterns are

more detailed to which components could recognise a

device design vulnerability.

Most taxonomies have four hierarchical groups within

the taxonomy: Structural flaws, environmental

deficiencies and codes. We contrasted our taxonomy with

the environmental defect class, which is intended to

infringe the environmental standards of programmers and

their software weakness.

Since most (Nabi and Nabi, 2017) researchers did not

find any information on the design vulnerabilities in real-

time, they could not provide any information on this

vulnerability and its attack classifications.

Research Methodology

Our main objective is to develop the taxonomy of

logical weakness in the application layer of distributed

multiple-tier e-commerce systems, as stated in the

introduction. There are several methodologies to assess

the security of information communication technical

infrastructure that are developed in various papers and

texts, which provide a launchpad into an e-commerce

system. We have selected Masera and Nai methodology

2005 as a guide to support our methodology. The authors

present in Masera et al. (2005) a risk management method

for the assessment of complex ICT systems. This

approach accepts the fact that a description of the

function, components, properties and the relationship

between components, assets and the outside world should

be first given for the safety evaluation of a system. This

can be used to identify defects that influence the system

as a whole systematically.

Our research methodology is also focused on the

Posteriori Empirical study of CVE vulnerability database

data from various levels of e-commerce categories of

web-based applications and systems (B2B) and (B2c)

from 2002 to 2017. Specific groups of single

characteristics are used with a set of taxonomic characters

that meet the classification needs of subjective decisions.

These classifications are simplest and require a clear

selection criterion for individuals to be grouped. For

instance, group programmes use encryption or not in their

language of programming. The evaluation of potential

damage to the components, their propagation to the

sys-tem and subsequent attack patterns can be extracted

from the evaluation of this information.

As described above, web applications and systems for

e-commerce and those elements that form the basis of our

methodology are strongly linked to a set of traditional

computer security principles, particularly the "five

pillars." We also developed a Security Vulnerability

Evaluation Model focused on "Five Pillar" Computer

Security Elements for component-based e-Commerce

software applications and systems. This enables

vulnerability to be identified and attacks to patterns that

lead to our main goal of classifying logical vulnerabilities

(Moore et al., 2001).

In the other hand, technological flaws are due to

mistake, fault and bug coding at implementation level

for a software development framework. During such a

process, they can be patched. Furthermore, the use of

vulnerability analysis software and web application

scanning tools is difficult to repair or identify faults in

design. Therefore, no taxonomy provides details on the

logical danger of the application layer targeting attacks

and patterns related to vulnerabilities and attacks in the

mid-level business application logic (the n-tier

e-commerce system).

In component Web Applications and Systems, we

propose the SVAM for the main computer protection

attributes 'Five Columns,' as mentioned, showing the life

cycle of the vulnerability and classifying the key point

where the vulnerability covers two or more delicate

vulnerability classes, such as 'Technical and Logical., as

defined in Fig. 1.

Faisal Nabi et al. / Journal of Computer Science 2021, 17 (11): 1046.1058

DOI: 10.3844/jcssp.2021.1046.1058

1048

Fig. 1: SVAM model

Related Research Work and Taxonomic

Properties

The theoretical analyses are categorised into

taxonomy (Simpson, 1945; Moore et al., 2001;

Masera et al., 2005), including their base, principles

and procedures and standards. The grouping and/or

arrangement of objects (or specimens) into groups is a

classification. Non-empirically generated

classifications are known as priori classifications.

Empirically generated classifications are called

subsequent classifications by analysing the data.

Objects, Attributes and Constraints of a System

Object: An object is an "entity" that provides or

receives information and possesses a unique name and a

collection of operations on it (Longley and Shain, 1990).

Attribute of Object: An object attribute is an object's

data component and a derived attribute from another

attribute is a later attribute's data component.

Property of Attribute: The attribute property is a

property of the attribute, which can be obtained from the

attribute by applying a function to the attribute.

Attribute refinement: An attribute refinment is a final

refining of attributes wherein larger attributes that

contributes to the identification of attributes with

assumptions. The refinement attribute can-not contain an

attribute element. The refinement attribute can't contain

an attribute property.

