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Abstract: The university course timetabling management system is 

proposed in this work. The proposed system applies depth-bounded 

discrepancy search together with the heuristic and the hard-soft constraints 

to guide the search to a good solution space. To make the proposed system 
easy to use by a non-technical user, this work explores a scoring scheme 

including the effects of the ordering heuristics, the effects of the objective 

model and the effects of the workload characteristics in order to pre-define 

a set of configurations and to automatically adapt to the changes in the 

workload. The experimental results show that the proposed system can find 

a suitable solution for various workloads. The feedback from the potential 

users on the proposed system is positive.  
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Introduction  

A university course timetabling management system 

is proposed in this work. A university course timetabling 

problem can be classified as a resource allocation 
problem (Murray et al., 2006). The requirements in each 

institute may be slightly different depending on the 

resources and the specific conditions (Chaiyasuwan and 

Tantithamphusit, 2007a; 2007b). For example, a timeslot 

to be assigned to a course must avoid the weekly faculty 

meeting; some institutes allow evening classes. Thus, the 

constraints must be adapted to fit the institute 

requirements. Moreover, the requirement can be 

defined by many agents such as the department or the 

curriculum (Chaiyasuwan and Tantithamphusit, 

2007c; Ameen, 2012). 
At Prince of Songkla University, Thailand, which is 

the case study institute in this work, the courses offered 

by various programs have different characteristics. For 

example, the courses offered by Faculty of Science, 

Faculty of Engineering and Faculty of Agro-Industry are 

typically 1-h-morning classes. While, the courses offered 

by Faculty of Management Sciences and Faculty of 

Economics are typically 1.5-h-afternoon classes 

(Chaiyasuwan and Tantithamphusit, 2007c). Many 

curriculums contain a lot of laboratory-style courses 

while some curriculums contain a lot of small-size or 

large-size lecture-style courses. Each curriculum can also 
place some restrictions on the room/equipment usages. 

To add more complexity to the problem, some 

restrictions can be changed for each semester. Therefore, 

a course timetabling management system that can adapt 

to the requirements, constraints and changes is required. 

This work aims to explore a method to describe a set 

of requirements in terms of heuristics and constraints 

that the users are familiar with, in order to be used as a 

guide for the semi-automatic timetable management 

system to find a suitable timetable for each curriculum 
even when a set of requirements have been changed. The 

Depth-bounded Discrepancy Search (DDS) is applied as 

the main search algorithm of the proposed system while 

the heuristic and the hard-soft constraints is applied to 

guide the search to a good solution space. To adapt to the 

workload characteristics, the proposed system allows the 

constraints to be configurable. The results in this study 

are used as the pre-defined system configuration. 

Even though this work is focusing on a single 

institution as the case study, the approach can be 

applied to other similar institutions. 

Literature Review  

In this section, the related works and techniques to be 

used in this work are presented, including a literature 

review on the solution to the university timetabling 

problems, the constraints types, the hard/soft constraints 

and the objective models. Lastly, the depth-bounded 

discrepancy search algorithm is explained. 
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University Timetabling 

A university course timetabling management system 

can be classified into two groups (Bonutti et al., 2012). 

The first group is called a post-enrolment based course 

timetabling, which is done after the student enrolment 

period. The second group is called a Curriculum-Based 

Course Timetabling (CB-CTT), which is done before the 

student enrolment period. The case study in this work 

belongs to the second group.  

Under the CB-CTT group, four input information 

including the course information, the timeslot 

information, the room information and the curriculum 

information are required. First, the course information 
includes a set of sections, a set of teachers, a set of 

courses, the room type for each courses, the student 

capacity and the student groups. Second, the timeslot is a 

set of available date and timeslots for scheduling the 

courses. Third, the room information includes the type of 

rooms, the number of rooms in each type and the room 

capacity. The curriculum information for each student 

group describes the offered courses. 

