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Abstract: With the technological development and means of 

communication, the Internet of Things (IoT) has become an essential role 

in providing many services in daily life through millions of 

heterogeneous but interconnected devices and nodes. This development is 

opening to many security and privacy challenges that can cause complete 

network breakdown, bypassed access control or the loss of critical data. 

This paper attempts to provide a preliminary analysis for malware 

detection within data generated by IoT-based devices and services in the 

form of operational codes (Opcode) sequences. Three machine learning 

algorithms are evaluated and compared for accuracy, precision, recall 

and F-measure. The results showed that the Random Forest (RF) 

achieved the best accuracy of 98%, followed by SVM and k-NN, both 

with 91%. The results are further analyzed based on the Receiver 

Operating Characteristic (ROC) curve and Precision-Recall curve to 

further illustrate the difference in performance of all three algorithms 

when dealing with IoT data. 
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Introduction 

Today, the Internet of Things (IoT) has offered many 

services through interconnection of huge number of 

sensor devices, embedded systems or services (Mosenia 

and Jha, 2016; Azmoodeh et al., 2018). IoT has become 

a driving technology in many domain such as smart city, 

intelligent transportation, as well as health and energy 

systems (D’Orazio et al., 2016; Patel et al., 2012). The 

massive expansion of IoT applications has resulted in 

surge of data, hence opening to many security and 

privacy challenges such as the malware attacks (Tankard, 

2015; D’Orazio et al., 2016; Watson and Dehghantanha, 

2016). The core reason of these challenges is simply 

because any network is subject to threat and penetration 

from devices that are connected to the network (Yang et al., 

2016; Li et al., 2019; Wazid et al., 2019). 

Malware is the collective name for different types of 

malicious software, including viruses, ransomware and 

spyware. The main issue with malware detection lies in 

the ineffective methods used for signing and monitoring 

the suspected code for known security changes. This has 

led to many investigation on formulating new methods 

and techniques that can overcome different attack 

vectors (Burguera et al., 2011).  

Machine learning is a popular method used to detect 

attacks and malware, as the concept of self-learning by 

extracting data features and training them is able to identify 

features of other data that have not been trained before 

(Rehman et al., 2018). In 2016, feature selection methods 

have been investigated in anomaly detection systems using 

the Principle Component Analysis (PCA) and Guttman-

Kaiser (Kakavand et al., 2016). However, the study was not 

limited to reducing the dimensions of the features but rather 

preserving the information that is important in classifying 

the anomalies. The results showed a high intrusion rate of 

97% with a false positive rate of 1.2%. 

Research by Milosevic et al. (2017) studied malware 

detection that targeted android systems. This research 

used permissions and source code analysis through the 

use of the bag-of-words representation model and 

features implemented using a privacy and security 

protection application for Android devices called 

OWASP Seraphim droid. The results showed that the 

classification accuracy achieved was 89% and further 

increased to 95% with source code analysis.  
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Subsequent research by Kakavand et al. (2018) applied 

two machine learning algorithms, which are Support Vector 

Machines (SVM) and K-Nearest Neighbors (k-NN), 

through the supervised learning process in order to classify 

malware and benign. This research focused on android 

application data and reported 79.1 and 80.5% accuracy 

percentage for SVM and k-NN, respectively. 

In a more recent work, Kumar et al. (2019) presented 

a new method that combined machine learning methods 

and blockchain technology to improve the performance 

of malware detection model in Android devices. The 

proposal was implemented using a sequencing 

approach that combined clustering and classification in 

blockchain technology, as well as extracting 

information about malware and storing it back in 

blockchain. The main purpose was to develop a malware 

database, thus easily detecting other malicious in the 

future that do not exist previously. 

Deep learning approaches have also been explored 

to classify data based on the dynamic approach to 

malware detection. A new method has been introduced 

to extract features in order to analyze the dynamic 

behavior and build a model of repeated neural networks 

to extract the abstract features (Xiaofeng et al., 2018). 