Attribute Constraint: The Constraint attribute defines

the ownership or collection of assumptions regarding this

particular attribute.

Table 1 defines attack pattern properties.

Faisal Nabi et al. / Journal of Computer Science 2021, 17 (11): 1046.1058

DOI: 10.3844/jcssp.2021.1046.1058

1049

Table 1: Attack pattern properties

Pattern name and classification A unique, descriptive identifier for the pattern

Attack prerequisites What conditions must exist or what functionality and what characteristics must the target

 Software has, or what behaviour must it exhibit, for this attack to succeed?

Description A summary of the assault including the course of action

Related vulnerabilities or weaknesses What specific vulnerabilities or weaknesses.

Method of attack Which sort of attack vector utilized (e.g., malicious data entry, maliciously crafted file,

 Protocol corruption)?

Taxonomic Characters, Object Attributes or Features

The basis for determining a positive classification is

the taxonomic character (Simpson, 1961; Glass and

Vessey, 1995). These are the characteristics or attributes

of the objects. These characters are sometimes referred to

as characteristics, attributes or features (Simpson, 1961).

Asserts the readiness and objectivity of these properties

from the relevant objects.

Concept of Attack Pattern

An assault pattern is the abstraction mechanism to

describe how an assault is carried out. It also describes the

context in accordance with the pattern model where

appropriate and then proposes, proposed ways to mitigate

the attack rather than conventional patterns. In other words,

a pattern of attack is an inference. In a pattern of attack, the

following information is typically given.
With regard to the above-mentioned theory and

concepts, discussion and references are based on
principles, procedures and rules concerning the
taxonomic classification of system objects, attributes,
properties and characteristics. We want to first describe
clearly the vulnerability of web software applications
before moving towards a taxonomic contribution focused
on classification and characteriszation of two separate
vulnerability categories (Technical vs Logical).

Web Software Application Vulnerability

"The weakness of the Web application software
includes misalignment between the application logic and
environmental assumptions taken up in
development/execution (code written) and the environment
within which it is run," we define vulnerabilities in Web
Application software (Nabi, 2011).

Taxonomy of Computer Program Security Flaws

A flaw can be defined as malicious or not.

Malicious Flaws

Implemented to cause a breach of the protection

deliberately, such as viruses, worms, Trojan-based horses,

time bombs and coded trap doors (Landwher et al., 1993).

Non-malicious Flaws: Incorporated due to missing

specifications or design logic mistake.

During the software life cycle, programmes are graded

by the time they are incorporated into the programme.

Defaults during development, repair or service are part of

the implementation time.

Flaws are concerns that arise in software design. A

vulnerability may be a flaw in the software runtime

environment. In general, mitigating a defect requires

much more work than just a few lines of code. The

concern is not just about implementation; the idea behind

it is flawed and that is why it is not implemented For

example, a design flaw that does not mitigate a simple

action such as changes in array boundary (Nabi, 2005) is

a sensitive business logic for an untrusted customer

application (Nabi, 2005; 2011).

A Taxonomy of Security Faults

Many classification schemes for security faults have

been suggested that categorise faults by different criteria

as shown in Fig. 2 (Krsul, 1998; Aslam, 1995):

 Coding faults are composed of faults in the software

development process that are introduced during

software development. These faults are the cause of

errors in programming logic and missing or incorrect

requirements

 Operational faults Operational faults are called

incorrect software deployment. In most situations,

failures can be categorized as operational faults

(Aslam, 1995)

 Environment faults occur when a programmer does

not completely understand the limitations of the

usable right modules or the interactions between

them (Krsul, 1998)

A Taxonomy of Security Error, Faults and Failures

Error: An error is a developer mistake. It could be a

typographical error, misinterpreting a specification, misu

nderstanding, etc. (ANSI/IEEE, 1990).

“An error can be the cause of one or more faults”

Fault: Defects can be found in the software code. In

particular, the discrepancy between incorrect programming

and the correct version (ANSI/IEEE, 1990).