Currently, many researchers are still interested in the 

course timetabling problem. Mathematics models are 

applied in several methods including integer linear 
programming methods (Lach and Lübbecke, 2012; 

Sánchez-Partida, 2013; Fink Bagger et al., 2019; 

Boland et al., 2008; Antony et al., 2017) and reduced 

graph coloring methods (Burke et al., 2010). Logic 

programming methods (Banbara et al., 2013) are also 

applied. The metaheuristic approaches, which can be 

categorized into two groups, are used for solving the 

course timetabling problems (Lewis, 2008). The first 

metaheuristic method group is called a single solution 

metaheuristic method, including simulated annealing 

methods (Bellio et al., 2016a; 2016b; Gunawan et al., 

2012), iterative local search methods (Soria-Alcaraz et al., 
2016; Goh et al., 2017; Song et al., 2018) and Tabu 

search methods (Wangthammang et al., 2018; Lü and 

Hao, 2010). Another metaheuristic method group is 

called a population-based metaheuristic method 

including genetic algorithm methods (Badoni et al., 

2014; Jain et al., 2010; Chinnasri and Sureerattanan, 

2010), ant colony optimization algorithm methods 

(Nothegger et al., 2012), artificial bee colony algorithm 

methods (Bolaji et al., 2014), harmony search algorithm 

methods (Al-Betar and Khader, 2010), swarm intelligent 

methods (Turabieh et al., 2010) and honey bee mating 
optimization algorithm methods (Sabar et al., 2012).  

Some approaches can be combined as a hybrid 

method for improving the performance and reducing the 

disadvantages of the single algorithms. Hybrid methods 

include a combination of mathematic model with 

metaheuristic methods (Gunawan et al., 2012) and a single 

solution metaheuristic method with a population-based 

metaheuristic method (Lü and Hao, 2010; Bolaji et al., 

2014; Kohshori and Abadeh, 2012) and a single solution 

with metaheuristic methods (Bellio et al., 2012). 

However, the performance of these algorithms 

depends greatly on the characteristics of the dataset. The 
third International Timetabling Competition (ITC2011) 

(Post et al., 2016) shows that no single method can 

dominate the others for all types of datasets. Some 

methods are better than another but they are also worse 

on some datasets. Thus, it is impossible to create a 

method that suits all datasets, because it depends on the 

institute rules, features, costs and fixations (Bonutti et al., 

2012). To bridge the gap between theory and practice, 

several works focus on real-world implementations 

(Müller and Rudová, 2016; 2014). Some works create a 

guideline to measure or to benchmark the results 
(Bonutti et al., 2012; Schaerf and Di Gaspero, 2007). 

McCollum (2007) suggests that the interface of a practical 

system must be assistive such that the user can model the 

dynamic constrains easily.  

Constraint Types 

The course timetable must be correct according to the 

requirements. The requirements can be viewed as a set of 

constraints. Thus, the constraints can be used for guiding 

the search to a suitable solution. The timetabling 
constraints can be categorized into five groups (Lewis, 

2008) including unary, binary, capacity, event-spread 

and agent. To be practical, the structure of each 

timetabling constraint group will be considered in 

designing the proposed system. 

First, the unary constraint considers only one course 

or one group of courses. The unary constraint requires 

three inputs to create a relation between the course and 

the rooms. The relation puts restrictions or permissions 

on how to use the rooms. 

Second, the binary constraint considers the relation 

between two courses. For example, a drawing lecture-

style course must be scheduled before a drawing 

laboratory-style course. A binary constraint also requires 

three inputs. However, the relation between two courses 

is more complex.  
Third, a capacity constraint considers the capacity of 

the room. That is, the room must have enough seats to 

hold the course. The capacity constraint requires two 

inputs including the course and the number of seats.  

Forth, an event spread constraint considers the space 

between courses. The event spread constraint is either 

spreading the courses out or clumping the courses 
together, depending on the user requirements. The event 

spread constraints can be controlled by the period of free 

timeslots between courses and the number of maximum 

total hours per day. If the users require a spreading-out 

timetable, they should either increase the maximum number 

of free timeslots between courses or decrease the maximum 

total hours per day. On the other hand, if the users require a 
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clumping-together timetable, they should either decrease 

the maximum number of free timeslots between courses or 

increase the maximum total hours per day. An event spread 

constraint can be defined by two information including the 
maximum number of free timeslots between courses or the 

maximum total hours per day.  

Fifth, an agent constraint considers the party in each 

timetable including the teachers and the student groups. The 

agent constraint puts a specific condition on the problem 

such as the relation between the students and the rooms. 

The agent constraint requires three inputs including the 

agents, the relations and the resources where the relation 

will be given as a unary constraint on the resource. 

Hard/Soft Constraints  

As mentioned above that the constraints can be used 

for guiding the search in order to find a suitable solution. 

The type of the constraints can affect the result. In 

addition, some constraints are more important than 

others. For example, the constraint of assigning available 

rooms and timeslots for all courses according to the 

requirements is more important than the constraint of 

assigning the afternoon timeslots for the laboratory-style 

courses. Hence, some laboratory-style courses can be 

scheduled in the morning timeslots but all courses must 
be assigned the rooms and timeslots. 

