

 © 2020 Zhivko Nedev, Murtala Adamu Zungeru, Suykhun Khov, Daravisal Dy and Kimkhung Sov. This open access article

is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Algorithm for Compressing/Decompressing Sudoku Grids

1Zhivko Nedev, 2Murtala Adamu Zungeru, 3Suykhun Khov, 3Daravisal Dy and 3Kimkhung Sov

1Department of Computer Science and Information System,

Botswana International University of Science and Technology, Botswana
2Department of Electrical, Computer and Telecommunications Engineering,

Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
3Department of Computer Science, Zaman University, Cambodia

Article history

Received: 26-04-2020

Revised: 02-09-2020

Accepted: 01-10-2020

Corresponding Author:

Zhivko Nedev

BIUST, Palapye, Botswana

Email: znedev@gmail.com

Abstract: We describe a way to transfer efficiently Sudoku grids through

the Internet. This is done by using linearization together with compression

and decompression that use the information structure present in all sudoku

grids. The compression and the corresponding decompression are based on

the fact that in each Sudoku grid there are information dependencies and so

some of the information is redundant.

Keywords: Sudoku, Compression, Decompression, Algorithms, Data

Structure

Introduction

In this study, we use the established terminology

(Delahaye, 2006) - a Sudoku grid is a square 99 table

with 81 cells. In each cell, there is a single digit from 1

to 9 and each Sudoku grid fulfills three types of

constraints: (1) Each row has each of the digits from 1 to

9 exactly once; (2) each column has each of the digits

from 1 to 9 exactly once; and (3) each of the small 33

squares has each of the digits from 1 to 9 exactly once.

In the following, the figure on the left is an example of a

Sudoku grid and on the right is a sudoku grid with all the

small 33 squares denoted by Bi,j with 1 i, j3. We use

this notation in the rest of this paper.

Sudoku puzzles show incomplete grids, with a

number of cells pre-filled with fixed, or given digits,

chosen to ensure that there is a unique solution. That is,

for each Sudoku puzzle, there is only one way to fill the

empty cells so to form a complete Sudoku grid.

One Sudoku grid can be used as a base for many

Sudoku puzzles. Therefore the grids and the puzzles

might have to be stored and transferred separately. In

this study, we investigate what is an efficient way to

transfer through the Internet a big number of previously

generated Sudoku grids. Moreover, the receiving device

might have limited memory and computational resources

as in the case of a mobile phone.

The most compact representation

(https://www.quora.com/What-can-be-the-most-

compact-representation-for-a-solved-Sudokupuzzle) of a

sudoku grid would use log2 n bits, where n is the number

of possible Sudoku puzzles. For the first time

(Felgenhauer and Jarvis, 2005), it was computed that n =

6, 670, 903, 752, 021, 072, 936, 960  6.671021. The

same result was confirmed in (Mishra et al., 2016). So

to uniquely identify any Sudoku grid we need only 73

bits. Although this encoding is optimal (we cannot

represent one of n possible values with less than log2 n

bits), both the sending and the receiving device must

contain a database of all possible Sudoku grids which

put heavy memory and computational burden on the

two devices. Given the grid, the compression algorithm

searches the database in order to find the 73-bit

representation of the grid. Given the 73-bit

representation of the grid, the decompression algorithm

searches the database to find the grid.

As a second approach, we can represent any sudoku

grid with one of its sudoku puzzles; the solution of the

puzzle is the grid. So at the sending device, given a grid,

we compute one puzzle (this is the compression

algorithm), then we send an encoding of the puzzle

through the Internet. At the receiving device, we first

Zhivko Nedev et al. / Journal of Computer Science 2020, 16 (9): 1319.1324

DOI: 10.3844/jcssp.2020.1319.1324

1320

decode the puzzle and then solve it (the decompression

algorithm) to get the sudoku grid.

Since we want the strongest compression, one

could use a puzzle with minimal number of clues. In

(McGuire et al., 2014), it was proved that any

solvable puzzle needs at least 17 clues. Although this

approach raises two questions: (1) Does a 17-clue

puzzle exist for any sudoku grid and (2) given a

sudoku grid, how to efficiently compute at least one

of its puzzles with minimal number of clues, they are

not considered in our paper.

