

 © 2020 Quazi Ishtiaque Mahmud, Noymul Islam Chowdhury and Md Masum. This open access article is distributed under a

Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

A Multi Layer Perceptron Along with Memory Efficient

Feature Extraction Approach for Bengali Document

Categorization

1
Quazi Ishtiaque Mahmud,

2
Noymul Islam Chowdhury and

2
Md Masum

1Institute of Information and Communication Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
2Computer Science and Engineering, Shahjalal University of Science and Technology, Sylhet, Bangladesh

Article history
Received: 05-01-2020
Revised: 27-02-2020
Accepted: 27-03-2020

Corresponding Author:
Mr. Quazi Ishtiaque Mahmud
Institute of Information and
Communication Technology,
Shahjalal University of Science
and Technology, Bangladesh
Email: rafisustcse@gmail.com

Abstract: In terms of the total number of speakers in the world Bengali

stands as the seventh language and it has been used by approximately 265

million people worldwide. Day by day more people are expressing their

views and opinions in Bengali in digital platforms like blogs and social

media on various topics. Despite this, very little work has been done to

structure these electronic documents according to their categories. In this

paper, a methodology is developed for automatically categorizing Bengali

news among twelve predefined categories using a Multi Layer Perceptron

(MLP) model. We also explored the optimization opportunities that lie

within the feature space and illustrated the difficulties that arise while

handling large feature spaces in neural networks. It has been shown in

this paper that the feature space can be optimized to achieve better

accuracy. Using our modified feature extraction technique, we reduced the

feature space and achieved an accuracy of 93.3%.

Keywords: Document Categorization, TF-IDF, Multi Layer Perceptron,

Activation Functions

Introduction

Document categorization is one of the key problems

nowadays. It is also important for real-life applications and

services. Bengali is one of the most popular languages in

the world. So it is also becoming important to work with

Bengali document categorization. We had studied different

works on document categorization. Numerous works have

been done for English document categorization but actually,

very little work has been done for Bengali document

categorization. But as ours is also a categorization problem

we studied some previous works in different languages like

English and Arabic text categorization problem.

It has been shown that categorization can be handled

in two phases, Hypothesization and Confirmation

(Hayes et al., 1988). In the Hypothesization phase,

depending on the words and content, it attempts to pick

out all categories into which the story might fall. When

particular words and phrases suggest more than one

category, they will contribute to the Hypothesization of

each of those categories. Confirmation is the phase in

which it attempts to find additional evidence in support

of a Hypothesized topic. Using a pattern-matching

technique some basic kind of processing is done on both

phases. They ran a set of 500 stories through the system

and claimed an average recall rate of 93%.

Probabilistic measures are also used to classify

English documents (Wu et al., 2004). They used Support

Vector Machines and generated the probabilities of two

classes at an instant.

Srivastava and Bhambhu (2010) also used Support

Vector Machine (SVM), rule-based classifier and KNN

classifier to solve the problem of categorization. They

used four different types of data: Heart data, Diabetes

data, Satellite data and Shuttle data to test their model.

They collected the data from the “UCI Machine

Learning Repository” (Dua and Graff, 2019).

Joachims (1998) used SVM for English document

categorization and showed that SVM suits well for the task

of text categorization. They also showed a comparison

between RBF and Polynomial kernel in SVM.
In their research, Lam and Lee (1999) proposed a

technique for feature reduction in neural network based

text categorization. They mentioned that neural network

performed poorly if it is trained with raw text data.

Because textual representation has a high dimensional

feature space. They proposed an approach to reduce the

feature space into an input space of much lower

Quazi Ishtiaque Mahmud et al. / Journal of Computer Science 2020, 16 (3): 378.390

DOI: 10.3844/jcssp.2020.378.390

379

dimension. They used Reuters-21578 (Dua and Graff,

2019) test collection to see the effectiveness of their

proposed model. They proposed four dimension

reduction techniques and among them, they showed that

principal component analysis was the most effective one.

Pedresen and Yang (1997) demonstrated a

comparative study on feature selection for text

categorization. They focused on dimensionality

reduction. They evaluated five methods for dimension

reduction including Document Frequency, Information

Gain, Mutual Information, Chi test and Term Strength.

They showed that Mutual Information (MI) has poor

performance for its bias towards favoring rare terms and

sensitivity to probability estimation error.

Zhang and Zhou (2006) used multi label neural

network for text categorization. Each instance in the

training set is associated with a set of labels in multi

label learning. They proposed back propagation multi

label learning to solve the problem. This algorithm is

derived from the popular back propagation algorithm

using a novel error function that captures the

characteristics of multi label learning.

Subramaniyaswamy and Pandian (2012) have done

some works on English blog topic categorization. They

used the Keyword Frequency - Inverse Topic Frequency

(KF-ITF) weighting method to filter out keywords from a

blog. Then they used the high-frequency keywords as

features for their SVM classifier. They trained their system

for 100 blogs and achieved accuracies ranging from 90.00%

to 96.73% for different categories.