The violation of some constraints can cause 

problems. For example, if the constraint of assigning the 

available rooms for a course is violated, then two courses 

might be assigned to the same room. Thus, there are 

some constraints that cannot be violated which is called 

hard constraints. The other type of constraints are called 

soft constraints. 

Objective Models  

During the search in the solution space, the proposed 

system must have an ability to evaluate the solution 

found in order to find a suitable solution. To evaluate n 

intermediate solution, an objective model is used. The 

objective model is a method to compare two solutions in 

order to select a suitable solution among solutions in the 

search space. To compare two solutions, a scoring 
technique is required to determine which solution is 

better. The number of the constraint violations can 

represent the quality of a solution. The less constraint 

violation solution is better than the more constraint violation 

one. However, each constraint is different. The hard 

constraints must dominate the soft constraints. Some soft 

constraints might be preferred over the others. Thus, the 

system requires a model to determine how to compare the 

constraints. The objective model can help solving this issue.  

This work applies multi-objective model 

(Vasupongayya and Chiang, 2006), including lexical, order-

tradeoff and equal-tradeoff models. Lexical model (denoted 
Lexical (A->B), where A and B are constraints). The model 

defines that A is more important than B. Thus, A will 

dominate B in all cases. Next, ordered-tradeoff model 

(denoted Tradeoff (A->B), where A and B are constraints). 

The model defines that A is more important than B. 
However, if the improvement of B is larger than the 

degradation of A, B which is less important can also win the 

competition. Last, equal-tradeoff model (denoted Tradeoff 

(A: B), where A and B are constraints). The model defines 

that A and B are equal. Thus, the improvement and 

degradation of both constraints can affect the result equally. 

Depth-Bounded Discrepancy Search  

Depth-bounded Discrepancy Search (DDS) (Walsh, 

1997) is a complete search technique. DDS is used in 
this work because the main goal of this work is to allow 

the users to understand and to configure the system. By 

applying the search algorithm with constraints, the 

proposed system allows the non-technical users to 

configure the system easily. The DDS search space can 

be viewed as a search tree. For explanation purpose, Fig. 

1 shows the search tree of eight solutions.  

The search will start from the root node to the leaf 

node. Each solution is a path from the root node to the 

leaf node. This way, once the search reaches the leaf 

node then a candidate solution is found. At this point, the 
objective model will be used for calculating the quality 

of the solution in terms of a score. If the new solution is 

better than the current best solution, then the new 

solution is recorded as the current best solution. The 

search continues and the score will be calculated every 

time that the search reaches the leaf node. If the solution 

is no better than the current best solution then the path 

can be skipped in order to accelerate the search process. 

This effect is called pruning. 

The progress of DDS will also be affected by the 

ordering of the branch at each level. That is, the search 

will start from the left-most path (A, B, D, H) which is 
called the heuristic path. The heuristic is a guide of how 

to order the node at each level. For example, if each node 

is the course to be scheduled. The order of the courses to 

be considered by the scheduler is the heuristic.  

 

 

 
Fig. 1: Depth-bounded Discrepancy Search (DDS) 
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The heuristic might be wrong in some cases and the 

effects of such incorrect heuristic can be monstrous. 

DDS prevents such gigantic effects by probing into each 

subtree in order to get a good baseline solution for 
pruning the search space. For example, Fig. 1 shows the 

order of the leaf nodes to be discovered by the DDS. The 

first leaf is the left-most path (A, B, D, H). The next path 

is the 2th path (A, C, F, L) which is a path from a 

different subtree. Thus, the first path visited by the 

search engine is from the left-most subtree while the 

second path visited by the search engine is from the 

right-most subtree. This property is suitable for the 

course timetabling problem because the earlier course 

assignments can have a huge impact on the later courses. 

Furthermore, the objective model can be calculated on a 
partial solution for the lexical model. Thus, the pruning 

technique can be used to avoid searching in the area 

containing solutions that are not better than the current 

solution found so far.  

The results on hard/soft constraints using DDS as the 

main search engine was presented in our previous work 

(Sitthirit and Vasupongayya, 2013). However, the results 

only include the ability of the search engine to reduce the 

number of hard constraint violations while improving the 

number of soft constraint violations. Moreover, the set of 

hard and soft constraints are slightly different in this 

work. This work provides more detail performance 

analysis on the proposed system than that shown in 

(Sitthirit and Vasupongayya, 2013). 

