
 

 
 © 2020 Fariaa Abdalmajeed Hameed, Harith Raad Hasan, Ahmed Abdullah Ahmed and Gulala Ali Hama Amin. This open 

access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license. 

 Journal of Computer Science 

 

 

Original Research Paper 

Using the Cuckoo Search for Generating New Particles in 

Particle Swarm Optimization Algorithm 
 

1
Fariaa Abdalmajeed Hameed, 

2
Harith Raad Hasan, 

3
Ahmed Abdullah Ahmed and 

4
Gulala Ali Hama Amin 

 
1Technical College of Informatics, Sulaimani Polytechnic University, Sulaimani, Iraq 
2Sulaimani Polytechnic University, Kurdistan Technical Instiute Sulaimani, Iraq 
3Faculty of Engineering and Science, Qaiwan International University (QIU) Raparin, Sulaymaniyah, Kurdistan Region- Iraq 
4Technical College of Informatics, Sulaimani Polytechnic University, Sulaimani, Iraq 

 

Article history 

Received: 27-01-2020 

Revised: 11-03-2020 

Accepted: 13-04-2020 

 

Corresponding Author:  

Fariaa Abdalmajeed Hameed 

Technical College of 

Informatics, Sulaimani 

Polytechnic University, 

Sulaimani, Iraq 
Email: fariaa.hameed@spu.edu.iq 

Abstract: This study is focused on as Cuckoo Search (CS), one of the 

current meta-heuristic optimization algorithm. The CS algorithm is useful 

in generating and searching for the most optimum particles of important 

meta-heuristic optimization algorithm, known as the Particle Swarm 

Optimization (PSO), to enhance its performance. This optimization is 

confirmed through a benchmark online optimization and actual problems. 

The PSO algorithm performance is also compared with differing algorithms 

representative of the area. The CS optimal solutions outperform alternative 

current solutions as CS has distinct search features. The study findings have 

implications for future studies and practice. 
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Introduction 

In the current business landscape, there exist 

several optimization opportunities, with some of the 

top being the optimizing schedules and workflow for 

the mitigation of resources (cost and time) and 

maximization of output. 

In this regard, simple exhaustive search constitute 

one of the pioneering optimizer types, with every 

potential combination presented to obtain the best 

one. This type of optimization is known for its 

accuracy as they best combination are eventually 

obtained but its efficiency is quite low because if 

there are more than a few thousand combinations, it 

takes considerable time to examine all of them. This is 

the reason behind the limiting of exhaustive search 

optimizers of the number of variables employed, or 

limiting the number of variable values-but the best 

alternative is by using Cuckoo Search (CS). 

Specifically, CS is deemed to an evolutionary 

optimization algorithm developed and presented by 

Yang and Deb (2009; Yang, 2011). CS primarily 

refers to the cuckoo bird, where the actual bird takes 

advantage of some other bird species by laying its 

eggs in their nests (Payne et al., 2005). In this case, 

every egg is a representation of a new solution-with the 

objective being the alternative use of new and potentially 

better solutions than those in existing ones. CS algorithm 

is prominent and popular owing to its simplicity. 

Contrastingly, conventional optimization algorithms 

entail the use of traditional methods like the dynamic 

programming, branch-and-bound and gradient-based 

techniques whereas their modern counterparts involve 

meta-heuristics searching. Meta-heuristics algorithms 

include simulated annealing, evolutionary computation 

EC, colony optimization, among others. 

In the past few years, evidence shows that meta-

heuristic algorithm has been understudied although its 

combination with other optimization methods could 

create a robust system that could handle actual large 

scale problems. This holds true for the meta-heuristic 

algorithm branch known as the Particle Swarm 

Optimization (PSO). PSO refers to a stochastic search 

procedure that has its basis on social behavior 

observations (e.g., flocking birds and schools of fish). 

This algorithm type evaluates search space in a 

simultaneous manner through the use of global 

information, which is why it has a higher likelihood to 

determine global solution to a specific issue. 

Previous Studies on CS Application 

Under this section the CS application findings in prior 

studies are presented and discussed. On the basis of the 

reviewed work, there are several categories using CS and 

they include the field of engineering (Vaisakh et al., 2009; 

Fan and Zahara, 2007; Omran et al., 2005; Price et al., 

2005; Qin et al., 2009), pattern recognition (Kennedy et al., 
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2001; Potter et al., 2010; Xin et al., 2011; Storn and Price, 

1997), software testing and data generation (Guo et al., 

2006; Storn and Price, 1997; Hao et al., 2007), 

networking (Shelokar et al., 2007; Pant et al., 2008), job 

scheduling (Fu et al., 2010; El Dor et al., 2012) as well 

as data fusion and wireless sensor networks (Xin et al., 

2010; Akbari and Ziarati, 2008). 