Failures: Faulty code execution can lead to null or

more failures when the failure is the [non-empty]

difference between the incorrect and correct programme

results (ANSI/IEEE, 1990).

Faisal Nabi et al. / Journal of Computer Science 2021, 17 (11): 1046.1058

DOI: 10.3844/jcssp.2021.1046.1058

1050

Fig. 2: Taxonomy of Software Vulnerabilities causes

Previous Research Work and Classifications

A detailed understanding of vulnerabilities can help

to detect possible attacks on a software programme

before they are published to customers. A taxonomy of

recurring vulnerabilities can help navigate the details

required to increase safety awareness. Between 1974 and

2018, we analysed 21 taxonomies and assessed various

levels of vulnerability, classified property taxonomies of

e-commerce risks, web application vulnerabilities,

network vulnerability taxonomy and software

vulnerability taxonomy before restricting the key scope

of the analysis to logical attack problems. This is due to

a flaw between design and architecture when designing

an application with web software.

Taxonomic Classification and Review based

Comparison

McPhee (1974) proposed the classification of

vulnerability that falls under the category of Design flaw

vulnerability, the object of the vulnerability is targeting

operating system flaws.

Abbott et al. (1976) focus on Layered operation and

features that also consider the reason is based on operating

system flaws. So this taxonomy is operating system-oriented.

Bisbey and Hollingsworth (1978) Taxonomy is also

single dimension targeting operating system based

abstract pattern from flaw and automated search flaw.

This taxonomy is also operating system-oriented.

Aslam (1995) explained the UNIX security flaw that

targets the database vulnerability organization. Overall it

is operating system-oriented vulnerability.

Landwher et al. (1993) explain the taxonomy of

Operating System Flaws categorized vulnerability based

on Genesis, Time of introduction and location.

Bishop (1995) explained the UNIX System and
Network Vulnerabilities that focus on Effect, Minimum
number of components, Source of ID.

Gray (2003) explained the layer-based vulnerability in

network operational system.
Jiwnani and Zelkowitz (2004) explained the software

flaws in the software development process. This
taxonomy is three dimensional.

Pothamsetty and Akyol (2004) explained the Layered
based vulnerability targeting the network operational
protocol vulnerability.

Tsipenyuk (2005) multi-dimensional coding error-
based vulnerability that causes software errors.

Weber et al. (2005) focused on also a layer-based
software flaw that generates coding analysis and tool-
based detection.

Kjaerland (2006) four-dimensional taxonomy
explaining the Method of operation and impact of
intrusion and its detection.

Bazaz and Arthur (2007) explained the Hierarchical
vulnerability taxonomy targeting computer sources and its
relation to vulnerability.

Igure and Williams (2008) explained the vulnerability
class multi-dimensional attack on computer system
resources and process of vulnerability.

Simmons et al. (2009) explains five-dimensional
network taxonomy focusses on the attack vector,
operational process and defense.

Cebula and Young (2010) Hierarchical taxonomy
explaining the cyber-attacks and its process to generate
vulnerability that cause attacks in the system.

Scott and Angelos (2013) this Hierarchical Network

Taxonomy explains the Explore the relationship

between events.

Joshi and Singh (2014) five-dimensional taxonomy

focusing on attack entity, defence method and target,

impact, which explains the nature of the attack.

Faisal Nabi et al. / Journal of Computer Science 2021, 17 (11): 1046.1058

DOI: 10.3844/jcssp.2021.1046.1058

1051

Joshi et al. (2015) review the existing taxonomies
related to computer attacks and vulnerability in the
system. This mostly, targets the network-based
vulnerability detection method overview.

Li et al. (2017) represented the software-based
vulnerabilities and propose the model to mitigate the
software vulnerability issues.

Chen et al. (2018) explained the Taxonomy of

Internet-of-Things Security and Vulnerabilities that

address that internet of things security wholes and related

vulnerabilities in the system and applications.

