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Abstract: We describe a way to transfer efficiently Sudoku grids through 

the Internet. This is done by using linearization together with compression 

and decompression that use the information structure present in all sudoku 

grids. The compression and the corresponding decompression are based on 

the fact that in each Sudoku grid there are information dependencies and so 

some of the information is redundant. 
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Introduction 

In this study, we use the established terminology 

(Delahaye, 2006) - a Sudoku grid is a square 99 table 

with 81 cells. In each cell, there is a single digit from 1 

to 9 and each Sudoku grid fulfills three types of 

constraints: (1) Each row has each of the digits from 1 to 

9 exactly once; (2) each column has each of the digits 

from 1 to 9 exactly once; and (3) each of the small 33 

squares has each of the digits from 1 to 9 exactly once. 

In the following, the figure on the left is an example of a 

Sudoku grid and on the right is a sudoku grid with all the 

small 33 squares denoted by Bi,j with 1 i, j3. We use 

this notation in the rest of this paper. 

 

  
 

Sudoku puzzles show incomplete grids, with a 

number of cells pre-filled with fixed, or given digits, 

chosen to ensure that there is a unique solution. That is, 

for each Sudoku puzzle, there is only one way to fill the 

empty cells so to form a complete Sudoku grid. 

One Sudoku grid can be used as a base for many 

Sudoku puzzles. Therefore the grids and the puzzles 

might have to be stored and transferred separately. In 

this study, we investigate what is an efficient way to 

transfer through the Internet a big number of previously 

generated Sudoku grids. Moreover, the receiving device 

might have limited memory and computational resources 

as in the case of a mobile phone. 

The most compact representation 

(https://www.quora.com/What-can-be-the-most-

compact-representation-for-a-solved-Sudokupuzzle) of a 

sudoku grid would use log2 n bits, where n is the number 

of possible Sudoku puzzles. For the first time 

(Felgenhauer and Jarvis, 2005), it was computed that n = 

6, 670, 903, 752, 021, 072, 936, 960  6.671021. The 

same result was confirmed in (Mishra et al., 2016). So 

to uniquely identify any Sudoku grid we need only 73 

bits. Although this encoding is optimal (we cannot 

represent one of n possible values with less than log2 n 

bits), both the sending and the receiving device must 

contain a database of all possible Sudoku grids which 

put heavy memory and computational burden on the 

two devices. Given the grid, the compression algorithm 

searches the database in order to find the 73-bit 

representation of the grid. Given the 73-bit 

representation of the grid, the decompression algorithm 

searches the database to find the grid. 

As a second approach, we can represent any sudoku 

grid with one of its sudoku puzzles; the solution of the 

puzzle is the grid. So at the sending device, given a grid, 

we compute one puzzle (this is the compression 

algorithm), then we send an encoding of the puzzle 

through the Internet. At the receiving device, we first 
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decode the puzzle and then solve it (the decompression 

algorithm) to get the sudoku grid. 

Since we want the strongest compression, one 

could use a puzzle with minimal number of clues. In 

(McGuire et al., 2014), it was proved that any 

solvable puzzle needs at least 17 clues. Although this 

approach raises two questions: (1) Does a 17-clue 

puzzle exist for any sudoku grid and (2) given a 

sudoku grid, how to efficiently compute at least one 

of its puzzles with minimal number of clues, they are 

not considered in our paper. 

In general, solving n2  n2 sudoku puzzles is an NP-

complete problem (Yato and Seta, 2003). But for small n 

(in our case n = 3), there are a number of practical 

algorithmic approaches for solving such puzzles. In 

(Crook, 2009), a simple backtracking algorithm is given 

based on preemptive sets and random choice. In 

(Eppstein, 2012), a new algorithm is developed by using 

full Nishio deduction rules. The computations use 

directed acyclic graphs and depth-first search. In (Lewis, 

2007), a stochastic search-based algorithm is given, 

which uses simulated annealing. In (Perez and Marwala, 

2008), the following stochastic search techniques are 

used: Cultural Genetic Algorithm, Quantum Simulated 

Annealing and the Hybrid method that combines Genetic 

Algorithm with Simulated Annealing. In (Santos-García 

and Palomino, 2007), it is shown how a sudoku puzzle 

can be solved with the use of rewriting logic. 

We have not done yet any run time comparisons 

between our algorithm and any of the 

compression/decompression algorithms based on the 

above techniques. Looking at the above references 

(Crook, 2009; Eppstein, 2012; Lewis, 2007; Perez and 

Marwala, 2008; Santos-García and Palomino, 2007), our 

algorithm is considerably simpler and has much smaller 

number of operations. 

In this study, we encode any grid to be transferred 

through the Internet or to be stored in a database by 

using one fixed universal puzzle. A puzzle is universal, 

if its pattern of empty cells can be imposed on any grid 

and the result is a valid sudoku puzzle. Then the puzzle 

derived from the grid is linearized starting from the top 

left corner, going from left to right and from top to 

bottom and finishing at the bottom right corner. Since we 

use a fixed pattern for the empty cells, the linearization 

contains only content of the clue cells. 