Chekima and Anthony (2011) categorized English

scientific papers among five categories. They proposed a

keyword extraction based system that categorizes a

document by analyzing the key terms that are present in it.

Mesleh (2007) proposed a method to categorize

Arabic documents into nine predefined categories by

using SVM classifier along with Chi square feature

extraction technique.

Bawaneh et al. (2008) proposed a methodology using

K-NN and Naïve Bayes to solve the problem of Arabic

Text categorization.

Bayesian model along with character-level n-gram

was also used to categorize Arabic text documents

(Al-Salemi and Ab Aziz, 2011).

Ruiz and Srinivasanan (1999) used a hierarchical

neural network for text categorization. Their model uses

a divide and conquer approach to defining the smallest

problem based on a predefined hierarchical structure.

Mansur et al. (2005) used n-gram based approach for

Bengali news categorization. For their experiment, they

randomly selected 25 test documents. They worked with

six categories. And they generated their own corpus.

They tested their model for 150 documents.

Naïve Bayes classifier was used for classifying

Bengali documents (Chy et al., 2014). The authors used

a small corpus which contained around 700 documents.

They gathered this data by crawling news from the site

of the famous Bengali newspaper Prothom Alo. They

also proposed a stemming algorithm to extract features.

Quadery et al. (2016) used Chi square distribution to

select the important features for categorization. Then

they built the classifier model by using the Naïve Bayes

technique. They used the OSBC (2020) which contains

35000 documents of 12 categories. They trained their

model for 6430 documents.

Islam et al. (2017) used a stemmer developed by

Urmi et al. (2016) to reduce the number of features and

achieve higher accuracy. They used TF-IDF technique to

sort out the relevant features and SVM with linear kernel

as the classifier. They claimed an accuracy of 92.57% for

the OSBC (2020) dataset.

Authors Mahmud et al. (2018) improved the model

of authors Islam et al. (2017) and showed that better

accuracy can be achieved using much fewer features on

the same dataset (OSBC, 2020).

So, not a lot of researches are carried out for Bengali

document categorization. We found that the existing

methodologies can be improved by analyzing features

more carefully and applying more sophisticated

classification algorithms like Multi Layer Perceptron

(MLP) model.

Methodology

In this section, the steps of our work will be

discussed. The first subsection describes the categories

that are considered. In the second subsection, an

overview of the corpus is given. The third and fourth

subsection describes the preprocessing that has been

carried out and the feature extraction technique that is

used. A description of our Multi Layer Perceptron

(MLP) model is provided in the fifth subsection. In the

next two subsections, the memory issues and how it is

solved by reducing the feature space are discussed. A

comparison of two feature extraction methods is given in

the eighth subsection. The algorithm for building the

modified TF-IDF matrix is described in the ninth

subsection. And in the last subsection, an analysis is

given of the final feature matrix.

What is Classification

Classification means assigning documents to their

appropriate classes or groups. It is different from

clustering by the fact that in clustering the number of

classes cannot be known in advance but in the case of

classification, the number of classes is defined.

Categorization among twelve classes is considered in

this research. They are accident, art and literature, crime,

environment, entertainment, education, international,

politics, opinion, science and tech and sports.

Quazi Ishtiaque Mahmud et al. / Journal of Computer Science 2020, 16 (3): 378.390

DOI: 10.3844/jcssp.2020.378.390

380

Data Collection

In all of our experiments, the OSBC (2020) is used.

Table 1 below represents the information about the

corpus. To make sure that the dataset is not biased

towards a specific category, same number of documents

are taken for each category.

Data Preprocessing

Data preprocessing is a necessary step for all machine

learning techniques. In this research, some preprocessing

techniques are applied. Firstly, words are identified from

news. Then punctuation symbols are removed. Finally,

stemming is applied on Bengali words using the stemmer

developed by authors (Urmi et al., 2016).

Feature Extraction

For feature extraction, the TF-IDF score of every uni-

gram in our dataset is used. Equation 1 is used to

calculate TF-IDF score of a feature:

() () (), , *tf idf t d tf t d idf t− = (1)

where term frequency tf(t,d) means the number of

times a word or term(t) appears in the document(d).

Equation 2 is used to calculate the idf(t) from the

following formula:

()
()

1
log 1

1 ,

d
n

idf t
df d t

+

= +

+

 (2)

Here nd means the total number of documents and

df(d,t) means the total number of documents that have

the term(t). Then L2 normalization is used to normalize

the TF-IDF scores so that our classifier converges early

using Equation 3:

2
|| ||

norm

v

v

v

= (3)

The documents are converted into n-dimensional input

vectors using this TF-IDF transformation. Where n is the

number of features. Suppose there are two documents:

Doc1 = “সািকব ভােলা �খেল”
Doc2 = “িতিন আজ ভােলা �খেলন নাই”

Table 2 refers to the TF-IDF matrix of these two

documents.