Overall Review and Comparison

There is a number of vulnerabilities and attacks noted

previous taxonomies which most do not concentrate on

logical software vulnerabilities. This difference clearly

identifies the needs for a systematic model and

classification of these groups into class vulnerability

against technological vulnerability. Therefore, through

the vulnerability life cycle in background software

process model, we introduced a new taxonomy and its

implementation life cycle. This model demonstrates

clearly the birth and life cycle of vulnerability.

Classification of Security Threats in e-Commerce

Generally, structural analysis allows a phenomenon to

be classified. In particular, a formal e-commerce threat

classification would allow managers to develop less

fragile system (Álvarez and Petrović, 2003). The

following classification properties are recommended for

reporting accidents to incident response teams.

 The categories should be mutually exclusive

(maximum one for each category) and collectively

complete (each specimen should be at least one

category). The various categories should be mutually

exclusive (one category should be the most suitable

for all specimens) and uniformly exhaustive (all

specimens should fit in at least one category). In

addition, the types should be mutually exclusive

 In each category should be included specific and clear

criteria for the specimens to be included in the category

 Not only security experts but also less qualified and

seasoned users and administrators can benefit from

intuitive and useful taxonomy

 The terminology of taxonomy should comply with

existing safety terminology (which can not always be

defined easily)

Classification of Web Taxonomy

Chirs and Frank (2005): Addressed a methodology for

vulnerability taxonomization and an example of web

services, WS architectural model of four components and

their connections. It addresses two subclasses. 'Input

Format and Input Origin' then contains attack flows based

on a category of border state error, which is exceeding an

unforeseenly long input that executes arbitrary code from

an attacker (programme written in C or C++). (Format and

Input Origin). The authorship is the proposed Result

Matrix, which is the same that (Aslam, 1995; Krsul, 1998)

classifications and almost a copy thereof.

Álvarez and Petrović (2003): Entered the web attack

taxonomy. Specific web categories are entry point, aim,

HTTP verbs and HTTP headers, which are not covered by

general taxonomies and are considered important for the

precise classification of Web attacks. However, other

types, such as vulnerability to site-specified values (e.g.,

code injection, HTML handling, etc.), will usually face

taxonomies, canonicalization, overload and misspellings.

Alvares differentiated & ordered the taxonomy from the

point of view of the attacker. The author clarified that

because of two vulnerability errors, an attacker might get

access to a point that should be a web server or web

application entry point looking for an attack.

Fig. 3: Web attacks taxonomy (Álvarez and Petrović, 2003)

Faisal Nabi et al. / Journal of Computer Science 2021, 17 (11): 1046.1058

DOI: 10.3844/jcssp.2021.1046.1058

1052

It reflects the widespread life cycle of a hacker attack

based on the HTTP as shown on the Fig. 3. It is also

incomplete taxonomy and cannot be called a classification

scheme. Since attack patterns cannot be categorised, (Krsul,

1998; Aslam, 1996), classified the classification of

vulnerabilities and their characteriszation by their attributes.

Proposed Classification and Types of Logic

Attacks

There are different types of logical attacks every time

and a particular application function/method must be used

for taxonomy. The logical attacks are designed to interrupt

the application's logical flow. The logic of

implementation is the logical flow that a certain procedure

is supposed to be carried out. The software logic contains

examples of password recovery, account registration,

auction requests and transactions for e-commerce. A

website may provide a consumer with a multi-stage

process to carry out a certain action properly. An attacker

can bypass or use these features to cause website or users

damage. As previously stated, the study focuses on the

problem of "application logic-based vulnerabilities" as

design and architecture differ during development of

web applications. In the application logic, we find

seven faults/flaws as illustrated in Fig. 4 and then a

case that endorse Taxonomy as a source of reference

faults for design faults.

In each type of attack, the attack pattern and target

agent define the proposed taxonomy contribution. As

above, graphical attack pattern methods and vulnerability

classes based on application logic are logical presentation

as defined in Fig 5. This is further used to categorise each

vulnerability because of an attack process, characterised

in-group of attacking parameters that determine the

essence of the vulnerability.