More specifically, a new diagnosis technique that 

used CS in engineering was adopted in (Yang and Deb, 

2010) to resolve issues of engineering design 

optimization, with the inclusion of springs design and 

welded beam structures. The optimization objective in 

this case is to mitigate the spring weight and the overall 

cost of fabrication. The findings were benchmarked with 

evolutionary methods (e.g., GA and PSO) and were 

evidenced to be quite efficient and superior in almost 

the entire issues tested. In (Vazquez, 2011), the 

spiking neuron’s accuracy and performance was 

measured using pattern recognition/classification 

fitted with CS Algorithm and a comparison was later 

conducted between CS and DE algorithms 

performance. Based on the outcome, spiking neuron 

model trained with CS outperformed in the adjustment 

of synaptic neuron weights. 

Moving on to (Bacanin, 2012), the author focused on 

process parameters including, maximum cycle number of 

nests, runtime, number of parameters and probability and 

their role in optimization of process performance 

measures. The study employed CS in object-oriented 

software to address issues of unconstrained optimization-

combinational and numeric optimization issues in JAVA 

programming language. Based on the outcome of the 

benchmark test, the proposed software had good 

performance, indicating the readiness of the system to be 

used to solve new problems. 

Natarajan and Subramanian (2012), the author 

brought forward Enhance Cuckoo Search for 

Optimization of Bloom Filter in Spam Filtering. The 

study used an Enhanced Cuckoo Search (ECS) 

algorithm to mitigate the total membership 

invalidation cost of BFs, within which the optimal 

false positive rates are determined along with the 

number of elements within each of the bins. Based on 

the experimental outcome, for CS and ECS 

outperformed in numbers of bins ECS. In a related 

study, (Burnwal and Deb, 2012) brought forward 

Cuckoo Search for the purpose of scheduling 

optimization of flexible manufacturing system by 

decreasing the penalty cost and increasing the 

machine use time as used performance. The finding 

was compared to evolutionary techniques findings 

(e.g., GA) and it indicated the efficient and better 

performance of CS when solving tested problems. 

Moreover, the Cuckoo Based Particle Approach 

(CBPA) was also used in (Dhivya et al., 2011) to 

realize energy efficiency in Wireless Sensor Network 

and multimodal objective functions. CS was used to 

cluster head selection and form clusters among the 

sensor nodes, after which the authors measured the 

decrease in energy of Wireless Sensor Networks 

(WSNs) and the increase in the lifetime through 

performance. The CBPA was then compared with the 

standard LEACH protocol and HEED protocol. The 

results of the simulation illustrated that CBPA 

generated comparable results owing to the process of 

optimal search in cluster formation and appropriation 

of paths in transmitting sensed data. 

Along the same line of study, (Yildiz, 2012) made 

use of CS for the selection of optimal parameters in the 

context of milling operations, (Chifu et al., 2012) 

optimized the composition processes of semantic web 

service with the assistance of CS, while (Kumar and 

Chakarverty, 2011) realized optimal design for reliable 

integrated system. Lastly, Walton et al. (2011) modified 

CS to solve non-linear issues (e.g., mesh generation). 

Overview of Cuckoo Search Algorithm 

Cuckoo Search (CS) is described as a novel meta-

heuristic algorithm created to issues relating to 

optimization, aligned with its namesake, which is the 

parasitic behavior of cuckoo species, Levy flight 

behavior and fruit flies. Specifically, in CS, the cuckoo’s 

walking steps are determined by the flights, with each 

egg representing a new solution and the objective being 

to utilize optimum ad better solutions replacing the 

ineffective ones in the nest, with each nest having one 

egg. It is possible to extend the algorithm to more 

complicated cases, within which each nest has many 

eggs (i.e., many solutions). For instance, when producing 

new solutions x
(t+1)

 for cuckoo I, a Levy flight is 

performed using the following equation: 

 
( ) ( ) ( )1

ˆ
t t

i i
x x Levyβ λ

+

= + ⊕  

 

In the above equation, α > 0 represents the step size 

that is related to the examined problem scales, where in 

majority of cases α = 1 can be used. The product ⊕ 

represents entry wise multiplications, whose product is 

similar to the PSO, with the difference being that the 

random walk through Levy flight works more efficiently 

in terms of exploration of search step as the length of the 

step is longer in long-term. In essence, the Levy flights 

provide a random walk represented as follows: 

 

( ) ( )ˆ , 1 3Levy u t
λ

λ λ
−

= < ≤∼

 
 