For illustration purposes, all the words are considered

as features. Now after converting the documents into TF-

IDF matrix each of the term (word or Unigram) will

have a TF-IDF score. The top 30000 terms are selected

as features for our model. Now each of the documents

will have a label associated with them. The documents

are given as inputs to our neural network, after that the

weights are initialized, then activation functions are

selected and outputs of the hidden layer and also the

final layer are calculated. Finally, our result is compared

with the actual output, then the error is calculated and the

weights are updated accordingly. Figure 1 represents

how documents are used as inputs to the neural network.

Suppose Doc1 is given as input to our network. As there

are 7 features in total, the input layer will contain 7

neurons. Suppose there are 2 classes. So a single neuron

or 2 neurons at the output layer can be used. There may

be as many hidden layers as we want. But 1 hidden layer

with 3 neurons is chosen. The number of output neurons

is determined by the number of classes and the number

of hidden layer neurons is determined by (the number of

input layer neurons)/2 (Marsland, 2014).

Neural Network Configuration

Neural networks are indeed the most popular

techniques in the field of machine learning. In this

research, the MLP model is used because using Platt's

method (Platt, 1999) authors Mahmud et al. (2018)

showed that the OSBC (2020) contains non-linear

characteristic. And single layer neural networks cannot

predict non-linear functions (Marsland, 2014). Table 3

refers to the configuration of our neural network.

Memory Issue

Our feature matrix consists of 28717 documents and

it contains 30000 features. These 30000 features are

chosen according to their TF-IDF scores. That means

that the size of our feature matrix is 28717*30000. So

we needed a matrix whose dimensions are 28717*30000.

And the data type of the matrix is float because they

contain values between 0 and 1. Each float takes 4 Bytes

memory. So, (4*28717*30000)/10^9 = 3.45 GB memory

is required to store the TF-IDF matrix.

Our MLP model has an input layer of 30000 neurons,

a hidden layer of 15000 neurons (because hidden layer

neuron number = input layer neuron number/2)

(Marsland, 2014) and an output layer of 12 neurons

(because there are 12 categories). So, firstly 3.45 GB

memory is required to store the TF-IDF matrix. Now

((30000*15000+15000*12)*4)/10^9 = 1.8 GB memory

is needed to store the weights. That means in total 5.25 GB

memory is required only for storing the TF-IDF matrix and

the weights. The machine that is used to conduct the

experiment has only 8 GB RAM available. So, when the

algorithm is executed on this machine after 5-10 min it

stops responding. So, this much weight cannot be used.

Now the reduction of weights means the reduction of the

number of features. So, our features have to be analyzed

again and scopes for optimization needed to be found.

Quazi Ishtiaque Mahmud et al. / Journal of Computer Science 2020, 16 (3): 378.390

DOI: 10.3844/jcssp.2020.378.390

381

Table 1: Our experiment corpus

Categories Number of documents Training/Testing

Accident 2659 2412/247

Art 2659 2364/295

Crime 2659 2401/258

Economics 2659 2384/275

Education 2659 2384/275

Entertainment 2659 2379/280

Environment 2659 2407/252

International 2659 2378/281

Opinion 2659 2414/245

Politics 2659 2401/258

Science\& Tech 2659 2400/259

Sports 2659 2393/266

Total 31908 28717/3191

Table 2: Document to TF-IDF matrix

 আজ �খেল �খেলন িতিন নাই ভােলা সািকব

Doc1 0.00 0.63 0.00 0.00 0.00 0.44 0.63

Doc2 0.47 0.00 0.47 0.47 0.47 0.33 0.00

Table 3: Neural network configuration

Number of hidden layers 1

Number of input layer neurons 12

Number of hidden layer neurons 5500, 6000, 6500, 7000 (Four different configurations were used)

Number of output layer neurons 12

Initialization of weights Between
1

n

−
√

 and
1

n√
; n = number of features (Marsland, 2014)

Fig. 1: TF-IDF matrix with MLP

Quazi Ishtiaque Mahmud et al. / Journal of Computer Science 2020, 16 (3): 378.390

DOI: 10.3844/jcssp.2020.378.390

382

Reducing Feature Space

In this section, the experiments that are carried out to

reduce our feature space for our MLP model are

discussed and also an analysis of the performance is

given. Using TF-IDF based feature extraction technique

the words that have better TF-IDF scores are selected.

But there are a few problems with that approach. Firstly,

using that technique, it is not possible to identify how

many features have been selected from a particular

class. Secondly, it can be biased towards a specific

category. Because as we are taking features based on

their frequencies there can be a lot of features for a

particular category whose TF-IDF scores will fall

behind the TF-IDF scores of other categories' features.

As a result, the number of features selected will not be

the same for all the categories. Table 4 Refers to a

sample TF-IDF score matrix.

Each of the rows in Table 4 represents each of our

documents and each of the columns corresponds to

each of our features. Now the value at each position of

the matrix is the TF-IDF score for that feature in that

document. Now, these features are sorted according to

their average TF-IDF scores. Table 5 represents the

sorted features.

