

 © 2020 Fariaa Abdalmajeed Hameed, Harith Raad Hasan, Ahmed Abdullah Ahmed and Gulala Ali Hama Amin. This open

access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Using the Cuckoo Search for Generating New Particles in

Particle Swarm Optimization Algorithm

1
Fariaa Abdalmajeed Hameed,

2
Harith Raad Hasan,

3
Ahmed Abdullah Ahmed and

4
Gulala Ali Hama Amin

1Technical College of Informatics, Sulaimani Polytechnic University, Sulaimani, Iraq
2Sulaimani Polytechnic University, Kurdistan Technical Instiute Sulaimani, Iraq
3Faculty of Engineering and Science, Qaiwan International University (QIU) Raparin, Sulaymaniyah, Kurdistan Region- Iraq
4Technical College of Informatics, Sulaimani Polytechnic University, Sulaimani, Iraq

Article history

Received: 27-01-2020

Revised: 11-03-2020

Accepted: 13-04-2020

Corresponding Author:

Fariaa Abdalmajeed Hameed

Technical College of

Informatics, Sulaimani

Polytechnic University,

Sulaimani, Iraq
Email: fariaa.hameed@spu.edu.iq

Abstract: This study is focused on as Cuckoo Search (CS), one of the

current meta-heuristic optimization algorithm. The CS algorithm is useful

in generating and searching for the most optimum particles of important

meta-heuristic optimization algorithm, known as the Particle Swarm

Optimization (PSO), to enhance its performance. This optimization is

confirmed through a benchmark online optimization and actual problems.

The PSO algorithm performance is also compared with differing algorithms

representative of the area. The CS optimal solutions outperform alternative

current solutions as CS has distinct search features. The study findings have

implications for future studies and practice.

Keywords: Optimization, Cuckoo Search (CS), Particle Swarm Optimization

Introduction

In the current business landscape, there exist

several optimization opportunities, with some of the

top being the optimizing schedules and workflow for

the mitigation of resources (cost and time) and

maximization of output.

In this regard, simple exhaustive search constitute

one of the pioneering optimizer types, with every

potential combination presented to obtain the best

one. This type of optimization is known for its

accuracy as they best combination are eventually

obtained but its efficiency is quite low because if

there are more than a few thousand combinations, it

takes considerable time to examine all of them. This is

the reason behind the limiting of exhaustive search

optimizers of the number of variables employed, or

limiting the number of variable values-but the best

alternative is by using Cuckoo Search (CS).

Specifically, CS is deemed to an evolutionary

optimization algorithm developed and presented by

Yang and Deb (2009; Yang, 2011). CS primarily

refers to the cuckoo bird, where the actual bird takes

advantage of some other bird species by laying its

eggs in their nests (Payne et al., 2005). In this case,

every egg is a representation of a new solution-with the

objective being the alternative use of new and potentially

better solutions than those in existing ones. CS algorithm

is prominent and popular owing to its simplicity.

Contrastingly, conventional optimization algorithms

entail the use of traditional methods like the dynamic

programming, branch-and-bound and gradient-based

techniques whereas their modern counterparts involve

meta-heuristics searching. Meta-heuristics algorithms

include simulated annealing, evolutionary computation

EC, colony optimization, among others.

In the past few years, evidence shows that meta-

heuristic algorithm has been understudied although its

combination with other optimization methods could

create a robust system that could handle actual large

scale problems. This holds true for the meta-heuristic

algorithm branch known as the Particle Swarm

Optimization (PSO). PSO refers to a stochastic search

procedure that has its basis on social behavior

observations (e.g., flocking birds and schools of fish).

This algorithm type evaluates search space in a

simultaneous manner through the use of global

information, which is why it has a higher likelihood to

determine global solution to a specific issue.