This research also studied many of the serial data 

processing to get rid of redundant data. The results 

showed that combining the two methods had better 

results and it was 99.3% where the classification 

performance was proven to be higher when merging 

machine learning and deep learning methods as 

compared to using the models separately. 

In general, malware detection is an important and 

fundamental matter in providing security in IoT-based 

applications such as smart devices. According to the 

Kaspersky Lab, in 2016 most of the Internet devices were 

unsafe and most of the devices had a default password or 

security glitches that were not processed, which lead to 

easy penetration of these devices (Kolias et al., 2017; 

HaddadPajouh et al., 2018; Goyal et al., 2019). 

Security experts have warned the dangers to which the 

Internet of Things (IoT) can cause, specifically the 

malware due to the widespread dependence on devices 

connected to the Internet. Organizations are in need of a 

mechanism that has the ability to discover malware and 

suspicious bugs when their devices and services are 

connected to the Internet (Mahindru and Singh, 2017; 

Meidan et al., 2017). 

In detecting malware within IoT environment, 

Bragen (2015) investigated both supervised and non-

supervised machine learning approach to detect attacks 

on IoT-generated data such as spoofing attack 

eavesdropping and jamming. HaddadPajouh et al. (2018) 

used three different Long Short Term Memory (LSTM), 

a type of Recurrent Neural Network (RNN) machine 

learning architecture. The results showed that second 

configurations with two-layer neurons achieved the 

highest accuracy of 98.2%. Although various machine 

learning and deep learning approaches have been used in 

malware detection, the literature has shown that the 

domain has evolved from email to mobile devices and 

most recently, to IoT devices (Lu et al., 2003).  

In order to address the gap in providing adequate 

protection systems among IoT-based applications and 

smart devices, this research is set to provide a 

preliminary analysis of malware detection for 

operation code (Opcode) sequences within IoT 

environment as benchmark performance for future 

works. The remaining of this paper is organized as 

follows. Section 2 presents the materials and methods 

along with validation methods and algorithms. Section 

3 presents the results, Section 4 discusses the results 

and finally section 5 concludes with future work. 

Materials and Methods  

In detecting malware within IoT-based applications, a 

classification methodology is adopted to predict 

categorical class labels (malware vs. benign) from the 

operational codes (Opcode) sequence dataset. The 

classification experiments will be carried out based on 

training and testing dataset to classify newly available 

data (Allahyari et al., 2017). The classification 

methodology is shown in Figure 1. The sub-sections will 

detail out the dataset, pre-processing, model validation, 

algorithms and the evaluation metrics. 

Dataset 

This research focuses on malware detection within 

data generated by IoT-based applications. With 

Raspberry Pie II, it is worth noting that AMD 

processors have been widely used in cloud edge 

devices, hence qualifying Raspberry Pi II as an IoT 

cloud edge device. The dataset used in this research 

was sourced from the Linux Debian package 

repositories (https://pkgs.org/). 

The dataset is based on 32-bit ARM-based malware 
within the Virus Total Threat Intelligence platform as of 
30 September 2017 in the form of Executable and 
Linkable Format (ELF). The ELF is used because it 

consideres the structure for binaries, libraries and core 
files, as well as roles in the process of linking program 
and execution. Since ELF features are considered static 
features, higher accuracy in malware detection is 
expected. Analyzing ELF is also important as it gives 
generic understanding of how an operating system works 

during software development. 
Following HaddadPajouh et al. (2018), a Linux bash 

script for the Opcode samples in the dataset was written 

to extract the sequence of Opcodes in each sample. 

After extracting the ELF files using the Debian bundle, 

the dataset provided 280 malware and 270 benign 

https://pkgs.org/
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programs samples. Next, Object-Dump tool was used to 

decompile all samples to extract Opcode sequences in 

each sample. Fig. 2 and Fig. 3 show the excerpts of 

malware and benign samples. 

 

 
 

Fig. 1: Research methodology 
 

 
 

Fig. 2: Excerpt of attack (malware) samples 
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Fig. 3: Excerpt of normal (benign) samples 

 

 
 

Fig. 4: Validation methodology 

 

Pre-Processing 

After disassembling, the opcode sequences extracted 

will be pre-processed through various pre-processing 

steps, which include normalizing, centering and scaling. 