This matrix is created for all of the documents of all

of the categories combined. Then the features with lower

TF-IDF scores are removed. Initially, the first 30000

features were chosen. But now we will consider taking

features separately from all of our categories. Then all of

our features will be combined to make the final feature

matrix. For example, suppose there are 12 categories of

documents and our goal is to select the top 24 features. If

the traditional approach is followed, then a TF-IDF

matrix will be built for all the documents and the matrix

needs to be sorted so that the first 24 features can be

chosen. But in our proposed approach 12 separate TF-

IDF matrices need to be created for 12 categories. Then

each of the individual matrices needs to be sorted and

from each matrix, the first 2 features will be selected.

For our research, 12 sorted TF-IDF matrices are

created for 12 categories. Then the first 1000 features

for each category are chosen. That means a total of

12000 features in total (12 categories). But there were

a few noises in the features. So after removing those

noisy words, our total feature count was 11577. So, it

can be seen that using this technique, our feature

space is reduced to more than half of our previous

feature space of 30000 features.

Comparing the two Approaches

If features are chosen without creating separate

feature matrix for each category, then it can be seen from

Table 6 that there exist features like "হয়" (happens),
"হেয়েছ" (happened), "হে�" (happening) which don't

represent a specific category. To get good results using

this type of feature selection technique, a huge number

of features need to be considered.

Table 7 and 8 show the 24 features that are selected

using our modified feature extraction technique. The

modified feature extraction technique produces much

more relevant features. For example, there are no

features like "হেয়েছ" (happened), "হে�" (happening).

When using traditional feature extraction technique,

some very important words were missed for example:

"দুঘ �টনা" (accident), a very important feature for

accident class, "গ�" (story), "কথা" (tale), important for
art-literature class, "�নতা" (leader) important for politics
category, "নত� ন্" (new), "তথ�" (information),

important for science and tech category, "এলাকা"
(area), "পিরেবশ" (environment), important for

environment category. Also, how each of the

categories contributed to our feature list can be

precisely known. The same amount of features has

been taken from each of the categories. So, the final

feature list will have an equal number of features from

each of the categories of the news. So, it will not be

biased towards a specific category.

Table 4: A sample TF-IDF matrix

 Feature1 Feature2 Feature3 Feature4 Feature5

Doc1 0.33 0.00 0.63 0.00 0.01

Doc2 0.00 0.00 0.33 0.00 0.02

Doc3 0.94 0.00 0.56 0.27 0.09

Doc4 0.00 0.39 0.00 0.31 0.01

Table 5: Sorted TF-IDF matrix

 Feature3 Feature1 Feature4 Feature2 Feature5

Doc1 0.63 0.33 0.00 0.00 0.01

Doc2 0.33 0.00 0.00 0.00 0.02

Doc3 0.56 0.94 0.27 0.00 0.09

Doc4 0.00 0.00 0.31 0.39 0.01

Quazi Ishtiaque Mahmud et al. / Journal of Computer Science 2020, 16 (3): 378.390

DOI: 10.3844/jcssp.2020.378.390

383

Table 6: Top 24 features (without creating separate feature matrix for each category)

উ�র (answer) �দশ (country) �শষ (end)

কথা (tale) পুিলশ (police) সময় (time)

কেরেছ (done) �থম (first) সরকার (government)

কাজ (work) বছর (year) সাল (year)

জানান (tell) বাংলােদশ (bangladesh) হে� (happening)

টাকা (money) মন (mind) হয় (happens)

দল (team) মানুষ (human) হেয়েছ (happened)

িদন (day) রাত (night) হাজার (thousand)

Table 7: Top 2 features from accident, art, crime, economics, education and entertainment category

দুঘ �টনা (accident) Accident features বাংলােদশ (Bangladesh) Economics features

জানান (tell) �দশ (country)

গ� (story) Art features িশ�াথ� (student) Education features

কথা (tale) ঢাকা (Dhaka, name of a city)

পুিলশ (police) Crime features ছিব (film) Entertainment features

গতকাল (yesterday) বছর (year)

Table 8: Top 2 features from environment, international, opinion, politics, science and technology and sports category

পিরেবশ (environment) Environment features িবএনিপ (BNP, a political party) Politics features

এলাকা (area) �নতা (leader)

খবর (news) International features নত�ন (new) Science and Technology features

হয় (happens) তথ� (information)

সরকার (government) Opinion features দল (team) Sports features

মানুষ (human) ম�াচ (match)

Building the New Feature Matrix

As a new TF-IDF matrix has been created for every

category and then sorted features are taken from each

category, there needs to be a way to somehow combine

all these features and make the complete feature matrix.

Now one thing is for certain is that the TF-IDF values

cannot be used because they have been calculated

separately for each of the categories. The features need

to be represented by something different rather than TF-

IDF scores. Please refer to the pseudocode for our

proposed algorithm for creating the feature matrix.