Previous Studies on CS Application

Under this section the CS application findings in prior

studies are presented and discussed. On the basis of the

reviewed work, there are several categories using CS and

they include the field of engineering (Vaisakh et al., 2009;

Fan and Zahara, 2007; Omran et al., 2005; Price et al.,

2005; Qin et al., 2009), pattern recognition (Kennedy et al.,

Fariaa Abdalmajeed Hameed et al. / Journal of Computer Science 2020, 16 (4): 430.438

DOI: 10.3844/jcssp.2020.430.438

431

2001; Potter et al., 2010; Xin et al., 2011; Storn and Price,

1997), software testing and data generation (Guo et al.,

2006; Storn and Price, 1997; Hao et al., 2007),

networking (Shelokar et al., 2007; Pant et al., 2008), job

scheduling (Fu et al., 2010; El Dor et al., 2012) as well

as data fusion and wireless sensor networks (Xin et al.,

2010; Akbari and Ziarati, 2008).

More specifically, a new diagnosis technique that

used CS in engineering was adopted in (Yang and Deb,

2010) to resolve issues of engineering design

optimization, with the inclusion of springs design and

welded beam structures. The optimization objective in

this case is to mitigate the spring weight and the overall

cost of fabrication. The findings were benchmarked with

evolutionary methods (e.g., GA and PSO) and were

evidenced to be quite efficient and superior in almost

the entire issues tested. In (Vazquez, 2011), the

spiking neuron’s accuracy and performance was

measured using pattern recognition/classification

fitted with CS Algorithm and a comparison was later

conducted between CS and DE algorithms

performance. Based on the outcome, spiking neuron

model trained with CS outperformed in the adjustment

of synaptic neuron weights.

Moving on to (Bacanin, 2012), the author focused on

process parameters including, maximum cycle number of

nests, runtime, number of parameters and probability and

their role in optimization of process performance

measures. The study employed CS in object-oriented

software to address issues of unconstrained optimization-

combinational and numeric optimization issues in JAVA

programming language. Based on the outcome of the

benchmark test, the proposed software had good

performance, indicating the readiness of the system to be

used to solve new problems.

Natarajan and Subramanian (2012), the author

brought forward Enhance Cuckoo Search for

Optimization of Bloom Filter in Spam Filtering. The

study used an Enhanced Cuckoo Search (ECS)

algorithm to mitigate the total membership

invalidation cost of BFs, within which the optimal

false positive rates are determined along with the

number of elements within each of the bins. Based on

the experimental outcome, for CS and ECS

outperformed in numbers of bins ECS. In a related

study, (Burnwal and Deb, 2012) brought forward

Cuckoo Search for the purpose of scheduling

optimization of flexible manufacturing system by

decreasing the penalty cost and increasing the

machine use time as used performance. The finding

was compared to evolutionary techniques findings

(e.g., GA) and it indicated the efficient and better

performance of CS when solving tested problems.

Moreover, the Cuckoo Based Particle Approach

(CBPA) was also used in (Dhivya et al., 2011) to

realize energy efficiency in Wireless Sensor Network

and multimodal objective functions. CS was used to

cluster head selection and form clusters among the

sensor nodes, after which the authors measured the

decrease in energy of Wireless Sensor Networks

(WSNs) and the increase in the lifetime through

performance. The CBPA was then compared with the

standard LEACH protocol and HEED protocol. The

results of the simulation illustrated that CBPA

generated comparable results owing to the process of

optimal search in cluster formation and appropriation

of paths in transmitting sensed data.

Along the same line of study, (Yildiz, 2012) made

use of CS for the selection of optimal parameters in the

context of milling operations, (Chifu et al., 2012)

optimized the composition processes of semantic web

service with the assistance of CS, while (Kumar and

Chakarverty, 2011) realized optimal design for reliable

integrated system. Lastly, Walton et al. (2011) modified

CS to solve non-linear issues (e.g., mesh generation).

Overview of Cuckoo Search Algorithm

Cuckoo Search (CS) is described as a novel meta-

heuristic algorithm created to issues relating to

optimization, aligned with its namesake, which is the

parasitic behavior of cuckoo species, Levy flight

behavior and fruit flies. Specifically, in CS, the cuckoo’s

walking steps are determined by the flights, with each

egg representing a new solution and the objective being

to utilize optimum ad better solutions replacing the

ineffective ones in the nest, with each nest having one

egg. It is possible to extend the algorithm to more

complicated cases, within which each nest has many

eggs (i.e., many solutions). For instance, when producing

new solutions x
(t+1)

 for cuckoo I, a Levy flight is

performed using the following equation:

