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Abstract: A key authentication scheme is a scheme that protects a user’s 

public key from modification and counterfeiting by an adversary. The new 

development and improvement of key authentication schemes should be 

made continuously so that the systems are safe and practical to be used. To 

the best of our knowledge, there is no key authentication using the elliptic 

curve so far. Thus, in this paper, we propose the first secure elliptic curve-

based key authentication scheme with its security, relying on the difficulty 

of solving the elliptic curve discrete logarithm problem. We show that the 

proposed scheme is secure against various defined cryptographic attacks 

such as public keyword modification and keyword guessing attacks. Next, 

we analyze the computational time complexity of the algorithms by 

computing the number of modular operations needed in these algorithms 

together with asymptotical analysis of running time using O(g(n)) notation. 

It turns out that our scheme requires the least amount of time complexity of 

203.36Tmul + Th for user registration phase, 58.12Tmul for key authentication 

phase, and offers less running time compared to some existing key 

authentication schemes. 

 

Keywords: Cryptography, Key Authentication Scheme, Elliptic Curve, 

Elliptic Curve Discrete Logarithm Problem 

 

Introduction 

Diffie and Hellman (1976) solved a key distribution 

problem of secret key cryptography and proposed a 

novel idea of modern cryptography that is now called the 

public-key cryptography. Specifically, they proposed 

that any two communicating users need not be shared a 

common secret key, but instead, each user needs to 

generate two keys, namely public and private keys. In 

public-key cryptographic systems, the private key or 

sometimes called the secret key will be kept secret from 

other people. In contrast, the public key will be made 

public to anyone, including to adversary or enemy. Then 

the user publishes the public key in a public-key 

directory. One of the main components in public-key 

cryptographic systems is a cryptosystem. In a 

cryptosystem, two communicating parties, a sender and a 

receiver, are needed to complete the communication 

processes. The sender encrypts a confidential message or 

document by using the receiver’s public key and submits 

the encrypted message to the known receiver. The 

receiver who has the private key can decrypt the 

encrypted message and later read the original message. 

One of the main issues in designing any public-key 

cryptographic systems is the security of its public key. 

The key question is, how do we protect the public key 

from alteration or modification by an adversary? The 

cryptographic solution to this problem is via Key 

Authentication Scheme (KAS). KAS provides a mechanism 

of authenticating the validity of the receiver’s public key. 

KAS consists of three algorithms: (1) key generation 

algorithm, (2) user registration phase, and (3) key 

authentication phase. The organization of this paper is as 

follows. In the next section, we discuss some past and 

related works of KAS. Then we present our proposal of a 

key authentication scheme based on elliptic curve 

discrete logarithm problem. We next discuss the security 

analysis and efficiency consideration of our new scheme. 

Finally, we make a comparison of the new and existing 

schemes in terms of attacks and time complexity. 

Related Works 

Horng and Yang (1996) designed the first KAS 

whose security is based on the hardness of solving a 

discrete logarithm problem. Their scheme needs a 
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certificate but requires no authority. The certificate is 

computed using the user’s private key and password. 

However, a study by Zhan et al. (1999) found that 

Horng-Yang’s scheme is not secure against the password 

guessing attack. If an enemy successfully finds the actual 

password, he or she can further generate a valid false 

public key. Zhan et al. proposed an improvement to the 

Horng and Yang’s scheme. However, the improved 

scheme, as shown by Lee et al. (2003) does not achieve the 

non-repudiation property. A dishonest user can successfully 

deny his or her public key. Lee et al. fixed the problem and 

proposed a modified version of the Zhan et al. scheme. 

Later, Peinado (2004) and Zhang and Kim (2005) 

separately showed that Lee et al. (2003) scheme had 

some security flaws. They showed that the scheme is not 

secure as the attacker can easily recover the user’s 

private key from the user’s public key certificate. Also, 

Peinado (2004) proved that the verification procedure 

presented in the scheme is not valid. Both Peinado 

(2004) and Zhang and Kim (2005) then have 

suggested a modification to improve the security of 

the scheme. Meanwhile, Wu and Lin (2004) also showed 

that Lee et al.’s scheme is vulnerable to the key substitution 

attack and provided a modified version of Lee et al.’s. 