To have a better understanding, first all the features

are selected using our proposed methodology discussed

above. Then for every document, we find every word of

that document and if that word is present in our feature

list then the value of that position is set to 1 else it will

be 0. The same documents are considered for building

the new feature matrix. Here also:

Doc1 = “সািকব ভােলা �খেল”
Doc2 = “িতিন আজ ভােলা �খেলন নাই”

For illustration purposes, all the words are considered

as features this time too. Please note the difference

between Table 2 and 9. The pseudocode is used to build

the feature matrix. In Table 2 the matrix has floating-

point values. But in Table 9, the matrix has only values 0

and 1. At first, it might appear that some information is

lost because the TF-IDF scores which represent the

importance of a word are not present in the feature matrix.

But it is not true because even though TF-IDF scores are

not present in the final feature matrix but the features are

chosen according to the average TF-IDF scores.

Pseudocode for building the new feature matrix is

given below:

1. set rows to number of documents

2. set column to number of features

3. create a 2D matrix total_matrix(rows, columns)

4. initialize each cell of total_matrix to zero

5. create a map named all_features that will contain the

mapping of a feature to an integer

6. set all_categories to the name of the twelve categories

7. set i to zero

8. for every category in all_categories

9. set docs to all documents belonging to this category

10. for every document in docs

11. set doc_words to all the words in that document

12. for every word in doc_words

13. if that word is present in all_features

14. find the value of the word from all_features

15. set j to value obtained in step 14

16. set total_matrix(i, j) to 1

17. endif

18. endfor

19. increase value of i by 1

20. endfor

21.endfor

Quazi Ishtiaque Mahmud et al. / Journal of Computer Science 2020, 16 (3): 378.390

DOI: 10.3844/jcssp.2020.378.390

384

Table 9: Document to TF-IDF matrix using

 আজ �খেল �খেলন িতিন নাই ভােলা সািকব

Doc1 0 1 0 0 0 1 1
Doc2 1 0 1 1 1 1 0

Fig. 2: Comparing memory usage for the two feature extraction methods

Analyzing the Feature Matrix

After building the feature matrix, the memory

consumed by the feature matrix is analyzed. The new

feature matrix consists of 11577 features and 28717

documents. So, the feature matrix that is built using our

new feature extraction technique consists of 28717 rows

and 11577 columns. That means the new feature matrix

requires (((11577*6000)+(6000*12))*4)/10^9 = 0.28 GB

memory. Here 6000 is chosen as our hidden layer size.

Figure 2 represents how much memory space is reduced

by using the new feature extraction approach.

Experiment and Result Analysis

Implementing MLP with Our New Feature

Extraction Technique

After reducing our feature space, the MLP model is

implemented. This time our model consists of 11577

input layer neurons and our output layer neuron contains

12 neurons for 12 categories. This time our model

consists of 6000 neurons in the only hidden layer. Four

different activation functions are implemented.

Activation function simply indicates how we are

deciding whether a neuron fires or not. Figure 3 shows

the results of our experiment. The best accuracy (93.3%)

is achieved with the Relu activation function.

Experimenting with Different Hidden Layer Size

 After getting very good accuracies using this model,

some experiments are carried out with different hidden

layer sizes. Figure 4 shows the comparison graph for our

experiment. The best performance is achieved by using

the traditional technique for choosing the hidden layer

size which is half of the number of hidden layer neurons

(Marsland, 2014).

Dealing with Overlapping Features

Then the overlapping features are removed. That

means features that belong to at least two classes. Figure

5 represents our findings. But after removing

overlapping features our performance decreases. So, the

overlapping features are kept. But in our feature matrix,

any duplicate features are not allowed. That means all

overlapping features are considered only once.

According to Fig. 5 the accuracy decreases

because feature distribution is biased. The number of

overlapped features for each category is not the same.

Many information is lost when we remove all the

overlapping features. It can be seen that the number of

unique features is very low. It is hard to make

predictions based on such a small feature set. So it

may seem that overlapping features are unnecessary

but actually, they are not. Figure 6 represents how

many overlapped features are there in a different

number of categories. For example, 1198 features are

present in the feature list of two categories, 525

features are present in the feature list of 7 categories

and 1536 features are present in the feature list of all

the 12 categories. When all the overlapping features

are removed, some important information is lost too.

That's why our accuracy decreases.

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Without creating separate

feature matrix for each class

0.28

M
em

o
ry

 u
sa

g
e

(i
n

 G
B

)

1.8

Creating separate feature

matrices for each class then
combining those matrices to

build the final feature matrix

Quazi Ishtiaque Mahmud et al. / Journal of Computer Science 2020, 16 (3): 378.390

DOI: 10.3844/jcssp.2020.378.390

385

Fig. 3: Comparing different activations for MLP

Fig. 4: Comparing among different hidden layer sizes

Fig. 5: Comparing the effects of overlapping features

With overlapping features Without overlapping features

93.3

80.2

100

95

90

85

80

75

70

A
cc

u
ra

cy

Number of hidden layer neurons

5500 6000 6500 7000

95

94

93

92

91

90

89

88

87

86

85

A
cc

u
ra

cy
 (

%
)

92.3

93.3
92.8

91.9

Identity Logistic Tanh Relu

95

94

93

92

91

90

89

88

87

86

85

A
cc

u
ra

cy
 (

%
)

92.3

93.1

92.5
93.3

Quazi Ishtiaque Mahmud et al. / Journal of Computer Science 2020, 16 (3): 378.390

DOI: 10.3844/jcssp.2020.378.390

386

Fig. 6: Number of overlapped features

Performance Analysis

Three metrics are used to analyze the performance

of the proposed model. Firstly, accuracy is considered

to help us identify the standard of the proposed model

compared to other existing methods. Then the number

of features is considered to identify how well feature

space is optimized. Lastly, code execution time is

considered to compare the amount of training time

that is required to train our model with the training

time of other existing models. These three metrics are

chosen to have a clear picture of all the aspects of our

model. In all the comparisons the OSBC (2020)

dataset is used.