Case as a Reference: Mars Polar Landing Mission

(NASA) Dec 3, 1999

The case for component-based systems and their

implementations is discussed here as a reference. The case

describes one of the classifications identified above of

system composition failures or defects while NASA,

USA, takes the component-based approach for

mission-critical system development.

Reason of Project Failure

Touchdown Monitor (TDM) component failed to co

mply with the requirements contrasted with its functional

 specification based on the specification integration via c

ontract interface, which led to an MPL device design def

ault and task failure.

Requirement Modeled of TDM

TDM component is an MPL system software which

monitors three landing legs during two downward stages.

Logical Component Information Processing

The Multi-Task Monitoring Calls TDM module

receives information from the second module on the leg

sensors at 100 times per second. TDM software tracks the

three touchdown legs during the first process, which

begins at 5 KM above Mars’ Surface.

Fig. 4: Application Logic Vulnerbility Graph

Faisal Nabi et al. / Journal of Computer Science 2021, 17 (11): 1046.1058

DOI: 10.3844/jcssp.2021.1046.1058

1053

Fig. 5: Characterization of vulnerability

Application Logic of Component

Start reading at First Stage at about 5 km above the

surface of Mars, TDM tracks the touchdown legs,

one sensor per leg to assess touchdown.

Processing Logic Design

Developer assumed that a known possibility sensor

could indicate wrong touchdown signals if-the legs locked

in the deployed position. TDM software had to handle this

Faisal Nabi et al. / Journal of Computer Science 2021, 17 (11): 1046.1058

DOI: 10.3844/jcssp.2021.1046.1058

1054

possible event with a-marking leg that generates a

spurious signal with an inappropriate sensor on 2

consecutive sensor readings.

Second Stage

TDM was to track the remainder of the good sensor at

around 40 m above the surface. When a sensor had two

consecutive Touchdown reading, the TDM programme

was instructed to shut down the downwind engine.

What Happened?

One or more of the sensors had 2 consecutive readings

in TDM Component Memory before 40 m, leg-sensor

information was processed. When MPL crossed the 40 m

level, during the first step of descent, TDM changed states

and read the storage associated with the leg sensor.

Shutdown Engine effect.

Scientific Justification

A developer can design and enforce the requirement in

various ways, but the nature of a design failure is that

components cause (pre-conditioning, post-condition and

invariant) infringements in performing the condition of

bad data held by software variables (Chen et al., 2018).

Therefore, it has been shown that the problem is not in

implementation logic but in design through the

application logic technique related to the logical

component and its requirement specification rather than a

more functional interface specification integration, which

resulted in a design defect in the MPL framework and

task. This defect's classification is therefore defined as a

design defect, which is a logical defect identified by our

vulnerability classification through SVAM (Fig. 1).

Logical vs Technical Vulnerability Classification

In view of our study, we would like to suggest a

classification and characteriszation of the two categories

of vulnerability problems/issues mentioned above

(Technical Vs Logical Vulnerabilities). These are

categorised as stated above in the classification of each

weakness on the basis of their attack process (attack

pattern technique). Therefore, by retaining the

classification of two separate vulnerability types, we have

drawn up a classification tree where all sub-class attacks

under each vulnerability class are included. A new

taxonomy is shown here with a detailed classification and

distinguished by its distinctive signature in the application

layer of e-commerce systems. As it is stated in Fig. 6.

Fig. 6: Logical vulnerabilities Vs technical vulnerabilities

Faisal Nabi et al. / Journal of Computer Science 2021, 17 (11): 1046.1058

DOI: 10.3844/jcssp.2021.1046.1058

1055

Fig. 7: Vulnerability mitigating in context software design assurance phase process

Mitigation Process in Context SDLC

Attack patterns identify typical methods of software

operation. They are derived from a model proposed by the

design pattern framework (Li et al., 2017) that clearly

shows the stages of two distinct life cycles of vulnerability,

as shown in Fig. 7. The concept derived from (Joshi et al.,

2015) that one describes design and architecture, another one

shows implementation level, each stage shows two separate

causes of vulnerability, such as the design phase refers to a

design flaw and architectural flaw and flaws, bugs & errors

are seen in the implementation phase. By mismatching a

collection of components in a system design that allows the

sequence of events occurring in the attack pattern, allows the

vulnerability detecting approach is achieved. The proposed

model also presents extensive information on all protected

system development processes at the design and

implementation levels and describes both the two distinct

types of vulnerabilities. This helps to understand two distinct

life cycles of vulnerability and therefore points out the

closeness as stated in the Fig. 7.