Sun and Cao (2005) proved that the improved version 

by Peinado (2004) does not achieve non-repudiation 

property. A dishonest user can forge his public key 

via the verification procedure and deny his signature. 

Sun and Cao (2005) next proposed modification and 

proved that the version has now achieved the non-

repudiation property. Meanwhile, Sun and Cao (2005) 

also proved that Zhang and Kim (2005) did not 

achieve non-repudiation property. Shao (2005) 

showed that Peinado’s scheme is insecure as an 

attacker can obtain the user's private key through a 

guessing attack. Shao (2005) also showed that Zhang 

and Kim (2005) scheme is vulnerable to public key 

substitution attacks and modified a new version based 

on the discrete logarithmic problem. 

Yoon and Yoo (2005) demonstrated that Lee et al. 

(2003), Peinado (2004), and Wu and Lin (2004) are 

prone to key substitution attacks. They then proposed an 

improvement of Lee et al. (2003) and claimed that the 

version is resistant to public key substitution attacks. 

Two years later, Yoon and Yoo (2007) have performed 

some cryptanalysis toward Sun and Cao (2005) scheme 

and concluded that the Sun-Cao’s is still vulnerable to 

public key substitution attack. They later proposed a 

highly secure improvement of the scheme.  

One common feature of the above schemes is that 

all schemes were designed based on a single hard 

cryptographic problem. Soon, if one finds a solution to 

the hard problem, all these schemes will no longer be 

secure. Thus, there is an urgent need to develop key 

authentication schemes based on multiple hard 

problems. Suparlan et al. (2016), Meshram et al. 

(2016), and Kumaraswamy et al. (2016) respectively 

developed their schemes based on factoring with 

discrete logarithm problems, factoring with 

generalized discrete logarithm and discrete logarithm 

problem with Chinese remainder theorem. The idea is 

that even if one of the underlying hard problems is 

solvable, the designated scheme is still secure due to 

the security of the other underlying hard problem. 

Unfortunately, Peinado (2017) managed to reveal the 

weaknesses of Kumaraswamy et al. (2016)’s scheme 

in which the scheme has several mathematical 

inconsistencies that led to the vulnerability attack. To 

the best of our knowledge, there is no known key 

authentication scheme of which security depends on 

Elliptic Curve Discrete Logarithm (ECDLP), which 

was first introduced independently by Miller (1985) 

and Koblitz (1987). Applying the ECDLP to the 

scheme will offer some added values to the proposed 

scheme in terms of efficiency while maintaining an 

adequate level of security.  

Materials and Methods 

The proposed scheme makes use of the elliptic curve 

from computational number theory (Ismail and Hijazi, 

2012; Koblitz, 1987; Miller, 1985). The equation of the 

elliptic curve in a general form is defined by: 

 
2 3 2y axy by x cx dx e       

 

where, a, b, c, d, e𝔽 and 𝔽 is a field. We define on this 

curve an elliptic curve addition operation with a point at 

infinity (we denote this point as ∞). Now, suppose that q 

is a 160-bits prime with the corresponding field has 

characteristics neither two nor three. For cryptographic 

purposes, we now consider an elliptic curve E over the 

Galois Field E(𝔽q) as below:  

 
2 3 mod 0 .y x ax b qwhere x q      

 

The coefficients a,b< q are non-negative integers and 

satisfy the condition 4a3 + 27b2  0 mod q, which 

defines the elliptic curve with no multiple roots of unity.  

The terminology of point addition can be extended to 

point multiplication where in this operation, a point P on 

the elliptic curve is multiplied with a scalar k using the 

elliptic curve equation to obtain another point Q on the 

elliptic curve and this is defined by kP = Q. If k = 2, the 

point multiplication is called the point doubling. The 

point multiplication kP is computed by performing 

multiple point additions. Thus, point multiplication uses 

point addition and point doubling repeatedly to obtain 

the result. This method is called “double and add” for 

point multiplication. Mathematically, we have the 
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following: Point addition by adding two elliptic curve 

points J and K to obtain another point L = J+K and 

point doubling by adding a point J to itself to obtain 

another point L = 2J = J+J. If we want to compute L = 

3J+5K then we can use the following formula L = 

3J+5K = 2J+2(2K)+J+K  involving three point doublings 

and three point additions. 