() () ()1

ˆ
t t

i i
x x Levyβ λ

+

= + ⊕

In the above equation, α > 0 represents the step size

that is related to the examined problem scales, where in

majority of cases α = 1 can be used. The product ⊕

represents entry wise multiplications, whose product is

similar to the PSO, with the difference being that the

random walk through Levy flight works more efficiently

in terms of exploration of search step as the length of the

step is longer in long-term. In essence, the Levy flights

provide a random walk represented as follows:

() ()ˆ , 1 3Levy u t
λ

λ λ
−

= < ≤∼

The above equation is an infinite variance, having

an infinite mean. Figure 1 demonstrates the pseudo

code of CS.

Fariaa Abdalmajeed Hameed et al. / Journal of Computer Science 2020, 16 (4): 430.438

DOI: 10.3844/jcssp.2020.430.438

432

Fig. 1: Cuckoo search pseudo code

Parameters:

n represents the number of hosts nests,

Pa represents the probability of discovering an alien egg,

MaxIter represents the maximum number of iterations,

Initialization,

Generate initial n host, Xi

(T)

Evaluate f(Xi

(T))

Iterations:

New Solution Generation

() () ()1
ˆ

t t

i i
x x Levyβ λ

+

= + ⊕

Evaluate f(Xi

(T+1)
):

Select a random nest xJ

If f(Xi

(T)
)< f(Xi

(T+1)
)

Replace (x

(T)
) with (x

(t+1)
)

Discard a fraction of pa worse nests,

Develop new nests with Levy flights,

Identify and keep the best solutions

Overview of Particle Swarm Optimization

(PSO)

The Congress on Evolutionary Coputation

(Kennedy and Eberhart, 1995) presented a paper on PSO

in 1995, triggering waves of publications in the past decade

on the different applications success of PSO to resolve

issues concerning optimization, as inspired by the flocking

and foraging behavior of birds and fish (Brownlee, 2011).

Such attributes are highly desirable, easily understandable

and implemented. PSO is mainly used for its timely

convergence, particularly when pitted against other

optimization algorithms (e.g., simulated annealing and

genetic algorithms) as illustrated in (Abraham et al., 2006).

The appeal of PSO stems from its simple conceptual

framework and the birds flocking analogy facilitating

conceptual visualization of the search process. In

particular, a solution in PSO is displayed through a

particle, with the population of solutions referred to as

swarm of particles and each particle having two major

properties, namely position and velocity. Added to this,

each particle shifts to a new position with the help of

velocity and once they are settled in a new position, the

best position of the particle and swarm are made current

as required. Each particle velocity is modified on the

basis of its experiences.

In other words, the velocity (Vi) of each particle is

updated with the help of the following equation:

()

()

1

1

2

1 1

t t t

i i i i

t

i

t t t

i i i

v wv c rand pbest x

c rand gbest x

x x v

+

+ +

= + × × −

+ × × −

= +

In the above equation:

t

i
v = Represents the particle i velocity, with iteration t

w = Represents the weighing function

C1 = Represents individual coefficient

C2 = Represents social coefficient

Rand = Represents random number (0-1)
t

i
X = Represents the current position of particle i,

at t iteration
1t

i
v

+ = Represents the current velocity of i particle,

at t+1 iteration

pbesti = Represents the pbest of agent i at t iteration

gbest = Represents the best solution from the

alternative solutions.

begin

 Objective function f(x)

 Generate initial population of n host nest

 Evaluate fitness and rank eggs

 while (t > MaxGeneration) or stop criterion

 t = t +1

 Get a cuckoo randomly/generate new solution by lèvy flights

 Evaluate quality/fitness, Fi

 Choose a random nest j

 if (Fi > Fj)

 Replace j by the new solution

 end if

 Worst nest is abandoned with probability Pa and new nest is built

 Evaluate fitness and rank the solutions and find current best

 end while

 Post process results and visualization

end

Fariaa Abdalmajeed Hameed et al. / Journal of Computer Science 2020, 16 (4): 430.438

DOI: 10.3844/jcssp.2020.430.438

433

Fig. 2: PSO pseudo code

Repetitive steps of the process are carried out until a

criterion is met. In the first step, PSO is initialized, where

the initial swarm of particles is produced and each particle

initialized at random position as well as velocity, after

which each particle is evaluated for their fitness. Each

calculation of the fitness value is compared against the prior

optimum one of the particle and the prior optimum value of

the whole swarm. From this, the personal best and global

best positions are updated accordingly.