The above equation is an infinite variance, having 

an infinite mean. Figure 1 demonstrates the pseudo 

code of CS. 
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Fig. 1: Cuckoo search pseudo code 
 
Parameters: 

n represents the number of hosts nests, 

Pa represents the probability of discovering an alien egg, 

MaxIter represents the maximum number of iterations, 

Initialization, 

Generate initial n host, Xi

(T)
 

Evaluate f(Xi

(T))
 

Iterations: 

New Solution Generation 
 

( ) ( ) ( )1
ˆ

t t

i i
x x Levyβ λ

+

= + ⊕  

 

Evaluate f(Xi

(T+1)
): 

 

Select a random nest xJ 
 
If f(Xi

(T)
)< f(Xi

(T+1)
) 

 
Replace (x

(T)
) with (x

(t+1)
)  

Discard a fraction of pa worse nests, 

Develop new nests with Levy flights, 

Identify and keep the best solutions 

Overview of Particle Swarm Optimization 

(PSO) 

The Congress on Evolutionary Coputation 

(Kennedy and Eberhart, 1995) presented a paper on PSO 

in 1995, triggering waves of publications in the past decade 

on the different applications success of PSO to resolve 

issues concerning optimization, as inspired by the flocking 

and foraging behavior of birds and fish (Brownlee, 2011). 

Such attributes are highly desirable, easily understandable 

and implemented. PSO is mainly used for its timely 

convergence, particularly when pitted against other 

optimization algorithms (e.g., simulated annealing and 

genetic algorithms) as illustrated in (Abraham et al., 2006). 

The appeal of PSO stems from its simple conceptual 

framework and the birds flocking analogy facilitating 

conceptual visualization of the search process. In 

particular, a solution in PSO is displayed through a 

particle, with the population of solutions referred to as 

swarm of particles and each particle having two major 

properties, namely position and velocity. Added to this, 

each particle shifts to a new position with the help of 

velocity and once they are settled in a new position, the 

best position of the particle and swarm are made current 

as required. Each particle velocity is modified on the 

basis of its experiences. 

In other words, the velocity (Vi) of each particle is 

updated with the help of the following equation: 

 

( )

( )

1

1

2

1 1

t t t

i i i i

t

i

t t t

i i i

v wv c rand pbest x

c rand gbest x

x x v

+

+ +

= + × × −

+ × × −

= +

 

 

In the above equation: 

 
t

i
v  = Represents the particle i velocity, with iteration t 

w = Represents the weighing function 

C1 = Represents individual coefficient 

C2 = Represents social coefficient 

Rand =  Represents random number (0-1) 
t

i
X  = Represents the current position of particle i, 

at t iteration 
1t

i
v

+  = Represents the current velocity of i particle, 

at t+1 iteration 

pbesti = Represents the pbest of agent i at t iteration 

gbest = Represents the best solution from the 

alternative solutions. 

begin 

 Objective function f(x) 

 Generate initial population of n host nest 

 Evaluate fitness and rank eggs 

 while (t > MaxGeneration) or stop criterion 

 t = t +1 

 Get a cuckoo randomly/generate new solution by lèvy flights 

 Evaluate quality/fitness, Fi 

 Choose a random nest j 

 if (Fi > Fj) 

 Replace j by the new solution 

 end if 

 Worst nest is abandoned with probability Pa and new nest is built 

 Evaluate fitness and rank the solutions and find current best 

 end while 

 Post process results and visualization 

end 
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Fig. 2: PSO pseudo code 
 

Repetitive steps of the process are carried out until a 

criterion is met. In the first step, PSO is initialized, where 

the initial swarm of particles is produced and each particle 

initialized at random position as well as velocity, after 

which each particle is evaluated for their fitness. Each 

calculation of the fitness value is compared against the prior 

optimum one of the particle and the prior optimum value of 

the whole swarm. From this, the personal best and global 

best positions are updated accordingly. 

In case a stopping criterion falls short of being met, the 

velocity and position are adjusted to create a new swarm 

and the personal and global best positions and old velocity 

used in the update of velocity. The two main PSO 

operations are velocity update and position update, with the 

former being based on three components, namely, the old 

velocity constituting inertia/momentum term, experience of 

individual particle constituting cognitive or self-learning 

term and experience of the whole swarm constituting 

group/social learning term. In each term, a weight constant 

is allocated and for the fundamental PSO algorithm, there 

are three required constants. Notably, PSO algorithm is not 

in need of sorting of fitness values of solutions in any step. 

The pseudo-code of PSO is depicted in Fig. 2. 