The Proposed Key Authentication Scheme  

In this section, we present our new key authentication 

scheme for a cryptosystem based on the difficulty of 

solving the elliptic curve discrete logarithm problem. A 

key authentication consists of three phases that are 

key generation, user registration, and key 

authentication. The security of the proposed scheme 

heavily depends on the hardness of solving the elliptic 

curve discrete logarithm (Koblitz, 1987). 

Definition 1 

Given an elliptic curve E over the Galois Field E(𝔽q) 

defined by: 

 
2 3 mody x ax b q    

 

where, 0xq and the coefficients a,b,q are non-negative 

integers and the curve contains no multiple roots of 

unity. Assume that P and Q are two elliptic curve point 

on E such that Q = np. Find integer n. 

From the above definition, we create a corresponding 

public one-way function defined by ( ) modf x xG q  

where, G is an elliptic curve point on E. We now give 

the description of the algorithms of the scheme. 

Phase 1: Key Generation Phase 

This phase is done by the trusted administrator (steps 

1-4) and the receiver (steps 5-6): 

 

1. Select a 160-bits prime p which determines the order 

of field 𝔽p 

2. Choose two numbers a and b in 𝔽p. These values 

determine the elliptic curve, E  

3. Pick a base elliptic curve point G from the defined 

elliptic curve with a large prime generator m such 

that mG =   

4. Choose a secure one-way hash function h() which 

maps an arbitrary length of input to a 160-bit of 

output 

5. Choose at random an integer, d 𝔽p with d< m 

6. Calculate Q = f(d) = dG mod p 

 

The public parameters of the scheme are given by 

(p,a,b,m,E,G,h). The public and private keys of the 

receiver are given by Q and d respectively.  

Phase 2: User Registration Phase 

This phase is done by the receiver (steps 1-5), the 

administrator (step 6) and the server (steps 7-10):  

 

1. Choose two random integers s,pwd𝔽p with s,pwd 

< m. 

2. Calculate V = f(pwd) = (pwd)G mod p 

3. Compute W = f(s) = Sg mod p 

4. Calculate Y = f(pwd+s) = (pwd+s)G mod p 

5. Generate certificate,  C = (pwd+s+ d) mod p 

6. Store the three components (Rx(Q),Y,h(W)) in a 

protected key directory, where Rx(Q) represents the 

x-coordinate of the point  Q and  h(W) is a hash 

value of  W). We require that these components are 

protected by the access control (public can see and 

use but unable to modify the values/points in the 

directory). However, the other four components 

(C,Q,V,W) will be stored in the accessible public 

key directory. These directories will be monitored 

and protected by the administrator 

7. The server validates if Y = V+W mod p and f (C) = 

Y+Q mod p holds 

8. The server chooses , where , < m and 

computes J = G mod p and K = G mod p 

9. The server generates a user secondary certificate, C' 

defined by C' = Rx(Q)+C mod p 

10. The server stores (C',J,K) in the accessible public 

key directory 

 

Thus, each receiver has two directories; the protected 

access control directory (Rx(Q),Y,h(W)) and the 

accessible public directory (C,Q,V,W,C',J,K). 

Phase 3: Key Authentication Phase 

This phase is completely done by the sender:  

 

1. The sender verifies if the equation f(C') = Rx(Q)J + 

CK mod p is true or not 

2. The sender accepts the public key Q as valid if the 

equation above holds otherwise rejects it 

 

We next provide proof of the receiver’s public key 

validity so that the sender is convinced to use the validated 

public key to encrypt any message to the receiver. 

Proposition 1 

Given the scheme’s public parameter 

(p,a,b,m,E,G,h). If all receiver’s public key, Q, 

certificate, C and (C',J,K) are generated correctly, 

then the receiver’s public key is validated. 