Conclusion

For software developers a taxonomy is the footprint

for safe system design (Johnson et al., 1995). The

approach taken in this article focuses in the

characteriszation and classification of vulnerabilities of

Faisal Nabi et al. / Journal of Computer Science 2021, 17 (11): 1046.1058

DOI: 10.3844/jcssp.2021.1046.1058

1056

component-based web-e-commerce applications and of

logical vulnerabilities. As a result, safety awareness is

increased at the outset of the development process by

incorporating the proposed approach and procedure into

the design phase. Risk management is required to begin

early on so that the protection team can evaluate how the

application logic has been strengthened. In the component

development software model, we also categorised the two

separate vulnerabilities and showed the birth of attack

designs because of vulnerability at the various phases of

the development cycle, which are helpful for developers

in the adoption of protection through design technologies

during software design.

Acknowledgment

This work is based on a Research in Australia cyber

Banking e-commerce security Busniess logic issues.

Author’s Contributions

All authors equally contributed in this work.

Declaration of Interest

 The authors declare that they have no known

competing financial interests or personal

relationships that could have appeared to influence

the work reported in this study

 The authors declare the following financial

interests/personal relationships, which may be

considered as potential competing interests

Ethics Approval

There is no human and animal involved in this research

therefore no need of ethical approval for this research

References

Abbott, R. P., Chin, J. S., Donnelley, J. E., Konigsford, W.

L., Tokubo, S., & Webb, D. A. (1976). Security

analysis and enhancements of computer operating

systems. National Bureau of Standards Washingtondc

inst for Computer Sciences and Technology.
https://apps.dtic.mil/sti/citations/ADA436876

Álvarez, G., & Petrović, S. (2003, July). A taxonomy of web

attacks. In International Conference on Web

Engineering (pp. 295-298). Springer, Berlin,

Heidelberg. https://doi.org/10.1007/3-540-45068-8_56

ANSI/IEEE. (1990). ANSI/IEEE Standard Glossary of

Software Engineering Terminology. IEEE Press.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumbe

r=159342

Aslam, T. (1995). A taxonomy of security faults in the Unix

operating system. Master's thesis, Purdue University.

http://cwe.mitre.org/documents/sources/ATaxonomy

ofSecurityFaultsintheUNIXOperatingSystem[Aslam

95].pdf

Bazaz, A., & Arthur, J. D. (2007, January). Towards a

taxonomy of vulnerabilities. In 2007 40th Annual

Hawaii International Conference on System Sciences

(HICSS'07) (pp. 163a-163a). IEEE.

 doi.org/10.1109/HICSS.2007.566

Bisbey, R., & Hollingsworth, D. (1978). Protection

analysis project final report. ISI/RR-78-13, DTIC AD

A, 56816.

 http://nob.cs.ucdavis.edu/bishop/papers/1999-

raid/1999-vulclass/1999-vulclass.html

Bishop, M. (1995). A taxonomy of UNIX system and

network vulnerabilities. Technical Report CSE-95-

10, Purdue University.

 http://nob.cs.ucdavis.edu/bishop/notes/

Cebula, J. L., & Young, L. R. (2010). A taxonomy of

operational cyber security risks. Carnegie-Mellon

Univ Pittsburgh Pa Software Engineering Inst.

http://www.sei.cmu.edu/library/abstracts/reports/10t

n028.cfm

Chen, K., Zhang, S., Li, Z., Zhang, Y., Deng, Q., Ray, S.,

& Jin, Y. (2018). Internet-of-Things security and

vulnerabilities: Taxonomy, challenges and practice.