In general, solving n2  n2 sudoku puzzles is an NP-

complete problem (Yato and Seta, 2003). But for small n

(in our case n = 3), there are a number of practical

algorithmic approaches for solving such puzzles. In

(Crook, 2009), a simple backtracking algorithm is given

based on preemptive sets and random choice. In

(Eppstein, 2012), a new algorithm is developed by using

full Nishio deduction rules. The computations use

directed acyclic graphs and depth-first search. In (Lewis,

2007), a stochastic search-based algorithm is given,

which uses simulated annealing. In (Perez and Marwala,

2008), the following stochastic search techniques are

used: Cultural Genetic Algorithm, Quantum Simulated

Annealing and the Hybrid method that combines Genetic

Algorithm with Simulated Annealing. In (Santos-García

and Palomino, 2007), it is shown how a sudoku puzzle

can be solved with the use of rewriting logic.

We have not done yet any run time comparisons

between our algorithm and any of the

compression/decompression algorithms based on the

above techniques. Looking at the above references

(Crook, 2009; Eppstein, 2012; Lewis, 2007; Perez and

Marwala, 2008; Santos-García and Palomino, 2007), our

algorithm is considerably simpler and has much smaller

number of operations.

In this study, we encode any grid to be transferred

through the Internet or to be stored in a database by

using one fixed universal puzzle. A puzzle is universal,

if its pattern of empty cells can be imposed on any grid

and the result is a valid sudoku puzzle. Then the puzzle

derived from the grid is linearized starting from the top

left corner, going from left to right and from top to

bottom and finishing at the bottom right corner. Since we

use a fixed pattern for the empty cells, the linearization

contains only content of the clue cells.

Universal Compression Algorithm for

Sudoku Grids

Definition

A universal construction (U for short) for a Sudoku

puzzle is a fixed pattern with positions for the empty cells

with the property that when the pattern is applied to any

sudoku grid, we get a puzzle which is uniquely solvable.

To describe a universal construction, we have to

give the positions of all empty cells. In this study, we

will describe them visually by giving a Sudoku grid

with the non-empty cells filled with the star symbol

(); all non-filled positions are the empty one. Here is

one universal construction:

The empty cells do not have a star inside. In the

above, the empty cells are all cells in the top row and in

the last column plus the four empty cells - one in each of

the four 33 squares in the lower left part of the grid.

The total number of empty cells is 9+8+4 = 21.

When we impose the above pattern to any Sudoku

grid, we get a Sudoku puzzle with a unique solution:

First we fill the four empty cells in each of the four 33

squares in the lower left part of the grid; then we fill all

cells in the top row except the cell in the top right corner;

finally we fill all cells in the last column. That is why the

pattern is a universal construction - it has a unique

solution for any Sudoku grid.

We can also encode any universal construction with a

99 binary matrix where zeros indicate empty positions.

So the above universal construction is represented as:

0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 0

0 1 1 0 1 1 1 1 0

1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 0

0 1 1 0 1 1 1 1 0

1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 0

U

 
 
 
 
 
 
 
 
 
 
 
 
 
 

We can use any universal construction to make a

compression and its corresponding decompression

algorithm.

An input for our compression algorithm is a 99

matrix G representing the Sudoku grid and the 99

binary matrix U representing the universal construction.

Zhivko Nedev et al. / Journal of Computer Science 2020, 16 (9): 1319.1324

DOI: 10.3844/jcssp.2020.1319.1324

1321

To get the compressed image of G, we linearize the grid

G ignoring all positions for which the corresponding

entry in U is zero and we get a one dimensional array C.

Algorithm 1 Compressing Sudoku Grid

Result: Outputs the compressed image of the Grid G

 C = new Vector() // will contain compress image of G

 for i = 1..9 do

 for j = 1..9 do

 if U[i, j] = 1 then

 C.add(G[i,j])

 return C

So the compression algorithm runs in 81 = 99 steps.

The corresponding decompression algorithm has two

inputs: The output array C from the above algorithm and

the same matrix U representing the universal construction.

The decompression has two steps. First, it delinearizes the

one dimensional array to get to the sudoku puzzle. Then it

solves the puzzle to get its underlying grid.

Algorithm 2 Decompressing Sudoku Grid

Result: Outputs a decompressed image of the Grid G

 G = new Matrix(1..9, 1..9) // will contain decompress

image of G

 l = length(C)

 k = 0 // will represent running index in the array C

 for i = 1..9 do

 for j = 1..9 do

 if U[i,j] = 1 then

 k  k +1

 G[i,j]  C[k]

 else

 G[i,j]  0 // 0 represents empty position in

the Sudoku puzzle

 // the delinearization is done; now we need to solve the

puzzle

 G  SolvePuzzle(G)

 return G

Notice that for the puzzle coming from the above

universal construction, if we follow the empty positions in

the right order, we can use only simple elimination logic –

for each empty position we can eliminate the eight values

that cannot be there. The same is true for each puzzle

coming from the universal construction bellow.