In case a stopping criterion falls short of being met, the

velocity and position are adjusted to create a new swarm

and the personal and global best positions and old velocity

used in the update of velocity. The two main PSO

operations are velocity update and position update, with the

former being based on three components, namely, the old

velocity constituting inertia/momentum term, experience of

individual particle constituting cognitive or self-learning

term and experience of the whole swarm constituting

group/social learning term. In each term, a weight constant

is allocated and for the fundamental PSO algorithm, there

are three required constants. Notably, PSO algorithm is not

in need of sorting of fitness values of solutions in any step.

The pseudo-code of PSO is depicted in Fig. 2.

Particle Swarm Optimization/CS: PSO/CS

and Frameworks

The proposed algorithm primarily aims to improve the

PSO algorithm performance to achieve optimum solutions

in comparison to standard PSO and CS algorithms with

lower execution periods compared to standard PSO. Both

CS and PSO algorithms have a stochastic nature and as

such, are invaluable in achieving global optimum compared

to their gradient descent counterpart. However, it is simple

for the former to drop into the local optima with

unsatisfactory convergence accuracy.

Fig. 3: CS/PSO pseudo code

Table 1: Dimensions, ranges, of benchmark test functions used

in the experiments.

Test function Dimension (n) Range

F1 3 x1[10,55], x2[1.1,2], x3[10,40]

F2 2 x1 [17.5,40], x2[300,600]

F3 4 [12, 60]

F4 3 x1[0.02,0.8], x2[10,40],

 x3[3000,20000]

F5 30 [-100, 100]

F6 30 [-5.12, 5.12]

F7 30 [-32.768, 32.768]

F8 30 [-30,30]

In order to leverage the advantage using the best of CS and

PSO to enhance optimization performance, the new design

preservers the PSO algorithms. It uses CS to produce the

initial values of the particles and the velocity vectors rather

than randomly generating them with high cost and

significant period of time, or to face the risk of being

trapped in the local optima-thus, the CS strategy

initialization of the PSO particles and velocity is conducted

to improve PSO performance. The usual PSO algorithm

proceeds right after.

The pseudo code of CS/PSOE is demonstrated in Fig.

3, where it is notable that the particles positions are

produced through CS algorithm after which they are

updated normally using PSO foe each particle, evaluated

on the basis of their fitness value. Lastly, the optimum

solution is identified by the algorithm.

Experimental Results and Discussion

The CS/PSO performance in light of minimization

and maximization benchmark functions are chosen,

with the inclusion of 4 actual problems (section 6.1

details the benchmark).

For each particle
{
Starting CS to generate the particle position and velocity vectors
}
Do until maximum iterations or minimum error criteria
{
 For each particle
 {
 Calculate Data fitness value
 If the fitness value is better than pBest
 {
 Set pBest = current fitness value
 }
 If pBest is better than gBest
 {
 Set gBest = pBest
 } }
 For each particle
 {
 Calculate particle Velocity
 Use gBest and Velocity to update particle Data
 }

For each particle
{
 Initialize particle

}
Do until maximum iterations or minimum error criteria
{
 For each particle
 {
 Calculate Data fitness value
 If the fitness value is better than pBest
 {
 Set pBest = current fitness value
 }
 If pBest is better than gBest
 {
 Set gBest = pBest

 } }
 For each particle
 {
 Calculate particle Velocity
 Use gBest and Velocity to update particle Data

 }

Fariaa Abdalmajeed Hameed et al. / Journal of Computer Science 2020, 16 (4): 430.438

DOI: 10.3844/jcssp.2020.430.438

434

Range and n, are feasible bound as presented along

with function dimension in Table 1.