Journal of Hardware and Systems Security, 2(2),

97-110. doi.org/10.1007/s41635-017-0029-7

Chirs, V. B., & Frank, R. J. (2005). A taxonomy

methodology applied to web services. Research

Report, IBM Zurich Research Laboratory.

https://dominoweb.draco.res.ibm.com/f3f9573a5c7b

2db4852570750034edf2.html

Firesmith, D. G. (2005, August). A taxonomy of security-

related requirements. In International Workshop on

High Assurance Systems (RHAS'05) (pp. 29-30).

 http://citeseerx.ist.psu.edu/viewdoc/download?doi=1

0.1.1.66.6934&rep=rep1&type=pdf

Glass, R. L., & Vessey, I. (1995). Contemporary

application-domain taxonomies. IEEE Software,

12(4), 63-76. https://doi.org/10.1109/52.391837

Gray, A. (2003). An historical perspective of software

vulnerability management. Information Security

Technical Report, 8(4), 34-44.

 doi.org/10.1016/S1363-4127(03)00005-0

Igure, V. M., & Williams, R. D. (2008). Taxonomies of

attacks and vulnerabilities in computer systems. IEEE

Communications Surveys & Tutorials, 10(1), 6-19.

doi.org/10.1109/COMST.2008.4483667

Jiwnani, K., & Zelkowitz, M. (2004). Susceptibility

matrix: A new aid to software auditing. IEEE

Security & Privacy, 2(2), 16-21.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=159342
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=159342
http://nob.cs.ucdavis.edu/bishop/papers/1999-raid/1999-vulclass/1999-vulclass.html
http://nob.cs.ucdavis.edu/bishop/papers/1999-raid/1999-vulclass/1999-vulclass.html
http://nob.cs.ucdavis.edu/bishop/notes/
http://www.sei.cmu.edu/library/abstracts/reports/10tn028.cfm
http://www.sei.cmu.edu/library/abstracts/reports/10tn028.cfm
https://dominoweb.draco.res.ibm.com/f3f9573a5c7b2db4852570750034edf2.html
https://dominoweb.draco.res.ibm.com/f3f9573a5c7b2db4852570750034edf2.html

Faisal Nabi et al. / Journal of Computer Science 2021, 17 (11): 1046.1058

DOI: 10.3844/jcssp.2021.1046.1058

1057

 doi.org/10.1109/MSECP.2004.1281240

Johnson, R., Gamma, E., Vlissides, J., & Helm, R.

(1995). Design pattern: Reusable object-oriented

software. Addition Wesley.

Joshi, C., & Singh, U. K. (2014). Admit-A five dimensional

approach towards standardization of network and

computer attack taxonomies. International Journal of

Computer Applications, 100(5), 30-36.

 http://citeseerx.ist.psu.edu/viewdoc/download?doi=1

0.1.1.678.3355&rep=rep1&type=pdf

Joshi, C., Singh, U. K., & Tarey, K. (2015). A review on

taxonomies of attacks and vulnerability in computer and

network system. International Journal, 5(1), 742-747.

Kjaerland, M. (2006). A taxonomy and comparison of

computer security incidents from the commercial and

government sectors. Computers & Security, 25(7),

522-538. doi.org/10.1016/j.cose.2006.08.004

Krsul, I. V. (1998). Software vulnerability analysis. West

Lafayette, IN: Purdue University.

 http://coast.cs.purdue.edu/pub/papers/ivan-

krsul/krsul-phd-thesis.pdf

Landwher, C., Bull, A. R., McDermott, P. J., & Choi, S. W.

(1993). A taxonomy of computer program security flaw.

Technical report, Naval Research Laboratory.

https://cwe.mitre.org/documents/sources/ATaxonom

yofComputerProgramSecurityFlawswithExamples%

5BLandwehr93%5D.pdf

Li, X., Chen, J., Lin, Z., Zhang, L., Wang, Z., Zhou, M.,

& Xie, W. (2017, September). A new method to

construct the software vulnerability model. In 2017

2nd IEEE International Conference on

Computational Intelligence and Applications

(ICCIA) (pp. 225-229). IEEE.

 doi.org/10.1109/CIAPP.2017.8167212

Longley, D., & Shain, M. (1990). The Data and Computer

Security Dictionary of Standards. Concepts and Terms.