Universal Compression Algorithm for 

Sudoku Grids 

Definition 

A universal construction (U for short) for a Sudoku 

puzzle is a fixed pattern with positions for the empty cells 

with the property that when the pattern is applied to any 

sudoku grid, we get a puzzle which is uniquely solvable. 

To describe a universal construction, we have to 

give the positions of all empty cells. In this study, we 

will describe them visually by giving a Sudoku grid 

with the non-empty cells filled with the star symbol 

(); all non-filled positions are the empty one. Here is 

one universal construction: 

 

 
 

The empty cells do not have a star inside. In the 

above, the empty cells are all cells in the top row and in 

the last column plus the four empty cells - one in each of 

the four 33 squares in the lower left part of the grid. 

The total number of empty cells is 9+8+4 = 21. 

When we impose the above pattern to any Sudoku 

grid, we get a Sudoku puzzle with a unique solution: 

First we fill the four empty cells in each of the four 33 

squares in the lower left part of the grid; then we fill all 

cells in the top row except the cell in the top right corner; 

finally we fill all cells in the last column. That is why the 

pattern is a universal construction - it has a unique 

solution for any Sudoku grid. 

We can also encode any universal construction with a 

99 binary matrix where zeros indicate empty positions. 

So the above universal construction is represented as: 

 

0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 0

0 1 1 0 1 1 1 1 0

1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 0

0 1 1 0 1 1 1 1 0

1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 0

U

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

We can use any universal construction to make a 

compression and its corresponding decompression 

algorithm. 

An input for our compression algorithm is a 99 

matrix G representing the Sudoku grid and the 99 

binary matrix U representing the universal construction. 
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To get the compressed image of G, we linearize the grid 

G ignoring all positions for which the corresponding 

entry in U is zero and we get a one dimensional array C. 

 

Algorithm 1 Compressing Sudoku Grid 

Result: Outputs the compressed image of the Grid G 

 C = new Vector() // will contain compress image of G 

 for i = 1..9 do 

 for j = 1..9 do 

 if U[i, j] = 1 then 

 C.add(G[i,j]) 

 return C 

 

So the compression algorithm runs in 81 = 99 steps. 

The corresponding decompression algorithm has two 

inputs: The output array C from the above algorithm and 

the same matrix U representing the universal construction. 

The decompression has two steps. First, it delinearizes the 

one dimensional array to get to the sudoku puzzle. Then it 

solves the puzzle to get its underlying grid. 

 

Algorithm 2 Decompressing Sudoku Grid 

Result: Outputs a decompressed image of the Grid G 

 G = new Matrix(1..9, 1..9) // will contain decompress 

image of G 

 l = length(C) 

 k = 0 // will represent running index in the array C 

 for i = 1..9 do 

 for j = 1..9 do 

 if U[i,j] = 1 then 

 k  k +1 

 G[i,j]  C[k] 

 else 

 G[i,j]  0 // 0 represents empty position in 

the Sudoku puzzle 

 // the delinearization is done; now we need to solve the 

puzzle 

 G  SolvePuzzle(G) 

 return G 

 

Notice that for the puzzle coming from the above 

universal construction, if we follow the empty positions in 

the right order, we can use only simple elimination logic – 

for each empty position we can eliminate the eight values 

that cannot be there. The same is true for each puzzle 

coming from the universal construction bellow. 

The delinearization in the above algorithm runs in 81 

= 99 steps. The number of steps to solve the puzzle 

coming from the above is equal to the number of empty 

positions in the puzzle 21. So the total is 102 steps to run 

the decompression algorithm. 

For the universal construction bellow, there is no 

difference in the number of steps to run the compression 

algorithms. Similar calculations as above for the 

decompression algorithm show that the number of steps 

is 81+33 which is 114. 

Notice also that with the above universal 

construction, we always get a compression of 

81 21

81


100 = 74%. (21 is the number of empty cells in 

the construction.) 

In the rest of the paper, we try to optimize our 

compression ratio. 

Optimization Problem and a Lower Bound 

Definition 

If UC is a universal construction, then let   be 

the number if its empty cells. For example, the  of the 

above universal construction is 21. 

Problem 1 

Let max be the biggest value for  over all universal 

constructions. What is max? Can we find at least one 

universal construction, , for which    = max? 

After many trials and errors and improvements, we 

found the following universal construction. It’s  is 33. 
 