Proposed System  

This section provides the system overview and the 

scoring technique used in our proposed system.  

System Overview  

The course timetabling system requires the course 

data including courses, teachers and curriculums as the 

resources. The heuristics specify the dataset to be chosen 

to create a search tree. The constraints are used as a 

decision to evaluate the results. The output of the system 

is the set of courses with rooms and timeslots that are 

assigned by the search engine. The input and output of 

the system are shown in Fig. 2. 
The system uses Depth-bounded Discrepancy Search 

(DDS) as the main search engine to assign the rooms and 

timeslots for each course. The search engine first creates 

the search tree by using the timetabling and heuristic 

data. Each node of the search tree represents a course. 

Each path of the search tree represents a solution. This 

way, the length of all paths is equal. Thus, the whole 

search tree contains all possible solutions. The heuristics 
which are defined by the scheduler will order the nodes 

in each path, where the left-most path is the heuristic 

path. The search engine is then search for a suitable 

solution by evaluating each solution found so far using 

the scoring technique. 

The size of the search tree depends on the dataset. 

The scheduler can choose all courses in each semester to 

create the search tree or choose a partial data for each 

search tree. However, the length of each path determines 

the length of the processing time for each solution, 

because the larger search tree will result in the longer 

search time. The necessary courses that should be in the 

same search tree are the courses that have a relation 

among themselves such as the courses with the mutual 

student groups or the courses with the mutual 

teachers. In this work, the search trees are created 

according to the student groups, because these 

students have mutual courses. 
The order of nodes in each path is defined by the 

ordering heuristic. Figure 3 shows an example of an 
ordering heuristic which can be used for creating the 

search tree. The student group will be decided first. 

For each student group, the laboratory-style courses 

will be considered before the main, elective and free 

elective courses, respectively. For the same course 

type, the course hours will be used for ordering the 

courses. For example, a four-hour laboratory-style 

course will be considered before a three-hour 

laboratory-style course. 

To allocate the rooms and timeslots, the search 

engine builds the scoring table of all available timeslots 
in each node of the search tree. The scoring engine has to 

check the availability of all related teachers, rooms and 

student group timeslots. Next, the scoring engine will 

calculate the constraint violations for all available 

timeslots and return the score back to the search engine 

to create a scoring table. The search engine will compare 

all scores in the scoring table to choose the best timeslot 

and room. Next, the search goes along the path to get a 

complete solution and compares the score of the current 

solution and the score of the best solution found so far. 

The scoring technique is described next. 

Scoring Technique 

The search engine requires the scoring technique in 

order to determine the score of the discovered solution 

during the search process. The simple method to 

calculate the score of the current solution is counting the 

number of constraint violations. However, each 

timetabling constraints are of different types. Thus, the 

search engine requires a scheme to count the number of 

violations for each constraint type. The unary and binary 

constraints are counted by the number of violations that 

are occurred and multiplied by the number of student 

group timetables related to the course, to weight in the 

size of its effect. The violation of the time-spread 

constraints is the number of timeslots.  
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Fig. 2: Input and output of the proposed system 

 

 

 
Fig. 3: Ordering heuristic for creating the search tree 

 

The scoring algorithm process starts from creating 
a scoring table. The hard constraints are the 

constraints that should not be violated. If any hard 

constraint is violated, the result will be discarded. The 

comparison between two Hard Constraints (HC1, 

HC2) uses equal-tradeoff (denoted Tradeoff (HC1: 

HC2)) because the importance of all hard constraints 

are equal. However, some hard constraints are 

allowed to be violated. The scoring engine will count 

all allowed hard constraint violations before the score 

will be stored in the scoring table. 

As hard constraints dominate all soft constraints, 
the comparison between a Hard Constraint (HC) and a 

Soft Constraint (SC) is a lexical model (denoted 

Lexical (HC-> SC)). This way, any soft constraint 

violation cannot overrule the effect of any hard 

constraint violation. 

The comparison among different Soft Constraints 

(SC1, SC2) is ordered-tradeoff model (denoted Tradeoff 

(SC1-> SC2)) meaning constraint SC1 is more important 

than constraint SC2. In the case that the decreasing of 

SC2 violations is more than the increasing of SC1 

violations, the SC2 which is less important can be 

preferred over SC1. The comparison among equal 

important Soft Constraints (SC3, SC4) is equal-tradeoff 

model (denoted Tradeoff (SC3: SC4)). 

