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Abstract: Image descriptor have been widely applied in many computer 

visions and image understanding applications including pattern recognition, 

robotic, video surveillance, camera calibration and image retrieval, etc. 

Invariants features are robust when apply several transformations of 

photometry (illumination, blur, noise, JPEG compression) and 

transformations of geometry (scaling, rotation, translation and viewpoint 

change). In this study, we present representation and matching region 

descriptors. Consequently, a set of region used provided by catadioptric 

system for evaluation of the performance. These regions are normalized by 

unit circle form with form and size change. In this contribution, the image 

descriptors of regions used is Moment's Zernike. They are most suitable 

invariants in omnidirectional context thanks to the polar coordinates used 

both omnidirectional geometry and Zernike Moments formulation. The 

aim is realize a robust matching between object's block by using a 

measure of distance between Zernike's moment descriptors for optimal 

similarity. Results shown clearly demonstrate the performance of our 

method and powerful than most important region descriptors (GLOH, 

SIFT, PCA-SIFT, complex moments and steerable filters) in term of the 

ROC curve or precision-recall criterion.  
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Introduction 

In Computer vision, we present a method for 

processing, analysing and understanding images system. 

The aim is giving us much information about 

environment. The use of Catadioptric camera mounted in 

mobile robot or installed in monitoring scene is an 

advantage. In one hand, due to giving us maximum 

informations about scene and in the other hand the 

tracking be-come so easy in processing after adapting the 

suitable algorithm. Object tracking is a challenging task 

in computer science applications like video surveillance, 

Radar, mobile robotics, scene matching, so on. This 

work is focus on processing of omnidirectional images 

sequence. This is a difficult task because these images 

have significant distortions in geometry. This is why, we 

most take them into account during processing. 
This work has two main goals. The first one is 

evaluate an adapted process using polar coordinates over 

the image plane and unit circle. The second is made a 

non-rigid object tracking by minimization of the distance 

between Zernike moments features. 

In context of pattern recognition, Invariants Moments 

is one of popular local image representation and 

matching that much used in several applications such as 

video surveillance, image analysis. 

The omnidirectional image provided by a catadioptric 

camera with a Single View Point ((SVP) Teague, 1980; Hu, 

1962; Mukundan et al., 2001) is presented by a spherical 

image (Fig. 1). This model called unified projection model 

and was defined in fist time in (Teague, 1980). 

Following the parabolic mirror shape used in this 

system, the projection process onto the unit sphere and 

the catadioptric plan is shown in Fig. 2. 

The 3D point P (Equation 1) is projected onto the 

sphere in. 

This point after that will be changed to the new 

reference frame centred in Pm by using the camera 

parameter (ϵ). This last ranges between 0 (planar mirror) 

and 1 (parabolic mirror). 
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Fig. 1: Image geometry (a) 2D Omnidirectional Image (b) 3D Spherical Image (c) 3D spherical coordinates 

 

 
 

Fig. 2: Unified projection model for central catadioptric cameras of Geyer and Daniilidis (Teague, 1980) 

 
Then, the point Pm: (xs; ys; zs-ϵ) is projected onto the 

normalized plane using coordinate system with point m = 

(u; v; 1). The point Pi is computed by pi =   m. Where 

 is a matrix tree dimension that contain the intrinsic 

parameters of camera. The  matrix and the ϵ parameter 

are computed by the calibration process. In our work we 

used a parabolic mirror with ϵ = 1 and  = f(u, v, u0, 

v0). In this study, we consider that our Catadioptric 

camera is already calibrated. 

Spherical coordinates of Psph are shown in 

Equation (1): 
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The stereographic projection of Psph from the sphere 
onto catadioptric plane can be depicted by Cartesian 
coordinates in Equation (2): 
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Using Equation (1) and (2), we have the image point 

P(u, v) according to spherical coordinates as Equation (3): 
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where,  is the latitude ranges between 0 and  and  is 

the longitude varying between 0 and 2. The spherical 

point according to spherical coordinates system is 

presented by (, ). 

The current paper is writing according to the plan 

as follows. In part II, we give the mathematical theory 

of invariant moments for scale and rotation change. In 

part III introduce the radial Zernike moments in our 

context and discusses how the proposed invariant sets 

addresses the classical processing in case of 

omnidirectional images. Section IV examines the 

performance of the proposed radial central moments 

and Zernike central moments. Finally, concludes the 

study by showing a comparison in the experimental 

studies between radial moments of Zernike moments 

and the classical approach. 

Related Works 

In the literature, we find examples of moment-based 

feature descriptors such as geometric, rotational, 

orthogonal and complex moments. Orthogonal moments 

defined in terms of a set of orthogonal basis are often 

preferred due greatly to its ability to represent images 

with the minimum amount of information redundancy. 

Teague (1980) proposed Zernike moments based on the 

basis set of orthogonal Zernike polynomials. It is well 

known that a discrete image function can be 

reconstructed by Zernike moments (Liao and Pawlak, 

1998). Khotanzad and Liou (1996) used Zernike moment 

in-variants in recognition and pose estimation of three-

dimensional objects. Belkasim et al. (1989; 1991) did a 

comparative study on Zernike moment invariants and 

used them in shape recognition. Vengurlekar et al. 

(2019) used Zernike moment in object tracking by using 

comparison between descriptor. Also in (Górniak and 

Skubalska-Rafajłowicz, 2017) those moment are used in 

classification. Ghosal and Mehrotra (1993) use Zernike 

moments in composite-edge detection of three-

dimensional objects. Zhou et al. (2016), Zernike moment 

are used also in object tracking by using distance 

between moments. Particularly, the Zernike moments 

have been shown to be rotation invariance and noise 

robust. The low order moments represent the global 

shape of a pattern and the higher order the detail. 