Masera, M., Fovino, I. N., & Sgnaolin, R. (2005). A

framework for the security assessment of remote

control applications of critical infrastructures. In

Proceedings of the Twenty-Ninth ESReDA Seminar.

McPhee, W. S. (1974). Operating system integrity in

OS/VS2. IBM System Journal, 13, 230-52.

Moore, A. P., Ellison, R. J., & Linger, R. C. (2001).

Attack modeling for information security and

survivability. Carnegie-Mellon Univ Pittsburgh Pa

Software Engineering Inst.

 https://apps.dtic.mil/sti/citations/ADA388771

Nabi, F. (2005). Secure business application logic for e-

commerce systems. Computers & Security, 24(3),

208-217. doi.org/10.1016/j.cose.2004.08.008

Nabi, F. (2011). Designing secure frame work method for

e-commerce systems. Journal of Network Security,

12, 29-41.

Nabi, F., & Nabi, M. M. (2017). A process of security

assurance properties unification for application logic.

International Journal of Electronics and Information

Engineering, 6(1), 40-48.

 http://ijeie.jalaxy.com.tw/contents/ijeie-v6-n1/ijeie-

v6-n1.pdf#page=44

Pothamsetty, V., & Akyol, B. A. (2004, November). A

vulnerability taxonomy for network protocols:

Corresponding engineering best practice

countermeasures. In International Conference on

Communications, Internet and Information

Technology, (pp. 168-175), St. Thomas, US Virgin

Islands.

 https://www.researchgate.net/publication/22142543

8_A_vulnerability_taxonomy_for_network_protocol

s_Corresponding_engineering_best_practice_counte

rmeasures

Scott, D., & Angelos, S. (2013). Towards a Cyber Conflict

Taxonomy. In: 5th International Conference on

Cyber Conflict, (pp. 45-56).

Simmons, C., Ellis, C., Shiva, S., Dasgupta, D., & Wu, Q.

(2009). AVOIDIT: A Cyber Attack Taxonomy.

University of Memphis, Technical Report CS-09-003.

Simpson, G. G. (1945). The principles of classification

and a classification of mammals. Bulletin of the

American Museum of Natural History, 85. xvi+350.

http://hdl.handle.net/2246/1104

Simpson, G. G. (1961). Principles of animal taxonomy.

Columbia University Press, ISBN: 9780231888592.

Tsipenyuk, K., Chess, B., & McGraw, G. (2005). Seven

pernicious kingdoms: A taxonomy of software

security errors. IEEE Security & Privacy, 3(6), 81-84.

doi.org/10.1109/MSP.2005.159

Weber, S., Karger, P. A., & Paradkar, A. (2005). A

software flaw taxonomy: Aiming tools at security.

ACM SIGSOFT Software Engineering Notes,

30(4), 1-7.

 https://dl.acm.org/doi/abs/10.1145/1082983.1083209

https://www.google.com.au/search?tbo=p&tbm=bks&q=inauthor:%22Erich+Gamma%22
https://www.google.com.au/search?tbo=p&tbm=bks&q=inauthor:%22John+Vlissides%22
https://www.google.com.au/search?tbo=p&tbm=bks&q=inauthor:%22Richard+Helm%22
https://cwe.mitre.org/documents/sources/ATaxonomyofComputerProgramSecurityFlawswithExamples%5BLandwehr93%5D.pdf
https://cwe.mitre.org/documents/sources/ATaxonomyofComputerProgramSecurityFlawswithExamples%5BLandwehr93%5D.pdf
https://cwe.mitre.org/documents/sources/ATaxonomyofComputerProgramSecurityFlawswithExamples%5BLandwehr93%5D.pdf
http://hdl.handle.net/2246/1104