A Phyton code is used to convert the opcodes into Excel 

file with rows of opcodes and columns of features before 

they are ready for splitting into training and testing set. 

Normalizing can give us several meanings, is used 

informally in statistics, it is the ability to remove the 

unit’s measurement of data, which allows us to compare 

data from different places with greater ease. 

For many types of data, centering and scaling are 

intertwined. Centering corresponds to a subtraction of a 

reference vector (often represented by the mean values 

of the variables or the settings of the setpoint). Scaling 

corresponds to a multiplication by a vector. The choice 

of scaling vector is crucial (Bro and Smilde, 2003). 

Model Validation 

The anomaly detection or malware classification 

experiments were carried out using the k-fold validation 

method for training and testing as shown in Fig. 4. In the 

ten-fold validation setting, eight times was used for 

training, one for documentation and the rest for testing. 

Following (Davis and Goadrich, 2006). A confusion 

matrix was derived summarized from 10 experiments 

together, analyzed and reported. Based on this figure, the 

k-fold cross-validation method divides n samples into k 

groups, whereby validation uses n/k a sample in each 

group at a time. When a group is chosen for a test, the 

group of k-1 and the other is used for training, after 
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which the training is switched to the test group every 

time (cycle). In this way, the performance of the 

classifier can be determined by calculating the average 

error of k in each cycle (Varoquaux, 2018; Zhang et al., 

2016).  

Algorithms 

Three machine learning algorithms are used in the 

preliminary experiments, which are k-Nearest Neighbor 

(k-NN), Support Vector Machines (SVM) and Random 

Forest. All the algorithms were implemented using the 

Anaconda Navigator, TensorFlow, scikit-learn machine 

learning, Jupyter note-book, as well as tools in Phyton. 

All three algorithms have served as benchmark 

algorithms under the machine learning approach in many 

malware or anomaly detection problems in Internet-of-

Things (IoT) devices (Hasan et al., 2019; Nakhodchi et al., 

2020; Darabian et al., 2020), networks (Kumar and Lim, 

2019) and services (Ham et al., 2014; Sethi et al., 2017; 

Tien et al., 2020). The other reason is that these 

algorithms are more efficient with a small data set if 

compared to other methods such as deep learning 

methods that need big data since the data set of this 

research is considered small in size (Gislason et al., 

2003; Noi and Kappas, 2018; Wang et al., 2018a). 

k-Nearest Neighbor (k-NN) 

k-NN is an algorithm that determine a class of k 

nearest training samples through finding the most 

frequent class available in the feature space (Gupta and 

Mittal, 2018; Wang et al., 2018b). Given a set of features 

and classes (x1, y1),…, (xn, yn), where features x1 Rd and 

classes y1y, then for a given i, k-NN rates the neighbors 

of a test sequence among the training sample and use the 

class labels for the nearest neighbors in order to expect 

the test vector class (Allahyari et al., 2017). Therefore, k 

takes the new k-points and ranks them according to the 

majority of votes obtained for the closest k. This 

algorithm uses the Euclidean distance to measure the 

resemblance between two vectors points (Aburomman 

and Reaz, 2016). The formula for k-NN is shown in 

Equation 1: 

 

   

   

2
2

1

1 2

, ,

, , , ,... ... ...

d

i j i i ik jkk

d

i j i i i id

d x x x x x x

x x R x x x x


  

 


  (1) 

 

Fig. 5 illustrates the concept of k-NN with two 

classes; when k = 3 and k = 7. 