Benchmark Functions

1. Gas Transmission (F1):

()
()

1/2
5 1/2 2/3 2 4

1 2 3 2 3

8 1 0.219 6

1 2 1

8.61 10 1 3.69 10

7.72 10 765.43 10 .

x x x x x
Min f x

x x x

−

−

−

 ∗ − + ∗
=
+ ∗ − ∗

2. Optimal Capacity of Gas Production Facilities

(F2):

()
()

()

0.85

2

1 1

0.752

1 2

61.8 5.72 0.2623 40 ln
200

0.087 40 ln 700.23 .
200

x
x x

Min f x

x
x x

−

−

 + + −
 =

+ − +

3. Design of Gear Train (F3):

()

2 2

1 2

3 4

1 1
.

6.931 6.931

d b

a f

T T x x
Min f x

T T x x

= − = −

4. Optimal Thermo hydraulic Performance of an

Artificially Roughened Air Heater (F4):

2.51ln 5.5 0.1 .
M H

MaxL e R G
+

= + − −

where, RM = 0.95x2
0.35

, GH = 4.5(e
+
)

0.28
(0.7)

0.57
, e

+
 =

x1x3(f /2)
1/2

, f = (fs + fr)/2, fs = 0.079x3
−0.25

,fr =

2(0.95x3
0.53

+2.5ln(1/2x1)
2
-3.75)

−2

5. SpShpere (n variables) (F5):

() 2

1

n

n i

i

Sp x χ

=

=∑
�

6. Rastrigin’s Function (F6):

() ()2

1

10 10cos 2

n

i i

i

f x n x xπ
=

 = + − ∑

7. Ackley’s Function (F7):

()

() ()

2

1

1

1
exp

1
exp cos exp 1

n

i

i

n

i

i

f x a b x
n

cx a
n

=

=

= − ⋅ − ⋅

− + +

∑

∑

where, a = 20, b = 0.2, c = 2*π

8. Rn Rosenbrock (F8):

() () ()
1

2 2
2

1

1

100 1 .

n

i i i

i

f x x x x
−

+

=

 = − + −
 ∑

Results and Discussion

The algorithm brought forward in this study is

compared with both CS and PSO standard algorithms,

with the parameters of PSO established as number of

particles and number of iterations during the run C1,

C2 = 1.19, R1, R2 = 1. With regards to the CS

parameters, they were established as population size

and number of iteration and problem dimension

during the run, with maximum population size of 100,

Cr = 0.5 and F = 0.7. Each problem has a distinct

average of the best value for 20 run times and

maximum number of functions evaluations (Nb.evals)

(refer to Tables 2 and 3).

On the basis of the experiments, it is notable that

CS/PSO managed to achieve the optimum outcomes

on majority of the problems posed, with the algorithm

leading to significant developments compared to prior

PSO and CS, with CS/PSO evidently outperforming

all other algorithms tested on Figures 4, 5, 6 and 7.

Figure 8 illustrates the optimum solution for

CS/PSO algorithm, with iteration 4000 and 500 and

domain (n = 30), for SpShpere function. Figures 9 and

Fig. 10 illustrate the minimum result for the proposed

algorithm CS/PSO, with iteration 3000 and 4000 and

domain (n = 30), for both the Rastrigin function and

Ackley function. The best value was obtained with

iteration 1500 for Rn Rosenbrock, with domain {n =

30). Thus, performance was good in the overall prior

functions.

Table 2: Comparison between the proposed method and different algorithms based on real life problem benchmark functions

Function Nb.evals CS PSO CS/PSO

F1 24000 1.6929e+006 1.6894e+006 7.43233e+006

F2 16000 1.6987e+002 1.6988e+002 1.69844e+002

F3 32000 0.9922e-008 0.9623e-008 1.40108e-010

F4 24000 4.2053e-005 4.1986e-005 2.31987e-006

Fariaa Abdalmajeed Hameed et al. / Journal of Computer Science 2020, 16 (4): 430.438

DOI: 10.3844/jcssp.2020.430.438

435

Table 3: Comparison of classical PSO and CS with proposed CS/PSO on standard test function benchmark