Particle Swarm Optimization/CS: PSO/CS 

and Frameworks 

The proposed algorithm primarily aims to improve the 

PSO algorithm performance to achieve optimum solutions 

in comparison to standard PSO and CS algorithms with 

lower execution periods compared to standard PSO. Both 

CS and PSO algorithms have a stochastic nature and as 

such, are invaluable in achieving global optimum compared 

to their gradient descent counterpart. However, it is simple 

for the former to drop into the local optima with 

unsatisfactory convergence accuracy. 

 
Fig. 3: CS/PSO pseudo code 

 
Table 1: Dimensions, ranges, of benchmark test functions used   

in the experiments. 

Test function Dimension (n) Range 

F1 3 x1[10,55], x2[1.1,2], x3[10,40] 

F2 2 x1 [17.5,40], x2[300,600] 

F3 4 [12, 60] 

F4 3 x1[0.02,0.8], x2[10,40], 

  x3[3000,20000] 

F5 30 [-100, 100] 

F6 30 [-5.12, 5.12] 

F7 30 [-32.768, 32.768] 

F8 30 [-30,30] 

 

In order to leverage the advantage using the best of CS and 

PSO to enhance optimization performance, the new design 

preservers the PSO algorithms. It uses CS to produce the 

initial values of the particles and the velocity vectors rather 

than randomly generating them with high cost and 

significant period of time, or to face the risk of being 

trapped in the local optima-thus, the CS strategy 

initialization of the PSO particles and velocity is conducted 

to improve PSO performance. The usual PSO algorithm 

proceeds right after. 

The pseudo code of CS/PSOE is demonstrated in Fig. 

3, where it is notable that the particles positions are 

produced through CS algorithm after which they are 

updated normally using PSO foe each particle, evaluated 

on the basis of their fitness value. Lastly, the optimum 

solution is identified by the algorithm. 

Experimental Results and Discussion 

The CS/PSO performance in light of minimization 

and maximization benchmark functions are chosen, 

with the inclusion of 4 actual problems (section 6.1 

details the benchmark). 

For each particle 
{ 
Starting CS to generate the particle position and velocity vectors 
} 
Do until maximum iterations or minimum error criteria 
{ 
 For each particle 
 { 
 Calculate Data fitness value 
 If the fitness value is better than pBest 
 { 
 Set pBest = current fitness value 
 } 
 If pBest is better than gBest 
 { 
 Set gBest = pBest 
 } } 
 For each particle 
 { 
 Calculate particle Velocity 
 Use gBest and Velocity to update particle Data 
 } 

For each particle 
{ 
 Initialize particle 

} 
Do until maximum iterations or minimum error criteria 
{ 
 For each particle 
 { 
 Calculate Data fitness value 
 If the fitness value is better than pBest 
 { 
 Set pBest = current fitness value 
 } 
 If pBest is better than gBest 
 { 
 Set gBest = pBest 

 } } 
 For each particle 
 { 
 Calculate particle Velocity 
 Use gBest and Velocity to update particle Data 

 } 
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Range and n, are feasible bound as presented along 

with function dimension in Table 1. 

Benchmark Functions 

1. Gas Transmission (F1): 

 

( )
( )

1/2
5 1/2 2/3 2 4

1 2 3 2 3

8 1 0.219 6

1 2 1

8.61 10 1 3.69 10

7.72 10 765.43 10 .

x x x x x
Min f x

x x x

−

−

−

 ∗ − + ∗
= 
+ ∗ − ∗

 

 

2. Optimal Capacity of Gas Production Facilities 

(F2): 

 

( )
( )

( )

0.85

2

1 1

0.752

1 2

61.8 5.72 0.2623 40 ln
200

0.087 40 ln 700.23 .
200

x
x x

Min f x

x
x x

−

−

   
 + + −  
   = 

 
+ − + 

 

 

 

3. Design of Gear Train (F3): 

 

( )

2 2

1 2

3 4

1 1
.

6.931 6.931

d b

a f

T T x x
Min f x

T T x x

      
= − = −   

     
 

 

4. Optimal Thermo hydraulic Performance of an 

Artificially Roughened Air Heater (F4): 

 

2.51ln 5.5 0.1 .
M H

MaxL e R G
+

= + − −  

 

where, RM = 0.95x2
0.35

, GH = 4.5(e
+
)

0.28
(0.7)

0.57
, e

+
 = 

x1x3( f /2)
1/2

, f  = (fs + fr)/2, fs = 0.079x3
−0.25

,fr = 

2(0.95x3
0.53

+2.5ln(1/2x1)
2 
-3.75)

−2 
 

5. SpShpere (n variables) (F5): 

 