The delinearization in the above algorithm runs in 81

= 99 steps. The number of steps to solve the puzzle

coming from the above is equal to the number of empty

positions in the puzzle 21. So the total is 102 steps to run

the decompression algorithm.

For the universal construction bellow, there is no

difference in the number of steps to run the compression

algorithms. Similar calculations as above for the

decompression algorithm show that the number of steps

is 81+33 which is 114.

Notice also that with the above universal

construction, we always get a compression of

81 21

81


100 = 74%. (21 is the number of empty cells in

the construction.)

In the rest of the paper, we try to optimize our

compression ratio.

Optimization Problem and a Lower Bound

Definition

If UC is a universal construction, then let   be

the number if its empty cells. For example, the  of the

above universal construction is 21.

Problem 1

Let max be the biggest value for  over all universal

constructions. What is max? Can we find at least one

universal construction, , for which   = max?

After many trials and errors and improvements, we

found the following universal construction. It’s  is 33.

The encoding of the above universal construction as a

binary matrix is:

0 1 1 0 1 1 0 0 0

1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0 0

0 1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1 0

0 0 0 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1

0 0 0 1 1 0 1 1 0

U

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The above pattern is a universal construction;

imposing the pattern on any sudoku grid, we always get

a puzzle that has a unique solution. To solve the puzzle,

Zhivko Nedev et al. / Journal of Computer Science 2020, 16 (9): 1319.1324

DOI: 10.3844/jcssp.2020.1319.1324

1322

first, we fill the six empty cells in the six small 33

squares that have only one empty cell each. Then we fill

the 3 empty small squares using a simple deductive

logic. This is possible because for each of these small

empty squares, there are two completely filled small

squares in the same row and in the same column. Notice

that if we have enough processors (27), solving the

puzzle can take only two steps: One step for filling the

six empty cells in the six small 33 squares and one step

for filling all 27 cells of the 3 empty small squares.

The important idea in the above construction is that

for each of the three small empty squares, there are two

completely filled small squares in the same row and in

the same column. Can we have four completely empty

small squares that are surrounded in the same row and in

the same column by four completely filled small

squares? No, because by the pigeonhole principle, there

will be at least one row with two completely empty small

squares and then these cannot be surrounded in the same

row by two completely filled small squares.

Despite further efforts, we were unable to find any

universal construction with a bigger . So for now

max  33.

Maximality by Inclusion

Our proof for an Upper bound utilizes the notion of a

negative pattern.

Definition

A pattern of empty cells that cannot be part of any

universal construction is called negative pattern.

We will use the following two negative patterns.

Negative Pattern 1

The following pattern cannot be part of any universal

construction.

This is because of the following counter example:

When the pattern is applied to the following grid, the

resulting puzzle has two solutions: In the first two

columns, the missing 1s and 2s are interchangeable.

Negative Pattern 2

The following pattern cannot be part of any universal

construction.

This is because of the following counter example:

When the pattern is applied to the following grid, the

resulting puzzle has two solutions: The missing 1s and

2s (in each of the three 33 squares: B1,1, B1,2, B2,1) are

interchangeable.

The above two negative patterns have many

equivalent forms through the following transformations:

 Permuting rows in the same band

 Permuting bands

 Permuting columns in the same stack

 Permuting stacks

 Mirroring the grid by one of the diagonals

Zhivko Nedev et al. / Journal of Computer Science 2020, 16 (9): 1319.1324

DOI: 10.3844/jcssp.2020.1319.1324

1323

 Rotating the grid on 90, 180, or 270C

Next, we prove that if we add one or more empty

cells in the universal construction from section 3, then

the new pattern is not anymore a universal construction.

That’s it, for any new pattern by inclusion, always there

is at least one Sudoku grid such that the resulting puzzle

does not have a unique solution.

Theorem 1

The universal construction from section 3 is maximal

by inclusion.

Proof. (We use Proof by Contradiction.)

Assume the we could add at least one more empty

cell to the universal construction from section 3. We will

prove that the new pattern is not any more a universal

construction.