Support Vector Machines (SVM) 

SVM is a group classifier models that is considered 

one of the effective methods with high popularization 

ability in practice (Huang et al., 2018). In contrast to 

statistical methods that are based on reducing 

experimental risks, SVM is based on reducing structural 

risks, this indicates the ability of this algorithm to avoid 

overrun. The way the algorithm works is to create 

hyperlinked decision plans that are divided into two 

categories with the maximal margin in the Fig. 6. These 

decisions are known as hyperplane as defined in 

Equation 2 where w is the weight vector, x is the input 

feature vector and b is the bias: 

 

0Twx b    (2) 

 

The objective of SVM is to find decision 

boundaries between two classes that allow predictions 

of labels from one or more features, in a way that it 

separates the data and maximum the margin 1/||w||2, 

making them as close as possible to data points from 

each of these categories is called close points 

(Apostolidis-Afentoulis and Lioufi, 2015). 

 

 
 
Fig. 5: K-NN algorithm concept 

 

 
 
Fig. 6: Support Vector Machine (SVM) 
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Random Forests (RF) 

RF is one of the groups of classification algorithms 

that depend on decision trees. This algorithm consists of 

different subsets of training data taken from the original 

data set using the method bootstrap sampling approach, 

after that creating the decision tree k through training the 

sub-groups, in the end building a random forest of 

decision trees as shown in Fig. 7 (Chen et al., 2016). RF 

has the least error in classifying data if compared with 

other traditional tree-based methods. The number of 

trees, the minimum node size and the number of features 

that are used to divide each node have several 

advantages such as, after completing the random tree 

forest can be referred to in the future, RF has the ability 

to overcome the over fitting (Farnaaz and Jabbar, 2016). 

An RF algorithm can be formalized as Equation 3: 

 

  , ,i iS x y  (3) 

 

where x is the sample, y is the feature variable of s, n is 

the number of samples, m is the feature variable for each 

sample, i = 1,2,…, n and j = 1,2,…, m. 

Evaluation Metrics 

Following Nikam (2015), the evaluation metrics 

used in the experiments are accuracy, precision, recall 

and F-measure. The percentage is calculated based on 

confusion matrix, where the rows in the matrix 

represent instances of the actual class and each 

column represent instances of the predicted class. A 

confusion matrix is implemented based on the results 

illustrated in Table 1. The correct forecasts are 

distributed with the number of values distributed for 

each category given the total expected results after 

classification (Powers, 2011). 

Based on Table 1, a TP means the instance 

originally labeled as benign is correctly predicted as 

benign. A TN means the instance originally labeled as 

malware is correctly predicted as malware. An FP 

means the instance originally labeled as malware is 

incorrectly predicted as benign. Finally, an FN means 

the instance originally labeled as benign is incorrectly 

predicted as malware. Equation 4-7 show the formula 

for calculating the evaluation metrics. 

 

 

 
Fig. 7: Construction process of RF algorithm 

 
Table 1: Confusion matrix 

 Predicted 

 ---------------------------------------------------------------------------------- 

Actual Positive class (Benign) Negative class (Malware) 

Positive class (Benign) True Positive (TP) False Negative (FN) 

Negative class (Malware) False Positive (FP) True Negative (TN) 

S = N  M 

S1 = N  M S2 = N  M Sk = N  M 

X 

1  M 

h1 (x) h2 (x) hk (x) 

h1 (x) h2 (x) hk (x) 

H (X) 
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Accuracy 

Accuracy is number of correct predictions from all 

predictions made. The formula for calculating accuracy 

is shown in Equation 4: 
 

TP TN
Accuracy

TP TN FP FN




  
 (4) 

 

Precision 

Precision is the ratio of predicted malware that are 

correctly labeled a malware. The formula for calculating 

accuracy is shown in Equation 5: 
 

TP
Precision

TP FP



 (5) 

 

Recall 

Recall or detection rate is the ratio of malware 

samples that are correctly predicted. The formula for 

calculating accuracy is shown in Equation 6: 
 

TP
Recall

TP FN



  (6)

  

F-Measure 

F-Measure is the harmonic mean of precision and recall, 

which is a very useful measure of success of prediction 

when the classes are imbalanced. In information retrieval, 

precision is a measure of result relevancy, while recall is a 

measure of how many truly relevant results are returned 

(Sabharwal and Sedghi, 2017). The formula for calculating 

accuracy is shown in Equation 7: 
 

2

2

TP
F measure

TP FP FN


 

  
 (7) 

 

Precision, recall and F-measure is measured because 

accuracy alone can be misleading. The Confusion Matrix 

as a way of describing the breakdown of errors in 

predictions for an unseen dataset. Precision will give 

exactness of a model while recall gives completeness the 

model. Finally, F-measure or F1 score gives the balance 

between the two. 