( ) 2

1

n

n i

i

Sp x χ

=

=∑
�

 

 

6. Rastrigin’s Function (F6): 

 

( ) ( )2

1

10 10cos 2

n

i i

i

f x n x xπ
=

 = + − ∑  

 

7. Ackley’s Function (F7): 
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1

1

1
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1
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i

n
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i
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n
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∑

∑

 

 

where, a = 20, b = 0.2, c = 2*π 

8. Rn Rosenbrock (F8): 

 

( ) ( ) ( )
1

2 2
2

1

1

100 1 .

n

i i i

i

f x x x x
−

+

=

 = − + −
  ∑  

 

Results and Discussion 

 

The algorithm brought forward in this study is 

compared with both CS and PSO standard algorithms, 

with the parameters of PSO established as number of 

particles and number of iterations during the run C1, 

C2 = 1.19, R1, R2 = 1. With regards to the CS 

parameters, they were established as population size 

and number of iteration and problem dimension 

during the run, with maximum population size of 100, 

Cr = 0.5 and F = 0.7. Each problem has a distinct 

average of the best value for 20 run times and 

maximum number of functions evaluations (Nb.evals) 

(refer to Tables 2 and 3). 

On the basis of the experiments, it is notable that 

CS/PSO managed to achieve the optimum outcomes 

on majority of the problems posed, with the algorithm 

leading to significant developments compared to prior 

PSO and CS, with CS/PSO evidently outperforming 

all other algorithms tested on Figures 4, 5, 6 and 7. 

Figure 8 illustrates the optimum solution for 

CS/PSO algorithm, with iteration 4000 and 500 and 

domain (n = 30), for SpShpere function. Figures 9 and 

Fig. 10 illustrate the minimum result for the proposed 

algorithm CS/PSO, with iteration 3000 and 4000 and 

domain (n = 30), for both the Rastrigin function and 

Ackley function. The best value was obtained with 

iteration 1500 for Rn Rosenbrock, with domain {n = 

30). Thus, performance was good in the overall prior 

functions. 

Table 2: Comparison between the proposed method and different algorithms based on real life problem benchmark functions 

Function Nb.evals CS PSO CS/PSO 

F1 24000 1.6929e+006 1.6894e+006 7.43233e+006 

F2 16000 1.6987e+002 1.6988e+002 1.69844e+002 

F3 32000 0.9922e-008 0.9623e-008 1.40108e-010 

F4 24000 4.2053e-005 4.1986e-005 2.31987e-006 
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Table 3: Comparison of classical PSO and CS with proposed CS/PSO on standard test function benchmark 

Function  PSO CS CS/PSO 

 Best 2.131×10−12 1.4364×10−12 2.2962×10−24 

F5 Worst 4.2322×10−2 8.7664×10−7 1.1863×10−11 

 Std 6.6875×10−3 1.3406×10−7 1.9369×10−12 

 Best 32.8287 21.2728 13.9294 

F6 Worst 127.3341 175.3698 65.6672 

 Std 19.0037 35.8085 9.2816 

 Best 7.3543×10−6 8.4260×10−8 7.4252×10−13 

F7 Worst 5.9074 2.3162  1.5017 

 Std 1.2183 0.6521 0.3366 

 Best 2.0718 18.3952 0.0248 

F8 Worst 485.0228 577.7486 225.5721 

 Std 76.5658 91.5654 41.6379 

 

 

 
Fig. 4: Performance comparisons of CS, PSO, CS/PSO for 

function F1 

 

 

 
Fig. 5: Performance comparisons of CS, PSO, CS/PSO for 

function F2 

 

 
Fig. 6: Performance comparisons of CS, PSO, CS/PSO for 

function F3 

 

 

 
Fig. 7: Performance comparisons of CS, PSO, CS/PSO for 

function F4 
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Fig. 8: The evolution curve of sphere function  

 

 
 

Fig. 9: The evolution curve of Rastrigin’s function  
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Fig. 10: The evolution curve of Ackley’s function  

 

Conclusion 

The performance of PSO can be enhanced by 

achieving the optimum values and accordingly, we 

used the CS algorithm in this study to provide a 

balance between exploitation and exploration. The 

new method proposed, which is CS/PSO enhances the 

performance of particle swarm optimization through 

the incorporation of CS algorithm. The primary 

objective is to use the proposed algorithm to produce 

PSO particles, with the help of CS algorithm to 

improve the PSO searching abilities. The approach 

achieved outstanding results on 8 well-known 

benchmark functions, with the inclusion of 4 actual 

life problems. The results of the computations 

indicated that the proposed approach provided accurate 

outcomes in comparison to its evolutionary counterparts. 
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