Experimental Settings  

This section describes the experimental settings 

including workloads, workload characteristics, modified 

workloads and the experimental details. 

Workloads 

In this work, the workload is a set of courses offered 

by the case study institution. There are 674 courses, 57 

rooms and 66 student groups from 12 curriculums of 7 

departments including Mechanical Engineering (ME), 

Civil Engineering (CE), Chemical Engineering (ChE), 

Electrical Engineering (EE), Industrial Engineering (IE), 

Mining Engineering (MnE) and Computer Engineering 

(CoE). However, the first year students are separated 

as a special group. The first year students have the 

largest number of hours following by the mechanical 

engineering student group and the computer 

engineering student group. 
To maintain a small tree size and allow the changes 

to parts of the problem, the tree is created according to the 

student groups. The freshman students are divided into 
two groups according to the current university setting. The 

sophomore, junior and senior students are divided into 7 

groups according to their departments. This way, the 

students with shared classes are grouped together. The 
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order of consideration within the same level is the total 

course hours. As a result there are now 23 datasets. 

The datasets consist of many different courses. Each 

dataset has its own characteristic. For example, the 
freshman timetables contain a lot of study hours but 

most of them are pre-defined. 2ME timetable has similar 

numbers of 1-, 2- and 3-h courses, while 3IE timetable 

contains a large number of 3-hour courses. The number 

of teachers for each course is also considered. Some 

datasets have less multiple teachers while some datasets 

have many multiple teachers. Moreover, the total hours 

of each dataset and the room requirement are also 

considered. With variety of workload characteristics, the 

results in this work can be generalized to other institutes. 

Workload Characteristics 

The following list of rules shows the characteristic of 

the datasets. 

Different-class-size: If any group of courses in the 

dataset has a high Standard Deviation (SD) of course size, 

then the group is considered to have a different-class-size 

characteristic. A different-class-size characteristic requires 

a different space size in the schedule. As a result, finding 

the exact space size for each course will be difficult. 

Multiple-teacher: If any group of courses in the 
dataset contains a large number of courses that are taught 

by many teachers then the group is considered to have a 

multiple-teacher characteristic. This characteristic will 

add a constraint on the available space of the courses. 

High-workload-teacher: If any group of courses in 

the dataset contains a large number of courses that are 

taught by high load teachers then the group is considered 

to have a high-workload-teacher characteristic. The high 

load factor can be calculated by the summation of the 

square value of each period of each course in a week. 

That is, a large slot will result in a higher load value 

because a large slot is more difficult to find than a 
smaller one. This characteristic will add a constraint on 

the available slots of the courses. 

Teacher-time-conflict: If any group of courses in the 

dataset allows the teacher-time conflict result then the 

group is considered to have a teacher-time-conflict 

characteristic. This characteristic will relax the constraints. 
More-total-hour: If any group of courses in the 

dataset has a total hour larger than the median value of 
all datasets then the group is considered to have a more-
total-hour characteristic. This characteristic will affect 
the available slots for the other courses. 

Multiple-student-group: If any group of courses in 
the dataset contains a large number of multiple student 
groups then the group is considered to have a multiple-
student-group characteristic. This will affect the 
available slots in the schedule. 

Elective-subject: If any group of courses in the 

dataset contains an elective course then the group is 

considered to have an elective-subject characteristic. For 

some institute the elective courses must be flexible for 

all students. As a result the elective courses will relax the 

schedule. However, some elective courses have a high 

priority then it will add more constraints to the problem. 
Multiple-room: If any group of courses in the 

dataset contains a large number of courses with 

multiple rooms then the group is considered to have a 

multiple-room characteristic. This will add constraints 

on the room requirements. 

The above rules are applied on the datasets in order 
to classify their characteristics into 9 groups as follows. 