Proof 

If all receiver’s public key, Q, certificate, C and 

(C',J,K) are mathematically correct, then we have  C = 
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(pwd+s+d) mod p, C' = Rx(Q)+C mod p, J = G mod 

p and  K = G mod p. Note that: 

 

 

( ') '

( )

( )

( ) mod .

x

x

x

R Q C G

R Q G C G

R Q J C K

f C C G

p

 

 

  

  

   






 

 

We now discuss the security and efficiency 

performances of the new designated key 

authentication scheme. 

Security Analysis 

We show that our scheme is heuristically secure by 

applying the scheme with common security 

cryptographic attacks. We define each attack and give 

the corresponding analysis of why this attack would fail. 

In general, the possible cryptographic attacks by the 

adversary are as follows. 

Attack 1: Public Key Replacement and Public 

Keyword Modification Attacks 

In this attack, the attacker tries to generate a false 

but valid public key and certificate and replace the 

original public key and certificate in the public key 

directory with the false ones. If the attacker succeeds 

with high probability, then the sender is unknowingly 

using the false public key to encrypt the message. If 

this cipher text falls into the attacker, he or she will be 

able to read the message using his or her own 

corresponding false but valid private key. There are 

two strategies of this attack. 

First, the attacker calculates the false public key, Q̄, 

chooses a false password, pwd  and attempts to obtain 

the corresponding false certificate, C̄. The attacker 

chooses the false key, d̄, assuming d  d̄ (this assumption 

is valid because of the hardness of ECDLP) and 

calculates Q̄ = d̄G mod p Next, the attacker computes  

( )mods C pwd d p    where C = pwd+s+d is the 

receiver’s original certificate. The attacker next 

generates the value of false certificate C̄ via: 

 

modC pwd s d p    

 

and publishes Q̄ and C̄ to replace Q and  C in the public 

key directory. Then, the server has to verify whether 

the values of C̄, Q̄ and Y are valid components by 

checking whether f(C̄) = Y+ Q̄ mod p is true or not. 

However, the server is unable to verify them, as the 

value of f(C̄) is not equal to Y+ Q̄. This can be proven 

in the following theorem. 

Theorem 

Given the scheme’s public parameter (p,a,b,m,E,G,h). 

If Q̄ = d̄, C pwd s d    and ( )mods C pwd d p    

are computed by first randomly choosing the values 

pwd  and d̄  d where C = pwd+s+d is the receiver’s 

original certificate, then the values Q̄ and C̄ are not valid 

public key and certificate of the receiver. 

Proof 

It is known that C̄ = C. Therefore: 

 

( )

( ) ( ) 0.

pwd s d pwd s d

pwd s pwd s d d

    

     
 

 

Notice that d-d̄  0 because the probability for the 

value to be zero is low, as the value of d̄ is randomly 

chosen by two different users. Thus:  

 

    0

.

pwd s pwd s

pwd s pwd s

   

  

 

 

Note that: 

 

   

   

( ) mod

mod

f C pwd s d G pwd s G dG p and

Y Q pwd s d G pwd s G dG p

      

       
 

 

Subtracting these two equations, we obtain 

     ( )f C Y Q pwd s G pwd s G        and since 

pwd s pwd s    we have    pwd s G pwd s G   . 

We conclude that: 

 

( ) mod .f C Y Q p   

 

This shows that the server is unable to verify C̄, Q̄ 

and Y  and the attacker fails to replace the public key. 

Second, the attacker chooses the false certificate, C̄ 

and tries to obtain the corresponding false public key, Q̄ 

such that f(C̄) = Y+Q̄ mod p following the original 

equation in the scheme. The attacker chooses C̄, 

assuming that C̄  C (this assumption is valid because of 

the hardness of ECDLP). It can be shown that: 

 

( ) mod

mod

mod .

f C Y Q p

C G Y Q p

Q C G Y p

 

  

  

 



Izzmier Izzuddin Zulkepli and Eddie Shahril Ismail / Journal of Computer Science 2020, 16 (5): 583.590 

DOI: 10.3844/jcssp.2020.583.590 

 

587 

Now the attacker successfully obtains the 

corresponding value of Q̄ which satisfies the equation 

f(C̄) = Y+Q̄ mod p. However, the value of Rx(Q̄) is not 

equal to the value of Rx(Q̄) stored in the public key 

directory which is protected by the access control 

technique. Therefore, Q̄ will be rejected by the server. 