Function PSO CS CS/PSO

 Best 2.131×10−12 1.4364×10−12 2.2962×10−24

F5 Worst 4.2322×10−2 8.7664×10−7 1.1863×10−11

 Std 6.6875×10−3 1.3406×10−7 1.9369×10−12

 Best 32.8287 21.2728 13.9294

F6 Worst 127.3341 175.3698 65.6672

 Std 19.0037 35.8085 9.2816

 Best 7.3543×10−6 8.4260×10−8 7.4252×10−13

F7 Worst 5.9074 2.3162 1.5017

 Std 1.2183 0.6521 0.3366

 Best 2.0718 18.3952 0.0248

F8 Worst 485.0228 577.7486 225.5721

 Std 76.5658 91.5654 41.6379

Fig. 4: Performance comparisons of CS, PSO, CS/PSO for

function F1

Fig. 5: Performance comparisons of CS, PSO, CS/PSO for

function F2

Fig. 6: Performance comparisons of CS, PSO, CS/PSO for

function F3

Fig. 7: Performance comparisons of CS, PSO, CS/PSO for

function F4

CS PSO

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

F
4
 b

e
s
t

v
a
lu

e
 s

o
 f

a
r

CS PSO

1.02

1

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0.84

0.82

0.8

F
3
 b

e
s
t

v
a
lu

e
 s

o
 f

a
r

1.6989

1.6988

1.6987

1.6986

1.6985

1.6984

1.6983

1.6982

1.6981

F
2
 b

e
s
t

v
a
lu

e
 s

o
 f

a
r

CS PSO CS/PSO

4

3.6

3.2

2.8

2.4

2

1.6

1.2

0.8

0.4

0

CS PSO CS/PSO

F
1
 b

e
s
t

v
a
lu

e
 s

o
 f

a
r

CS/PSO

CS/PSO

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Fariaa Abdalmajeed Hameed et al. / Journal of Computer Science 2020, 16 (4): 430.438

DOI: 10.3844/jcssp.2020.430.438

436

Fig. 8: The evolution curve of sphere function

Fig. 9: The evolution curve of Rastrigin’s function

0

0.5

1

1.5

2

2.5

3

50 100 500 1000 1500 2000 3000 4000 5000

fi
tn

e
ss

 (
lo

g
)

iteration

PSO CS CS/PSO

Fig. 10: The evolution curve of Ackley’s function

Conclusion

The performance of PSO can be enhanced by

achieving the optimum values and accordingly, we

used the CS algorithm in this study to provide a

balance between exploitation and exploration. The

new method proposed, which is CS/PSO enhances the

performance of particle swarm optimization through

the incorporation of CS algorithm. The primary

objective is to use the proposed algorithm to produce

PSO particles, with the help of CS algorithm to

improve the PSO searching abilities. The approach

achieved outstanding results on 8 well-known

benchmark functions, with the inclusion of 4 actual

life problems. The results of the computations

indicated that the proposed approach provided accurate

outcomes in comparison to its evolutionary counterparts.

Acknowledgement

The authors would like to acknowledge the Sulaimani

Polytechnic University, Qaiwan International University

and Kurdistan Technical institute for their financial

support to this research. Thanks also go to the reviewers

of this paper for their constructive comments.

Author’s Contributions

All authors equally contributed to this work.

Ethics

The Authors declare that there are no ethical issues

associated with this work.

References

Abraham, A., H. Guo and H. Liu, 2006. Swarm
Intelligence: Foundations, Perspectives and
Applications. In: Swarm Intelligent Systems,
Nedjah, N. and L. Mourelle (Eds.), Springer
Berlin/Heidelberg, ISBN-13: 978-3-540-33869-7,
pp: 3-25.

Akbari, R. and K. Ziarati, 2008. Combination of

particles swarm optimization and stochastic local

search for multimodal function optimization. Sci.

China Inform. Sci., 53: 980-989.

 DOI: 10.1109/PACIIA.2008.84
Bacanin, N., 2012. Implementation and performance of

an object-oriented software system for cuckoo
search algorithm. Int. J. Math. Comput. Simulat., 6:
185-193.

Brownlee, J., 2011. Clever Algorithms: Jason Brownlee.

Burnwal, S. and S. Deb, 2012. Scheduling optimization of

flexible manufacturing system using cuckoo search-

based approach. Int. J. Adv. Manufact. Technol.