The first characteristic is called “different-laboratory-
course-size” (denoted CH1) and there are 8 datasets with 

this characteristic. The second characteristic is called 
“different-lecture-class-size” (denoted CH2) and there 

are 14 datasets with this characteristic. The third 
characteristic is called “multiple-teachers” (denoted 

CH3) and there are 12 datasets with this characteristic. 
The forth characteristic is called “high-workload-

teacher” (denoted CH4) and there are 12 datasets with 
this characteristic. The fifth characteristic is called 

“teacher-time-conflict” (denoted CH5) and there are 14 
datasets with this characteristic. The sixth characteristic 

is called “total-hours” (denoted CH6) and there are 13 
datasets with this characteristic. The seventh 

characteristic is called “multiple-student-groups” 
(denoted CH7) and there are 7 datasets with this 

characteristic. The eighth characteristic is called 
“elective-subject” (denoted CH8) and there are 8 datasets 

with this characteristic. The ninth characteristic is called 
“multiple-room” (denoted CH9) and there is one dataset 

with this characteristic.  
Numbers of characteristics of a single dataset can be 

used as an indicator of the difficulty level to allocate the 
rooms and timeslots. For example, 3CE dataset which 

contains 6 characteristics has a high possibility to cause a 
problem during the scheduling process than 2EE dataset 

which contains only 2 characteristics. The experimental 
setting in this work aims to evaluate the effects of 

constraints and ordering heuristics on various dataset 
characteristics in order to define the search engine rules. 

Modified Workloads 

To create the different dataset characteristics, the 
original data set (UAs) are modified into several 

different characteristic datasets as a set of Testing 
Datasets (TD). There are 4 modified datasets including 

TD1, TD2, TD3 and TD4. Under TD1 workload, the 
original dataset is modified by splitting all 2-h, 3-h courses 

to one-hour courses. Thus, the TD1 dataset contains a lot of 
short-class types. For the TD2 workload, the original 

dataset is modified by splitting all courses to 1.5-h courses. 
For the TD3 workload, the original dataset is modified by 

splitting or combining all courses to 2-h courses. For the 
TD4 workload, the original dataset is modified by 

combining all courses to 3-h courses.  
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Thus, the experiments are conducted on five datasets 

(UA, TD1, TD2, TD3 and TD4) and 6 different Ordering 

Heuristics (OH1, OH2, OH3, OH4, OH5 and OH6). 

Totally, there are 30 sets of results. 

Experimental Details 

Four performance results will be studied in this work. 

First, the performance of the original timetables is 

presented as the baseline of this work. The next three 

experiments are conducted on the proposed system. 

Second, the effects of the search time are studied. Third, 

the effects of the objective models are studied. Forth, the 

effects of the ordering heuristics are studied.  

For comparison purpose, the details of the original 

university timetables are presented first. The case 

study institute offers 12 undergraduate degrees in 

engineering fields. There are total of 143 teachers, 

674 classes from 202 courses and 57 rooms. Each 

course can consist of several classes. The courses 

include 93 laboratory-style classes and 581 lecture-

style classes. The teachers are grouped into 7 

departments. The rooms are located in different 

buildings. Thus, the scheduler has to allocate rooms 

and timeslots for a lot of classes in each semester.  

To study the effects of the search time, both the 

actual runtime of the proposed system and the number of 

iterations executed by the proposed system are studied in 

order to show how fast the proposed system can find a 

suitable solution.  

Three objective models are conducted in this work. 

Three objective models include (1) Simple Mixed 

Objective (SMO) that assigns an equal priority to all 

soft constraints, (2) Mixed Objective 1 (MO1) that 

assigns a high priority to Time Constraints (TC) and 

(3) Mixed Objective 2 (MO2) that assigns a high 

priority to Time-Spread Constraints (TSC). The 

constraints to evaluate the results are grouped into 3 

sets including hard constraints, time constraints and 

time-spread constrains. 

There are six ordering heuristics as shown in Table 1. 

To study the effects of the ordering heuristics on 

different dataset characteristics, six orders of three 

workload characteristics are created. The three workload 

characteristics include the class size, the teacher 

workload and the study-hour.  
 
Table 1: Ordering heuristics 

Index Order 

OH1 Class size > Teacher > Study-hour 
OH2 Class size > Study-hour > Teacher 
OH3 Teacher > Class size > Study-hour 
OH4 Teacher > Study-hour > Class size 

OH5 Study-hour > Class size > Teacher 
OH6 Study-hour > Teacher > Class size 

To achieve the practical points of the proposed 

system, the usability side of the proposed system is also 

evaluated and discussed. The discussion include the 

guide for users and the user interface. The proposed 

system is also evaluated by potential users. 

The DDS will create a set of search trees according to 

the ordering heuristic. The constraints are applied to the 

search engine with an equal priority of soft constraints. 

HC is used for representing the number of hard 

constraint violations and SC is used for representing the 

number of soft constraint violations. 