Otherwise, the attacker may choose Q̄ and try to obtain 

C̄ from Q̄ = C̄G-Y mod p. This attempt might fail due to 

the difficulty of solving the elliptic curve discrete 

logarithm problem. 

Attack 2: Keyword/Password Guessing Attack 

The attacker attempts to obtain the password, pwd, 

of a specific user by guessing. If the attacker 

successfully obtains pwd, then the scheme is 

considered insecure. From equation Y = f(pwd+s)mod 

p, the attacker will try to guess the user password as 

pwd  and verifies whether the following equation is 

true or false: 

 

  modY f pwd W p   

 

The above equation is only true when pwd pwd . 

The value of pwd  is chosen from 𝔽p where p is 160-bit 

and 2159 < p < 2160. Thus, the probability of having 

pwd pwd  is approximately 
160

1 1

2p
  and this is highly 

unlikely to happen. To obtain the password directly from 

equations V,W,Y and C, the attacker has to solve the 

elliptic curve discrete logarithm problem. This is 

impossible as this hard problem is cryptographically 

difficult to solve. 

Attack 3: Achieving user Public Key Non-

Repudiation 

A dishonest user tries to repudiate his public key 

or signature on a received document. Therefore, after 

the user signs the document, the user tries to replace 

the public key, Q and the certificate,  C, as well as the 

original server certificate, C', with the false but valid 

public key, Q̄, certificate, C̄ and server’s certificate, 

C̄'. Specifically, the user wants to calculate the key Q̄ 

 Q such that it satisfies Rx(Q̄) = Rx(Q). This can be 

achieved by solving the equation: 

 

 

2 3

3
( ) ( ) modx x

y x ax b

R Q aR Q b p

  

  
 

 

For y. Next, the user tries to generate the new user 

certificate by first choosing d̄ randomly and 

calculating: 

modC pwd s d p   . 

 

Then, the user obtains the new server certificate 

from the equation C' = Rx(Q)+C mod p. However, 

this is impossible as the values   and  are the server 

secret keys.  

The user may also attempt to obtain the value of C̄' 

from the equation f(C') = Rx(Q)J+CK mod p. Note that: 

 

( ') ( ) mod

' ( ) mod

' mod .

x

x

f C R Q J C K p

C G R Q J C K p

C G p

   

    

 
 

 

To obtain the value of  C̄, the user must solve the 

elliptic curve discrete logarithm problem of 

' mod .C G p  This is impossible because elliptic curve 

discrete logarithm problems in cryptography are difficult 

to solve as to this day, no polynomial algorithms have 

been found. 

Performance Analysis 

We now discuss the efficiency performance of our 

key authentication scheme in terms of the number of 

keys, computational complexity and communication 

cost. Let Tmul and Texp be the time necessary for 

performing a modular multiplication and a modular 

exponentiation, respectively. Let also Tec-add, Tec-mul 

and Th be the time taken for performing an elliptic 

curve addition, an elliptic curve scalar multiplication 

and a hashing, respectively. We further use the 

following standard conversion of various operation 

units to the time complexity for executing the modular 

multiplication (Ismail and Sakib, 2012) given by Texp 

 240Tmul; Tec-mul  0.12T and Tec-mul  29Tmul. 

From the Table 1, for the key generation phase, 

time complexity 3Tec-mul is required, user registration 

phase needed 3Tec-mul+7Tec-mul+Th and key 

authentication phase needed Tec-add +2Tec-mul. By using 

the conversion, time complexity needed for key 

generation phase, user registration phase and key 

authentication phase are respectively given by 29Tmul, 

203.36Tmul+Th and 58.12Tmul. The overall 

communication cost of the scheme is 11|p| in total. 

This is considered smaller than Wu and Lin (2004), 

Zhang and Kim (2005) and Yoon and Yoo (2007). 