Chifu, V., C. Pop, I. Salomie, D. Suia and A. Niculici,

2012. Optimizing the semantic web service

composition process using cuckoo search. Intell.

Distributed Comput.

Dhivya, M., M. Sundarambal and L.N. Anand, 2011.

Energy efficient computation of data fusion in

wireless sensor networks using cuckoo based

particle approach. Int. J. Commun. Network Syst.

Sci., 4: 249-255. DOI: 10.4236/ijcns.2011.44030

6

5

4

3

2

1

0

F
it

n
es

s
(l

o
g
)

50 100 500 1000 1500 2000 30000 4000 5000

Iteration

CS PSO CS/PSO

14

12

10

8

6

2

4

0

F
it

n
es

s
(l

o
g
)

50 100 500 1000 1500 2000 30000 4000 5000

Iteration

CS PSO CS/PSO

Fariaa Abdalmajeed Hameed et al. / Journal of Computer Science 2020, 16 (4): 430.438

DOI: 10.3844/jcssp.2020.430.438

437

El Dor, A., M. Clerc and P. Siarry, 2012. Hybridization

of differential evolutionand particle swarm

optimization in a new algorithm: DEPSO-2S.

Springer- Verlag Berlin Heidelberg, pp: 57-65.

Fan, S.K. and E. Zahara, 2007. A hybrid simplex search

and particle swarm optimization for unconstrained

optimization. Eur. J. Oper. Res. 181: 527-548.

 DOI: 10.1016/j.ejor.2006.06.034

Fu, W., M. Johnston and M. Zhang, 2010. Hybrid

particle swarm optimization algorithms based on

differential evolution and local search. Proceedings

of the Australasian Joint Conference on Artificial

Intelligence, (CAI’ 10), Springer, Berlin, pp: 313-322.

DOI: 10.1007/978-3-642-17432-2_32

Guo, Q.J., H.B. Yu and A.D. Xu, 2006. A hybrid PSO-

GD based intelligent method for machine diagnosis.

Digital Signal Process., 16: 402-418.

 DOI: 10.1016/j.dsp.2005.12.004

Hao, Z.F., G.H. Guo and H. Huang, 2007. A particle swarm

optimization algorithm with differential evolution.

Proceedings of the 6th International Conference on

Machine Learning and Cybernetics, Aug. 19-22, IEEE

Xplore Press, Hong Kong, China, pp: 1031-1035.

 DOI: 10.1109/ICMLC.2007.4370294

Kennedy, J. and R.C. Eberhart, 1995. Particle swarm

optimization. Proceedings of the International

Conference on Neural Networks, (CNN’ 95), pp:

1942-1948.

Kennedy, J., R.C. Eberhart and Y. Shi, 2001. Swarm

Intelligence. 1st Edn., Morgan Kaufmann

Publishers Inc.340 Pine Street, Sixth FloorSan

FranciscoCAUnited States,

 ISBN-13: 978-1-55860-595-4.

Kumar, A. and S. Chakarverty, 2011. Design optimization

for reliable embedded system using cuckoo search.

Proceedings of the 3rd International Conference on

Electronics Computer Technology, Apr. 8-10, IEEE

Xplore Press, Kanyakumari, India, pp: 264-268.

 DOI: 10.1109/ICECTECH.2011.5941602

Natarajan, A. and P.K. Subramanian, 2012. An enhanced

cuckoo search for optimization of bloom filter in

spam filtering. Global J. Comput. Sci. Technol.

Omran, M.G.H., A.P. Engelbrecht and A. Salman, 2005.

Differential evolution methods for unsupervised

image classification. Proceedings of the Congress on

Evolutionary Computation, Sept. 2-5, IEEE Xplore

Press, Edinburgh, Scotland, UK.

 DOI: 10.1109/CEC.2005.1554795

Pant, M., R. Thangaraj, C. Grosan and A. Abraham, 2008.

Hybrid differential evolution-particle swarm

optimization algorithm for solving global optimization

problems. Proceedings of the 3rd International

Conference on Digital Information Management, Nov.

13-16, IEEE Xplore Press, London, UK, pp: 18-24.