Results  

The purpose of the experiments is to compare the 

performance of three algorithms, which are k-Nearest 

Neighbor (k-NN), Support Vector Machines (SVM) and 

Random Forest (RF). The full results of accuracy, 

precision, recall and F-measure are shown in Table 2. 

Next, the results in Table 2 are analyzed based on 

Receiver Operating Characteristic (ROC) curve and 

Precision-Recall (PR) curve. Both types of curves played 

a fundamental role in understanding the technique of the 

various systems in the presence of uncertainty. These 

curves were used in several areas such as radiology, 

electrical engineering and several other arenas to 

education the performance of a binary forecast system as 

a function of a control parameter. As the control 

parameter, it is possible to increase the accuracy and 

reduce the false positive rate of the system according to 

the lower recall, which is the true positive rate or 

sensitivity (Pavlick et al., 2015; Ekelund, 2017). 

The Area Under Curve (AUC) will be used as a 
summary of the model skill. The model skill will be 
compared against a no-skill classifier, which is the one 

that cannot discriminate between the classes and would 
predict a random class or a constant class in all cases. A 
model with no-skill is represented at the point (0.5, 0.5). 
A model with no-skill at each threshold is represented by 
a diagonal line from the bottom left of the plot to the top 
right and has an AUC of 0.5. Table 3 summarizes the 

results of AUC for both ROC and PR curves across all 
three algorithms. 

Receiver Operating Characteristic (ROC) Curve 

A Receiver Operating Characteristic (ROC) curve 

summarizes the trade-off between TP rate and FP rate for 

a predictive model using different probability thresholds. 

It has two dimensions where the x-axis indicates the 

False Positive (FP) rate and the y-axis indicates the True 

Positive (TP) rate (Grau et al., 2015). Fig. 8 shows the 

ROC curve for k-Nearest Neighbor (k-NN). The ROC 

AUC is 0.959 with no-skill AUC at 0.500. 

 
Table 2: Comparison of results 

Algorithm Accuracy Rate Precision Rate Recall Rate F- Measure 

k-Nearest Neighbor (k-NN)  0.91 0.91 0.91 0.864 

Support Vector Machines (SVM) 0.91 0.91 0.91 0.905 

Random Forest (RF) 0.98 0.98 0.98 0.980 

 
Table 3: Area Under Curve (AUC) for both ROC and PR 

Algorithm ROC AUC PR AUC 

k-Nearest Neighbor (k-NN) 0.959 0.960 

Support Vector Machines (SVM) 0.888 0.885 

Random Forest (RF) 0.981 0.983 
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Fig. 8: ROC curve for k-Nearest Neighbor (k-NN) 
 

 
 

Fig. 9: ROC curve for Support Vector Machines (SVM) 
 

 
 

Fig. 10: ROC curve for Random Forest (RF) 
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Fig. 11: PR curve for k-Nearest Neighbor (k-NN) 

 

 
 

Fig. 12: PR curve for Support Vector Machines (SVM) 
 

 
 

Fig. 13: PR curve for Random Forest (RF) 
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Fig. 9 shows the ROC curve for Support Vector 

Machines (SVM). The ROC AUC is 0.888 with no-skill 

AUC at 0.500. Meanwhile, Fig. 10 shows the ROC curve 

for Random Forest (RF). The ROC AUC is 0.981 with no-

skill AUC at 0.500. 