We next compare our scheme with some other related 

schemes in Table 2. In Table 3, we provide the 

comparison in terms of time complexity, Tmul. 

Based on Table 2 and Table 3, it shows that the time 

complexity of our scheme is the lowest and from Fig. 1, 
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we next compare the asymptotic upper bound of the 

running time, in terms of input size, n of the algorithm 

by using the standard conversion of Tmul  O(logn)2 and 

Texp  O(logn)3 following Menezes et al. (1997). It 

describes the worst-case scenario which can be used to 

describe the upper bound of the execution time required by 

an algorithm. Note that the running times of all the 

compared key authentication schemes are asymptotically 

bounded by O(logn)2 + O(logn)3 whereas our scheme is 

asymptotically bounded by O(logn)2. These would mean 

that all schemes work in poly-logarithmic time, but our 

scheme significantly needs the least. 

 
Table 1: Efficiency of our proposed scheme 

  Key generation phase User registration phase Key authentication phase 

Computational complexity Tec-mul 3Tec-mul +7Tec-mul +Th Tec-add +2Tec-mul 

Computational complexity Tmul  29Tmul 203.36Tmul +Th 58.12 Tmul  

Communication cost |p| 9|p| |p| 

 
Table 2: Time complexity in registration phase and authentication phase 

The Schemes User registration phase Key authentication phase 

Lee et al. (2003) 4Tmul+3Texp+Th  2Tmul+ 2Texp 

Wu and Lin (2004) 2Tmul+3Texp+Th Tmul+Texp  

Peinado (2004) 4Tmul+3Texp+Th Tmul+Texp  

Zhang and Kim (2005) 2Tmul+3Texp+Th Tmul+Texp  

Yoon and Yoo (2007) 3Tmul+3Texp+Th Tmul+2Texp  

Suparlan et al. (2016) 4Tmul+6Texp+Th Tmul+2Texp  

Bong (2017) 6Tmul+8Texp+Th Tmul+2Texp  

Our scheme 3Tec-add+7Tec-mul+Th Tec-add+2Tec-mul  

 

Table 3: Conversion of time complexity in registration phase and authentication phase to Tmul operation 

The Schemes User registration phase Key authentication phase 

Lee et al. (2003) 724Tmul+Th 482Tmul  

Wu and Lin (2004) 962Tmul+Th 241Tmul  

Peinado (2004) 724Tmul+Th 482Tmul  

Zhang and Kim (2005) 962Tmul+Th 241Tmul  

Yoon and Yoo (2007) 723Tmul+Th 481Tmul  

Suparlan et al. (2016) 1444Tmul+Th 481Tmul  

Bong (2017) 1926Tmul+Th 481Tmul  

Our scheme 203.36Tmul+Th 58.12Tmul  

 

 
 

Fig. 1: Total computational costs in both registration phase and authentication phase for several key authentication scheme 
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Conclusion 

One of the challenges in designing a key 

authentication scheme is its security analysis. If we 

want to create a secure scheme, the algorithms or 

phases in the designated scheme must be 

mathematically and cryptographically strong. In the 

literature, there are many key authentication schemes 

developed based on factoring and discrete logarithm 

problems. In this study, we design a key 

authentication scheme based on the hardness of 

solving the elliptic curve discrete logarithm problem. 

Our proposed scheme provides greater security and 

efficiency compared to existing key authentication 

schemes. The designated scheme is also shown to be 

heuristically secure against most of the common 

cryptographic attacks for key authentication such as 

public keyword modification and keyword guessing 

attacks. In terms of efficiency performance, our 

scheme requires the least amount of time complexity 

of 203.36Tmul+Th for user registration phase, 58.12Tmul 

for key  authentication phase and offers O(logn)2 

poly-logarithmic running time compared to some 

existing key  authentication  schemes. Next, the 

overall communication cost of the scheme is 11|p| in 

total. For future work, one could strengthen the 

security of the scheme by applying provable security 

on it. One may also integrate the security of the 

scheme with other hard problems to make it harder for 

an adversary to break it. 
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