DOI: 10.1109/ICDIM.2008.4746766

Payne, R.B., M.D. Sorenson and K. Klitz, 2005. The

Cuckoos. 1st Edn., Oxford University Press, Oxford,

New York.

Potter, C., G.K. Venayagamoorthy and K. Kosbar, 2010.

RNN based MIMO channel prediction. Signal

Process., 90: 440-450.

 DOI: 10.1016/j.sigpro.2009.07.013

Price, K., R.M. Storn and J.A. Lampinen, 2005.

Differential Evolution: A Practical Approach to

Global Optimization. 1st Edn., Springer Science

and Business Media, ISBN-10: 3540313060,

pp: 539.

Qin, A.K., V.L. Huang and P.N. Suganthan, 2009.

Differential evolution algorithm with strategy

adaptation for global numerical optimization. IEEE

Trans. Evol. Comput., 13: 398-417.

 DOI: 10.1109/TEVC.2008.927706

Shelokar, P.S., P. Siarry, V.K. Jayaraman and B.D.

Kulkarni, 2007. Particle swarm and ant colony

algorithms hybridized for improved continuous

optimization. Applied Math. Comput., 188: 129-142.

DOI: 10.1016/j.amc.2006.09.098

Storn, R. and K. Price, 1997. Differential evolution-A

simple and efficient heuristics for global optimization

over continuous spaces. J. Global Optim., 11: 341-359.

DOI: 10.1023/A:1008202821328

Vaisakh, K., P. Praveena and S.R.M. Rao, 2009.

DEPSO and bacterial foraging optimization based

dynamic economic dispatch with nonsmooth fuel

cost functions. Proceedings of the World

Congress on Nature and Biologically Inspired

Computing, Dec. 9-11, IEEE Xplore Press,

Coimbatore, India, pp: 152-157.

 DOI: 10.1109/NABIC.2009.5393632

Vazquez, R.A., 2011. Training spiking neural models

using cuckoo search algorithm. Proceedings of

the Congress of Evolutionary Computation, Jun.

5-8, IEEE Xplore Press, New Orleans, LA, USA,

pp: 679-686. DOI: 10.1109/CEC.2011.5949684

Walton, S., O. Hassan, K. Morgan and M.R. Brown,

2011. Modified cuckoo search: A new gradient

free optimisation algorithm. Chaos, Solitons

Fractals, 44: 710-718.

 DOI: 10.1016/j.chaos.2011.06.004

Xin, B., J. Chen, J. Zhang, H. Fang and Z.H. Peng,

2011. Hybridizing differential evolution and

particle swarm optimization to design powerful

optimizers: A review and taxonomy. Tran. Syst.

Man Cybernet. Part C, 42: 744-767.

 DOI: 10.1109/TSMCC.2011.2160941

Xin, B., J. Chen, Z. Peng and F. Pan, 2010. An adaptive

hybrid optimizer based on particle swarm and

differential evolution for global optimization. Sci.

China Inform. Sci., 53: 980-989.

 DOI: 10.1007/978-3-642-29353-5_7

Fariaa Abdalmajeed Hameed et al. / Journal of Computer Science 2020, 16 (4): 430.438

DOI: 10.3844/jcssp.2020.430.438

438

Yang, X. S. and S. Deb, 2009. Cuckoo search via

Lévy flights. Proceedings of the World Congress

on Nature and Biologically Inspired Computing,

Dec. 9-11, IEEE Xplore Press, Coimbatore, India,

pp: 210-214.

 DOI: 10.1109/NABIC.2009.5393690

Yang, X.S., 2011. Optimization Algorithms. In:

Computational Optimization, Methods and

Algorithms, Koziel, S. and X.S. Yang (Eds.), Springer,

Berlin, ISBN-13: 978-3-642-20859-1 pp: 13-31.

Yang, X.S. and S. Deb, 2010. Engineering

optimisation by cuckoo search. Int. J. Math.

Model. Numerical Optimisat., 1: 330-343.

 DOI: 10.1504/IJMMNO.2010.035430

Yildiz, A.R., 2012. Cuckoo search algorithm for the

selection of optimal machining parameters in milling

operations. Int. J. Adv. Manufacturing Technol., 64:

55-61. DOI: 10.1007/s00170-012-4013-7