Results and Discussion 

Results on original time tables are given first as the 

baseline of this work. The next three section provides 

the performance of the proposed system on the effects 

of the search time, the effects of the objective models 

and the effects of the ordering heuristics. Next, the 

guide for the users and the user interface of the 

proposed system are presented. Last, the proposed 

system is evaluated by potential users. 

Original Timetables 

In summary, the original university timetable 
produces 820 soft constraint violations and 399 hard 
constraint violations. The soft constraint violations 
include 797 time-constraint violations and 23 time-
spread-constraint violations. Even though the workload 
is not extremely large, the issues and conflicts are still 
observable. According to the violations of the original 
university timetables, the workload characteristics can 
increase the complexity to the process. For example, the 
electrical laboratory courses are required in many 
curriculums. Such courses link many student groups; 
such courses require multiple teachers; and such courses 
add an extra complexity to the problem.  

Effects of the Search Time 

The first set of results focuses on evaluating the 

performance of the proposed solution on the original 

dataset in comparison with the original university 

timetables. Two sets of results produced by the proposed 

system with a short runtime (denoted first depth) and a 

longer runtime (denoted second depth) are provided in 

order to display the ability of the proposed system to find 

a better solution when more time is given. 

Table 2 provides the number of constraint violations 

of the original university timetables and that of the 

timetables produced by the proposed system. The 

experimental results show that the proposed system 

reduces the number of violations in comparison with that 

of the original university timetables. The total number of 

hard constraint violations is reduced from 399 to 100 and 

90 for the first depth DDS and the second depth DDS, 
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respectively. The total number of soft constraint 

violations is also reduced from 820 to 533 and 506 for 

the first depth DDS and the second depth DDS, 

respectively. The results confirm that the core 

mechanism of the proposed system is working well in 

finding a better solution when more time is given.  

The proposed system is evaluated on a machine 

with Intel(R) Core(TM) i5-2400 3.10 GHz Central 

Processing Unit (CPU) and 8 Gigabyte memory. The 

proposed system takes approximately 0.462 seconds 

to process each node. The processing time can be 

reduced by adding the data catching technique into the 

proposed system. 

Effects of the Objective Models 

This section evaluates the effect of three objective 

models. Table 3 shows the soft constraint violations of 

all three objective models while Table 4 shows the hard 

and soft constraint violations of all three objective 

models. At the first look, the hard constraint violations 

of all three objective models from the proposed system 

are reduced from that of the original university 

timetables, presented in Table 2.  

The freshman timetables are better when MO2 is 

applied. Since the freshman timetables have limited 

available timeslots, the restriction on the Time-Spread 

Constraints (TSC) is more effective. The sophomore 

timetables are considered early in the search process. 

Therefore, there are a lot of available slots. The junior 

and senior timetables are considered later in the search 

process, resulting in limited slots. However, MO1 shows 

a few number of Hard Constraint (HC) violations in 

comparison with that produced by MO2. 
In conclusion, MO1 which emphasizes on the Time 

Constraint (TC) produces a better solution than that of 

the MO2 which emphasizes on the Time-Spread 

Constraints (TSC). Thus, the Time Constraints (TC) 

have more effects on the proposed system than the Time-

Spread Constraints (TSC). However, the SMO results 

which regards all constraints as equal, show a 

promising results. Therefore, an equal priority can 

help in avoiding the effects of constraint types for the 

datasets that are complex. 

Effects of the Ordering Heuristic  

To evaluate the effects of the ordering heuristic, six 

ordering heuristics are applied on the modified 

workloads. Table 5 shows the experimental results of all 

six ordering heuristics on all five datasets. The 

experimental results show that a completed timetable 

of the original dataset (UA) can be achieved by OH1. 

The OH1 can provide a completed timetable on most 

of the modified datasets, in comparison with other 

ordering heuristics. 

Table 2: Constraint violations comparison 

 Number of constraint violations 

 ----------------------------------------------------- 

 HC TC TSC SC 

Original 399 797 23 820 

First depth 100 513 20 533 

Second depth 90 483 23 506 

 
Table 3: Objective model performance comparison 

 Number of constraint violations 

 ---------------------------------------------------- 

Model TSC TC SC 

SMO 347 21 368 

MO1 366 15 381 

MO2 326 29 355 

 
Table 4: Detail comparisons among objective models 

 Number of constraint violations 

 ---------------------------------------------------------------- 

 Model 1st 2nd 3rd 4th Total 

SMO HC 0 4 10 34 48 

 TSC 26 100 138 83 347 

 TC 1 10 5 5 21 

MO1 HC 0 4 12 36 52 

 TSC 26 122 147 71 366 

 TC 1 5 6 3 15 

MO2 HC 0 4 10 40 54 

 TSC 15 89 147 75 326 

 TC 8 11 5 5 29 

 
Table 5: Ordering heuristic performance comparison 

 Number of incomplete schedules 
 ------------------------------------------------------------------ 