To add one more empty cell, we need to choose

which cell with a star to make empty. So first, we

need to choose one of the six small squares that each

has one empty cell. Then we can make empty one of

the cells with a star in that square. Each of the six

small squares has already one empty cell. We will call

them the old empty cells. There are two cases for the

new empty cell.

Case 1.)

If the new empty is in the same row or in the same

column as the old empty cell in the same small square,

then the new pattern contains the Negative Pattern 1 as a

sub pattern and so there exist at least one Sudoku grid so

that imposing the new pattern on it, we get a puzzle with

no unique solution. Here is an example:

In the above, the Negative Pattern 1 is formed by the

two empty cells in B2,1 and any of the three pairs of cells

in B3,1 that are parallel to the two empty cells in B2,1.

Case 2.)

If the new empty is not in the same row or in the

same column as the old empty cell in the same small

square, then the new pattern contains Negative Pattern 2

as a sub pattern; so there exist at least one Sudoku grid

such that that imposing the new pattern on it, we get a

puzzle with no unique solution. Here is an example:

Simple Upper Bound for 

In (McGuire et al., 2014), it is given that the smallest

Sudoku puzzle has 17 clues. Since every universal

construction can be used to derive Sudoku puzzles, it

follows that there is no universal construction with  >

81-17. So max  64.

Conclusion and Open Problems

Q1: Our best universal construction (from section 3)

has  = 33. Is there a universal construction with

 > 33?

Q2: Can we improve the upper bound of 64 from section 5?

Q3: At the moment, we have only two Negative

Patterns. Can we find more? Can we find all

possible Negative Patterns with small number of

empty cells?

Q4: Instead of looking for a universal construction

with big , for a given sudoku grid we could try

to find a puzzle with a smallest number of initially

given cells with numbers (also called clues). What

is the complexity of this minimization problem?

What is the best algorithm that finds a puzzle with

minimal number of clues for a given Sudoku grid?

Then, to transfer a given grid, we could only

transfer one of its puzzles with smallest number

of clues. At the destination, to decompress, we

could solve the puzzle. How efficient could be

such a transfer compared with our transmission

using our best universal construction?

Author’s Contributions

All authors equally contributed in this work.

Zhivko Nedev et al. / Journal of Computer Science 2020, 16 (9): 1319.1324

DOI: 10.3844/jcssp.2020.1319.1324

1324

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Crook, J. F. (2009). A pencil-and-paper algorithm for

solving Sudoku puzzles. Notices of the AMS, 56(4),

460-468.

Delahaye, J. P. (2006). The science behind Sudoku.

Scientific American, 294(6), 80-87.

Eppstein, D. (2012, June). Solving single-digit sudoku

subproblems. In International Conference on Fun

with Algorithms (pp. 142-153). Springer, Berlin,

Heidelberg.

Felgenhauer, B., & Jarvis, F. (2005). Enumerating

possible Sudoku grids. Preprint available at

http://www.afjarvis.staff.shef.ac.uk/sudoku/sudoku.

pdf.

https://www.quora.com/What-can-be-the-most-compact

representation-for-a-solved-Sudokupuzzle

Lewis, R. (2007). Metaheuristics can solve sudoku

puzzles. Journal of heuristics, 13(4), 387-401.

McGuire, G., Tugemann, B., & Civario, G. (2014).

There is no 16-clue Sudoku: Solving the Sudoku

minimum number of clues problem via hitting set

enumeration. Experimental Mathematics, 23(2),

190-217.

Mishra, P., Gupta, D. K., & Badoni, R. P. (2016). A new

algorithm for enumerating all possible Sudoku

squares. Discrete Mathematics, Algorithms and

Applications, 8(02), 1650026.

Perez, M., & Marwala, T. (2008). Stochastic

optimization approaches for solving Sudoku. arXiv

preprint arXiv:0805.0697.

Santos-García, G., & Palomino, M. (2007). Solving Sudoku

puzzles with rewriting rules. Electronic Notes in

Theoretical Computer Science, 176(4), 79-93.

Yato, T., & Seta, T. (2003). Complexity and

completeness of finding another solution and its

application to puzzles. IEICE transactions on

fundamentals of electronics, communications and

computer sciences, 86(5), 1052-1060.

https://www.quora.com/What-can-be-the-most-compact%20representation-for-a-solved-Sudokupuzzle
https://www.quora.com/What-can-be-the-most-compact%20representation-for-a-solved-Sudokupuzzle