Comparison of Accuracy

The accuracy of the proposed model compared to

the works of Chy et al. (2014), Quadery et al. (2016),

Islam et al. (2017) and Mahmud et al. (2018) is shown

in Fig. 7. As mentioned above the OSBC (2020) is

used to conduct all the experiments. Chy et al. (2014)

and Quadery et al. (2016) both used Naïve Bayes as

their classifier. Chy et al. (2014) used TF-IDF as their

feature selection technique. But, Quadery et al. (2016)

used Chi square feature extraction approach. The

model of Chy et al. (2014) and Quadery et al. (2016)

achieved 87.52% and 87.18% accuracy on the OSBC

(2020) dataset respectively. Islam et al. (2017) used

SVM (linear kernel) along with TF-IDF feature

selection technique. Their model achieved 92.57%

accuracy. Mahmud et al. (2018) also used SVM with

linear kernel but they reduced the TF-IDF matrix by

only considering terms (features) such that the

frequency of the term passes a certain threshold value

known as the Term Frequency (TF) threshold. Using

their modified feature extraction approach they

achieved 92.79% accuracy. After comparing all these

previous models, it can be seen that the proposed

model performs fairly well compared to other models

and it has an accuracy of 93.3%. It can be seen from

the comparison that Bayesian models are

outperformed by SVM and MLP in terms of accuracy.

Comparing the Number of Features

Figure 8 represents the comparison graph for the

number of features that are used. The proposed model

performs quite well when the number of features used

by other architectures is considered. As can be seen

from Fig. 8 the proposed model uses only 11577

features which is far lower than the models of Chy et al.

(2014), Quadery et al. (2016), Islam et al. (2017) and

Mahmud et al. (2018) where 100000, 96900, 216576

and 30000 features are used respectively.

Comparing Code Execution Time

Figure 9 represents our findings regarding the code

execution time. If code execution time is considered,

then the model of Mahmud et al. (2018) turns out to

be better than all the other models. For Bayesian

models, like the models used by Chy et al. (2014) and

Quadery et al. (2016), a major portion of the time is

needed to find the right number of features. But for all

other models, training the models is the most time-

consuming task.

It can be said that the proposed model performs

pretty well despite the fact that it takes too much time

Unique 1 2 3 4 5 6 7 8 9 10 11

Number of classes the features overlapped with

2500

2000

1500

1000

500

0

N
u
m

b
e
r

o
f

fe
a
tu

re
s

2161

1198

987

848

920

744

525

752 729
830

770

1536

Quazi Ishtiaque Mahmud et al. / Journal of Computer Science 2020, 16 (3): 378.390

DOI: 10.3844/jcssp.2020.378.390

387

while learning. But neural networks always learn slowly.

When the number of features used and the accuracy are

considered then our model performs better.

Precision, Recall and F1 Score

Very often in machine learning, the F1 score is used

to measure our actual performance because in many

cases accuracy does not always give us the right

indication about performance. Table 10 represents our

precision, recall and F1 scores. From Fig. 10 it can be

observed that our F1 score surpasses the models of

Chy et al. (2014), Quadery et al. (2016), Islam et al.

(2017) and Mahmud et al. (2018).

Confusion Matrix

Table 11 shows that the categories are mapped to

integers. Table 12 refers to our confusion matrix for

the 12 categories.