Precision-Recall Curve 

A Precision-Recall (PR) curve summarize the trade-

off between the true positive rate and the positive 

predictive value for a predictive model using different 

probability thresholds. PR curve is a plot of the precision 

in the y-axis and the recall in the x-axis for different 

probability thresholds. Basically, it is the plot of Recall 

(x) vs. Precision (y). Fig. 11 shows the PR curve for k-

Nearest Neighbor (k-NN). The F-measure is 0.864 and 

PR AUC is 0.960. Fig. 12 shows the PR curve for 

Support Vector Machines (SVM). The F-measure is 

0.802 and PR AUC is 0.885. Finally, Fig. 13 shows the 

PR curve for Random Forest (RF). The F-measure is 

0.925 and PR AUC is 0.983. 

Discussion 

The preliminary analysis was carried out based on 

Area Under Curve (AUC) of two curves; Receiver 

Operating Characteristic (ROC) curve and Precision-

Recall (PR) curve. AUC is the best measurement as 

AUC does not have errors in the prediction, so ideal 

classifiers can an ideal that classifies data into two 

classes, which means the model succeeded in being 

without any false positives. Another benefit of using the 

ROC and PR curves together is to find points that are 

close or shared to give the best evaluation of the models 

used in this research as shown in Table 3. 

In both ROC and AUC, the threshold was used to 

apply to the cut-off point in probability between the 

positive and negative classes where the threshold is 

chosen by default for any classifier at 0.5 in the middle 

area of the outputs (0 and 1). The classifier that does not 

have the ability to distinguish between positive and 

negative class will be the diagonal line between the 

false rate of 0 and the true positive rate of zero (0, 0) 

and in the case of predicting all negative class to the 

false positive rate 1 or the true positive rate (1, 1) or 

expect all positive class. So, the line represented by the 

points below is the inability predictability of and there 

is no-skill in distinguishing between positive and 

negative class. So, the perfect classifier when the value 

between (0.0 and 1.0). 

The performance of the perfect model for the 

malware detection for the dataset depends on the 

choice of the appropriate model for the dataset. In k-

Nearest Neighbor model, it can be seen that the ROC 

AUC for k-NN model on the synthetic dataset is about 

0.903, which is much better than a no-skill classifier 

with a score of about 0.500. In SVM, it can be seen 

that the ROC AUC model on the synthetic dataset is 

about 0.903, which is much better than a no-skill 

classifier with a score of about 0.500. Finally, in RF, 

it can be seen that the ROC AUC model on the 

synthetic dataset is about 0.981, which is much better 

than a no-skill classifier with a score of about 0.500.  

The results showed that operational code (Opcode) 

sequence dataset generated from IoT sensors are 

highly useful in developing a malware detection 

model within the Internet of Things environment. The 

accuracy rates are considerably high and this indicates 

the possibility of developing and using machine 

learning methods with real-data from the Internet of 

things. The challenges facing the operational code 

sequence (Opcode) dataset is that not every sample 

consisting of all cipher codes in its vector feature, 

hence the features may have a zero value. Therefore, 

using word embedding technology to convert each 

sample into a digital sequence representation is possibly 

required (Puthal et al., 2016). 

Conclusion 

This paper presented a preliminary analysis of 

malware detection models within the scope of Internet-of-

Things (IoT) applications. The dataset used is in the form 

of operational codes (Opcodes) sequences generated from 

IoT-based devices (HaddadPajouh et al., 2018). Three 

machine learning algorithms were constructed and 

compared, which are k-Nearest Neighbor (k-NN), Support 

Vector Machines (SVM) and Random Forest. The 

experimental results showed that RF outperformed both k-

NN and SVM with 98% of detection accuracy as 

compared to 91% for both k-NN and SVM. These results 

are supported by analysis of Receiver Operating 

Characteristic (ROC) curve and Precision-Recall (PR) 

curve, which showed that the best methods used in this 

study is Random Forest, with highest accuracy of 0.98 

and supported by ROC/PR curves 0.983. 

The results from this preliminary analysis will be 

used as benchmark results for exploring deep learning 

methods with the same or similar dataset from IoT 

environment. It is hoped that these detection models will 

be embedded in the IoT application in order to secure the 

systems from malware attacks. 
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