Order UA TD1 TD2 TD3 TD4 Total 

 OH1 - 5 1 - 2 8 

 OH2 1 5 2 1 2 11 
 OH3 1 5 3 1 5 15 

 OH4 1 5 3 1 2 12 

 OH5 - 5 3 - 3 11 

 OH6 - 5 2 - 3 10 

 

In conclusion, the performance of all six ordering 

heuristics on the modified datasets shows that the 

workloads with a large number of small class-size 

courses might run into an issue with the Time-spread 

Soft Constraints (TSC). If the class-size constraint is 

already considered then the teacher load constraint is 

a better next-order constraint to be used than the 

study-hour constraint. TD1 and TD2 datasets contain 

a lot of courses which can increase the difficulty in 

the scheduling process. Reducing the number of 

courses by creating a combination of two-hour and 

one-hour courses produces a better performance under 

OH1, OH5 and OH6 because the complete schedules 

can be achieved. 
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Guideline for Users  

To provide an ease of use for the users with less 

technical background, many parameters must be pre-

configured such that the output will meet the user 

satisfaction. First, the datasets of unrelated courses 

must be divided into different trees in order to speed 

up the searching process. If any curriculum contains 

the rooms or the teachers that are not overlapped with 

each other, then such curriculums can be processed in 

parallel. This way, the processing time can be 

reduced. Second, the ordering heuristic to be used as a 

baseline is OH1. If the workload does not contain 

various class-size then OH6 can also be applied. 

User Interface 

The user interface of the system must be classified 

into two sets. The first set is the search engine 

parameters. For the search engine parameters, several 

parameters are pre-defined while several parameters are 

automatically generated after the workload is fed into the 

system. The pre-defined parameters include a set of hard 

constraints, a set of soft constraints, a preferred objective 

model and a preferred ordering heuristic.  
The second set is the specific set of constraints. 

Figure 4 shows an example of the user interface for 

configuring the constraint. According to Fig. 4, the A 

box is the agent type to be defined; the B box allows the 

user to searching for the target of the constraint to be 

defined; the F box is an example of the permission on 

the constraint; the G box shows the area for the users to 

define the allow-period and the non-allow period. The B, 

C, D and E boxes allows the user to search for the target 
or the agent type in the target. As can be seen that 

instead of the text-based input, the user interface is 

visualized for ease of use. This way, both technical and 

non-technical users can use the proposed system easily. 

Potential User Feedback 

After the proposed system has been developed, the 

proposed system is then evaluated by three types of 

potential users including the curriculum head, the 

curriculum secretary and the temporary staff. These three 
groups of users are selected to evaluate the proposed 

system in terms of its ease of uses. 

The feedback from all three potential users on the 

proposed system is positive. That is, the proposed system 

can always produce the workable timetable from the 

curriculum secretary perspective; various output formats 

including the schedule for each student group, the 

schedule for each teacher and the schedule for each room 

are beneficial to the curriculum head to manage the 

curriculum or to organize an extra-curricular activity. 

The temporary staff can also configure the proposed 
system in order to find the timetable for her curriculum. 

However, the temporary staff takes a longer time to 

configure the system because she is unfamiliar with the 

timetabling task.  

 

 

 

Fig. 4: the constraint configuration page 
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Conclusion 

The university timetabling system is proposed in this 

work. The core search engine of the proposed system 

applies Depth-bounded Discrepancy Search (DDS) 

together with the heuristic and hard-soft constraints in a 

form of the scoring technique. To adapt to the changes in 

the workload, the proposed system configuration can be 

set by the user and the proposed system is also 

automatically selected based on the workload 

characteristics. This way, even a non-technical user can 
also use the proposed system easily. Moreover, the 

proposed system provides various output formats 

including the schedule of each student group, each 

teacher and each room. 

The contributions of this work include (1) the 

proposed university timetabling system with a pre-

defined set of recommended system configurations, (2) 

the workload characteristics and their effects on the 

proposed system and (3) the results on the modified 

workloads in order to provide a recommended course 

size to the case study university. Future works include 

studying the effects of the different core algorithm on the 

performance and the user satisfactions.  
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