Table 10: Precision, recall and F1 score

Category Precision Recall F1 Score

Accident 0.93 0.96 0.94

Art 0.93 0.93 0.93

Crime 0.94 0.93 0.93

Economics 0.93 0.95 0.94

Education 0.97 0.97 0.97

Entertainment 0.94 0.96 0.95

Environment 0.93 0.93 0.93

International 0.92 0.93 0.93

Opinion 0.93 0.90 0.92

Politics 0.95 0.92 0.93

Science 0.93 0.94 0.92

Sports 0.96 0.95 0.95

Avg. 0.94 0.94 0.94

Table 11: Integer-category mapping

Category Number

Accident 0

Art 1

Crime 2

Economics 3

Education 4

Entertainment 5

Environment 6

International 7

Opinion 8

Politics 9

Science 10

Sports 11

Table 12: Confusion matrix for 12 categories

 0 1 2 3 4 5 6 7 8 9 10 11

0 194 12 1 0 5 2 9 0 0 0 2 2

1 6 240 4 0 0 1 9 0 1 4 0 0

2 0 0 193 1 0 1 3 2 1 8 12 1

3 0 1 0 261 6 3 1 0 2 0 5 1

4 0 0 1 0 239 5 3 0 2 0 4 4

5 0 0 0 0 13 223 3 0 1 1 1 0

6 0 3 0 0 4 1 240 0 3 0 0 0

7 1 2 4 0 1 2 3 220 2 0 6 1

8 2 2 8 0 13 3 1 8 203 1 1 2

9 0 25 5 0 0 0 3 2 1 224 0 0

10 3 0 5 0 2 1 3 0 0 0 220 3

11 0 0 0 0 8 2 3 1 1 0 0 257

Quazi Ishtiaque Mahmud et al. / Journal of Computer Science 2020, 16 (3): 378.390

DOI: 10.3844/jcssp.2020.378.390

388

Fig. 7: Comparison of accuracy

Fig. 8: Comparing the number of features

Fig. 9: Comparing code execution time

Chy et al.
(2014) (Naïve

Bayes + TF-IDF)

Quadery et al.
(2016) (Naïve

Bayes + Chi

square)

Saiful et al.
(2017) (SVM

+ TF-IDF)

Mahmud et al.
(2018) (SVM + TF-

IDF + threshold)

Our latest

approach

87.52

94

92

90

88

86

84

82

80

87.18

92.57 92.79

A
cc

u
ra

cy
 (

%
)

93.3

Chy et al.

(2014) (Naïve

Bayes + TF-IDF)

Quadery et al.

(2016) (Naïve

Bayes + Chi

square)

Saiful et al.

(2017) (SVM

+ TF-IDF)

Mahmud et al.

(2018) (SVM + TF-

IDF + threshold)

Our latest

approach

11577

30000

216576

96900 100000

205000

185000

165000

145000

125000

105000

85000

65000

45000

25000

5000

C
o

d
e

ex
ec

u
ti

o
n
 t

im
e

(m
in

u
te

s)

Chy et al.

(2014) (Naïve

Bayes + TF-IDF)

Quadery et al.

(2016) (Naïve

Bayes + Chi

square)

Saiful et al.

(2017) (SVM

+ TF-IDF)

Mahmud et al.

(2018) (SVM + TF-

IDF + threshold)

Our latest

approach

C
o

d
e

ex
ec

u
ti

o
n
 t

im
e

(m
in

u
te

s)

109

143

210

45

360

400

300

200

100

0

Quazi Ishtiaque Mahmud et al. / Journal of Computer Science 2020, 16 (3): 378.390

DOI: 10.3844/jcssp.2020.378.390

389

Fig. 10: Comparing F1 score

Conclusion

To conclude we say that this topic of text
categorization is explored to quite an extent in this
research. Many challenges are faced while implementing
the neural network, for example, the huge feature space to
work with, the memory issue that needed to be solved. But
there are still scopes for improvement. For example, our
future work will consist of using Deep Learning
techniques such as RNN and using Word Embedding as
our feature selection technique. But as there were not
many works regarding Bengali document categorization
using neural networks we used it and showed that using
features efficiently good accuracy can be achieved without
using advanced algorithms.

Acknowledgement

We would like to thank the SCDN lab of Shahjalal
University of Science and Technology for providing us
with the corpus. Also thanks Md Saiful Islam of
Shahjalal University of Science and Technology for his
valuable bits of advice throughout this research.

Author’s Contributions

Quazi Ishtiaque Mahmud: Contributing to the
conceptualization of the research, developing the
methodology, analyzing and investigating different
aspects of the model, preparing the final manuscript.

Noymul Islam Chowdhury: Studying related works
in the field, contributing to data collection and
preparation and data cleansing, contributing to the
proofreading of the manuscript.

Md Masum: Supervising the research.

Ethics

It is testified by the authors that this article has not been

published anywhere else and contains no ethical issues.

References

Al-Salemi, B. and M.J. Ab Aziz, 2011. Statistical bayesian

learning for automatic Arabic text categorization. J.

Comput. Sci., 7: 39-45. DOI: 10.3844/jcssp.2011.39.45

Bawaneh, M.J., M.S. Alkoffash and A.I. Rabea, 2008.

Arabic text classification using K-NN and Naive

Bayes. J. Comput. Sci., 4: 600-605.

 DOI: 10.3844/jcssp.2008.600.605

Chekima, K. and P. Anthony, 2011. Categorizer agent

for electronic computer science academic papers.

Am. J. Econ. Bus. Admin., 3: 213-218.

 DOI: 10.3844/ajebasp.2011.213.218

Chy, A.N., M.H. Seddiqui and S. Das, 2014. Bangla news

classification using naive Bayes classifier. Proceedings

of the 16th International Conference Computer and

Information Technology, Mar. 8-10, IEEE Xplore

Press, Khulna, Bangladesh.

 DOI: 10.1109/ICCITechn.2014.6997369

Dua, D. and C. Graff, 2019. UCI machine learning

repository. University of California, School of

Information and Computer Science, Irvine, CA.