Complex Zernike Moments 

Zernike moment has been introduced based on a 

continue orthogonal function called Zernike 

polynomials. The zernike moment applied in digital 

image can be computed by using (4) (Zhang et al., 2010; 

Perantonis and Lisboa, 1992). f(x, y) is the image pixel 

density. PxQ image size: 
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Fig. 3: Plots of Ppq(r, ) in different p and q 
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Equations for Zernike moments for rotation and 

scaling factors can be computed by using (4) by a 

substitution from (5). The magnitude |Zpq| of the 

Zernike moment can be taken as a rotation invariant 

feature of the underlying image function (Saad and 

Rusli, 2004) (Fig.3): 
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We have to use ZM phase and module information 

both to make the region descriptor. Let the Zernike 

moments be sorted by p and q in order. The total number 

of complex ZM moments of the same repetition m is 

equal to 1
2

N m
 . 

Table 1 gives the 42 ZM moments where the 

maximum order p and maximum repetition q are both 

equal to 12. The sorted Zernike moments list form a 

feature vector as follows: 
 

1311

11 13, ,..., NMi ii

NMP Z e Z e Z e  
 

 (7) 

 

Errors caused in Zernike moment process using 

Equation (4) due to the using Cartesian coordinates (x, 

y) in processing. Which is justified by the fact that 

images are represented by square pixels. However, 

this approach does not take into account the radial 

kind of Zernike polynomials that use omnidirectional 

image geometry (Fig. 4). 

 

 
 

Fig. 4: Polar pixel tiling scheme for ZMs 

 
Table 1: ZMs listed by p (p, q) = (12, 12) 

p Moments No. p Moments No. 

1 Z11, Z31, Z51, Z71, Z91, Z11,1 6 7 Z77, Z97, Z11,7 3 

2 Z22, Z42, Z62, Z82, Z10,2, Z12,2 6 8 Z88, Z10,8, Z12,8 3 

3 Z33, Z53, Z73, Z93, Z11,3 5 9 Z99, Z11,9 2 

4 Z44, Z64, Z84, Z10,4, Z12,4  5 10 Z10,10, Z12,10 2 

5 Z55, Z75, Z95, Z11,5  4  11  Z11,11  1 

6 Z66, Z86, Z10,6, Z12,6  4 12 Z12,12  1 

 
In this part, we present an method for Zernike 

Moment computing according to polar coordinates (x, y, 
z = 0). As follows The radial moments with order 
number p and repetition q in radial case are defined as: 
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 The polar pixels should be as 'square' as possible. 

The sector boundary lengths must be close enough 

 Polar pixels must be organized as regularly as 

possible to facilitate computing 

 The unit circle is uniformly divided along the radial 

direction in sections 

 

where, p = 0, 1, 2,….,1 and q takes on any positive or 

negative integer values. The kernel of Zernike 

moments is a function of orthogonal Zernike 

polynomials defined over the polar coordinate space 
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inside a unit circle such us the omnidirectional image 

normalized. The two-dimensional Zernike moments of 

order p with repetition q of an image intensity 

function f(r, ) are defined as (Khotanzad and Liou, 

1996): 
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where, Zernike polynomials of order p with repetition q, 

Ppq(r, ), are defined as: 
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and the real valued radial polynomial, Rpq(r), is given 

as follows: 
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In omnidirectional context, the image presented by 

his polar coordinates figure ?? like zernike moment in 

the unit circle. 

Improved Moment in Rotation and Scale 

Invariant 

In Fig. 5 and 6, we present the invariance in term of 

rotation ans scale of all Zernike moment module. It means 

that Zernike moments are the suitable moments in our 

case due to rotation in omnidirectional images and scale 

change when the object is moving to the camera or from. 
 

 
 

Fig. 5: Scale invariant  
 

 
 

Fig. 6: Rotation invariant 
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Fig. 7: Image invariance in term of PSNR 
 

 
 
Fig. 8: Tracking results. Tracking results compared with the conventional case depicted in blue. Results with the proposed method 

are shown in red and the ground truth is in green 
 

Also in term of PSNR, our method is mush better 

than the Cartesian approach (Fig. 7). 

Similarity Measurement 

Classical Approach 

The usual measure to compare two descriptors of 

Zernike is a simple Euclidean distance between the 

duels moments: 
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We designate this distance as the classical distance. It 
is based on moment modules (two-image block are 
considered identical since their modules are the same). 

Consequently, we have a loss of information without 
using phase moment to recover the angle of rotation 
between the images blocks because this information is 
coded on the moment phase. 

The new measure takes account of this issue. This 

similarity score is more robust than the classical 

method and recovers a rotation angle between the two 

images blocks. The angle is optimal when the 

Euclidean distance between the current block and the 

next will be minimized: 
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Results 

We note that the conventional approach in this case 

in applying the distance and the moments in Cartesian 

case. We just applied the classical process directly in 

omnidirectional image sequence. Results shown in Fig. 8 

that out method address this problem of template 

matching better than the classical because we must take 

into account the deformed geometry of images provided 

by catastrophic system. 

Conclusion 

In this study, we present a template matching method 

between blocks modelled by Zernike moments 

parameters. This process is done by computing a new 

similarity measure. We optimize this distance between 

models for finding our object after move. Experimental 

results show the good performance of our approach. A 

direction of future work would be an extension for object 

tracking with real time processing. 
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