 
 

The encoding of the above universal construction as a 

binary matrix is: 
 

0 1 1 0 1 1 0 0 0

1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0 0

0 1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1 0

0 0 0 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1

0 0 0 1 1 0 1 1 0

U

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

The above pattern is a universal construction; 

imposing the pattern on any sudoku grid, we always get 

a puzzle that has a unique solution. To solve the puzzle, 
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first, we fill the six empty cells in the six small 33 

squares that have only one empty cell each. Then we fill 

the 3 empty small squares using a simple deductive 

logic. This is possible because for each of these small 

empty squares, there are two completely filled small 

squares in the same row and in the same column. Notice 

that if we have enough processors (27), solving the 

puzzle can take only two steps: One step for filling the 

six empty cells in the six small 33 squares and one step 

for filling all 27 cells of the 3 empty small squares. 

The important idea in the above construction is that 

for each of the three small empty squares, there are two 

completely filled small squares in the same row and in 

the same column. Can we have four completely empty 

small squares that are surrounded in the same row and in 

the same column by four completely filled small 

squares? No, because by the pigeonhole principle, there 

will be at least one row with two completely empty small 

squares and then these cannot be surrounded in the same 

row by two completely filled small squares. 

Despite further efforts, we were unable to find any 

universal construction with a bigger . So for now 

max  33. 

Maximality by Inclusion 

Our proof for an Upper bound utilizes the notion of a 

negative pattern. 

Definition 

A pattern of empty cells that cannot be part of any 

universal construction is called negative pattern. 

We will use the following two negative patterns. 

Negative Pattern 1 

The following pattern cannot be part of any universal 

construction. 

 

 
 

This is because of the following counter example: 

When the pattern is applied to the following grid, the 

resulting puzzle has two solutions: In the first two 

columns, the missing 1s and 2s are interchangeable. 

 
 

Negative Pattern 2 

The following pattern cannot be part of any universal 

construction. 

 

 
 

This is because of the following counter example: 

When the pattern is applied to the following grid, the 

resulting puzzle has two solutions: The missing 1s and 

2s (in each of the three 33 squares: B1,1, B1,2, B2,1) are 

interchangeable. 

 

 
 

The above two negative patterns have many 

equivalent forms through the following transformations: 

 

 Permuting rows in the same band 

 Permuting bands 

 Permuting columns in the same stack 

 Permuting stacks 

 Mirroring the grid by one of the diagonals 
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 Rotating the grid on 90, 180, or 270C 
 

Next, we prove that if we add one or more empty 

cells in the universal construction from section 3, then 

the new pattern is not anymore a universal construction. 

That’s it, for any new pattern by inclusion, always there 

is at least one Sudoku grid such that the resulting puzzle 

does not have a unique solution. 

Theorem 1 

The universal construction from section 3 is maximal 

by inclusion. 

Proof. (We use Proof by Contradiction.) 

Assume the we could add at least one more empty 

cell to the universal construction from section 3. We will 

prove that the new pattern is not any more a universal 

construction. 

To add one more empty cell, we need to choose 

which cell with a star to make empty. So first, we 

need to choose one of the six small squares that each 

has one empty cell. Then we can make empty one of 

the cells with a star in that square. Each of the six 

small squares has already one empty cell. We will call 

them the old empty cells. There are two cases for the 

new empty cell. 

Case 1.) 

If the new empty is in the same row or in the same 

column as the old empty cell in the same small square, 

then the new pattern contains the Negative Pattern 1 as a 

sub pattern and so there exist at least one Sudoku grid so 

that imposing the new pattern on it, we get a puzzle with 

no unique solution. Here is an example: 
 

 
 

In the above, the Negative Pattern 1 is formed by the 

two empty cells in B2,1 and any of the three pairs of cells 

in B3,1 that are parallel to the two empty cells in B2,1. 

Case 2.) 

If the new empty is not in the same row or in the 

same column as the old empty cell in the same small 

square, then the new pattern contains Negative Pattern 2 

as a sub pattern; so there exist at least one Sudoku grid 

such that that imposing the new pattern on it, we get a 

puzzle with no unique solution. Here is an example: 

 

 
 

Simple Upper Bound for  

In (McGuire et al., 2014), it is given that the smallest 

Sudoku puzzle has 17 clues. Since every universal 

construction can be used to derive Sudoku puzzles, it 

follows that there is no universal construction with  > 

81-17. So max  64. 

Conclusion and Open Problems 

Q1: Our best universal construction (from section 3) 

has  = 33. Is there a universal construction with 

 > 33? 

Q2: Can we improve the upper bound of 64 from section 5? 

Q3: At the moment, we have only two Negative 

Patterns. Can we find more? Can we find all 

possible Negative Patterns with small number of 

empty cells? 

Q4: Instead of looking for a universal construction 

with big , for a given sudoku grid we could try 

to find a puzzle with a smallest number of initially 

given cells with numbers (also called clues). What 

is the complexity of this minimization problem? 

What is the best algorithm that finds a puzzle with 

minimal number of clues for a given Sudoku grid? 

Then, to transfer a given grid, we could only 

transfer one of its puzzles with smallest number 

of clues. At the destination, to decompress, we 

could solve the puzzle. How efficient could be 

such a transfer compared with our transmission 

using our best universal construction? 
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