Hayes, P.J., L.E. Knecht and M.J. Cellio, 1988. A news

story categorization system. Proceedings of the 2nd

Conference on Applied Natural Language Processing,

(NLP’ 88). pp: 9-17. DOI: 10.3115/974235.974238

Islam, M.S., F.E. Jubayer and S.I. Ahmed, 2017. A support

vector machine mixed with TF-IDF algorithm to

categorize Bengali document. Proceedings of the

International Conference on Electrical, Computer and

Communication Engineering, Feb. 16-18, IEEE Xplore

Press, Cox's Bazar, Bangladesh.

 DOI: 10.1109/ECACE.2017.7912904

Joachims, T., 1998. Text categorization with support

vector machines: Learning with many relevant

features. Mach. Learn. ECML, 98: 137-142.

 DOI: 10.1007/bfb0026683

Chy et al.

(2014) (Naïve

Bayes + TF-IDF)

Quadery et al.

(2016) (Naïve

Bayes + CHI

square)

Saiful et al.

(2017) (SVM

+ TF-IDF)

Mahmud et al.

(2018) (SVM + TF-

IDF + threshold)

Our latest

approach

0.94

0.92

0.9

0.88

0.86

0.84

0.82

0.8

F
1

 s
co

re
 0.88

0.87

0.92

0.93
0.94

Quazi Ishtiaque Mahmud et al. / Journal of Computer Science 2020, 16 (3): 378.390

DOI: 10.3844/jcssp.2020.378.390

390

Lam, S. and D.L. Lee, 1999. Feature reduction for neural

network based text categorization. Proceedings of

the 6th International Conference on Advanced

Systems for Advanced Applications, Apr. 21-21,

IEEE Xplore Press, Hsinchu, Taiwan.

 DOI: 10.1109/dasfaa.1999.765752

Mahmud, Q.I., N.I. Chowdhury and M. Masum, 2018.

Reducing feature space and analyzing effects of

using non linear kernels in SVM for Bangla news

categorization. Proceedings of the International

Conference on Bangla Speech and Language

Processing, (SLP’ 18).

 DOI: 10.1109/icbslp.2018.8554844

Mansur, M., N. UzZaman and M. Khan, 2005. Analysis

of n-gram based text categorization for Bangla in a

newspaper corpus. Center for Research on Bangla

Language Processing, BRAC University.

Marsland, S., 2014. Machine Learning: An Algorithmic

Perspective. 2nd Edn., CRC Press,

 ISBN-10: 1466583339, pp: 457.

Mesleh, A.M., 2007. Chi square feature extraction based

SVMS Arabic language text categorization system.

J. Comput. Sci., 3: 430-435.

 DOI: 10.3844/jcssp.2007.430.435

OSBC, 2020. Open source Bengali corpus Bangla

dataset (Corpus).

Pedresen, J.O. and Y. Yang, 1997. A comparative study

on feature selection in text categorization.

Proceedings of the International Conference on

Machine Learning, (CML’ 97).

Platt, J., 1999. Probabilistic outputs for support vector

machines and comparisons to regularized likelihood

methods. Microsoft Research.

Quadery, F., A.A. Maruf, T. Ahmed and M.S. Islam,

2016. Semi supervised keyword based Bengali

document categorization. Proceedings of the 3rd

International Conference on Electrical Engineering

and Information Communication Technology, Sept.

22-24, IEEE Xplore Press, Dhaka, Bangladesh.

DOI: 10.1109/ceeict.2016.7873040

Ruiz, M.E. and P. Srinivasan, 1999. Hierarchical neural

networks for text categorization (poster abstract).

Proceedings of the 22nd Annual International ACM

SIGIR Conference on Research and Development in

Information Retrieval, (DIR’ 99). pp: 281-282

DOI:10.1145/312624.312700

Srivastava, D.K. and L. Bhambhu, 2010. Data

classification using support vector machine. J.

Theoret. Applied Inform. Technol.

Subramaniyaswamy, V. and S.C. Pandian, 2012. An

improved approach for topic ontology based

categorization of blogs using support vector

machine. J. Comput. Sci., 8: 251-258.

 DOI: 10.3844/jcssp.2012.251.258

Urmi, T.T., J.J. Jammy and S. Ismail, 2016. A corpus

based unsupervised Bangla word stemming using N-

gram language model. Proceedings of the 5th

International Conference on Informatics, Electronics

and Vision, May 13-14, IEEE Xplore Press, Dhaka,

Bangladesh. DOI: 10.1109/iciev.2016.7760117

Wu, T.F., C.J. Lin and R.C. Weng, 2004. Probability

estimates for multi-class classification by pairwise

coupling. J. Mach. Learn. Res., 5: 975-1005.

Zhang, M.L. and Z.H. Zhou, 2006. Multilabel neural

networks with applications to functional genomics

and text categorization. IEEE Tran. Knowledge

Data Eng., 18: 1338-1351.

 DOI: 10.1109/tkde.2006.162

