

 © 2020 Firas Shihab Ahmed, Norwati Mustapha, Aida Mustapha, Mohsen Kakavand and Cik Feresa Mohd Foozy. This open

access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Preliminary Analysis of Malware Detection in Opcode

Sequences within IoT Environment

1Firas Shihab Ahmed, 1Norwati Mustapha,
2Aida Mustapha, 3Mohsen Kakavand and 2Cik Feresa Mohd Foozy

1Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Selangor, Malaysia
2Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
3School of Science and Technology, Sunway University, Bandar Sunway, Selangor, Malaysia

Article history

Received: 28-06-2020

Revised: 25-09-2020

Accepted: 02-10-2020

Corresponding Author:

Norwati Mustapha

Faculty of Computer Science

and Information Technology,

Universiti Putra Malaysia,

Selangor, Malaysia

Email: norwati@upm.edu.my

Abstract: With the technological development and means of

communication, the Internet of Things (IoT) has become an essential role

in providing many services in daily life through millions of

heterogeneous but interconnected devices and nodes. This development is

opening to many security and privacy challenges that can cause complete

network breakdown, bypassed access control or the loss of critical data.

This paper attempts to provide a preliminary analysis for malware

detection within data generated by IoT-based devices and services in the

form of operational codes (Opcode) sequences. Three machine learning

algorithms are evaluated and compared for accuracy, precision, recall

and F-measure. The results showed that the Random Forest (RF)

achieved the best accuracy of 98%, followed by SVM and k-NN, both

with 91%. The results are further analyzed based on the Receiver

Operating Characteristic (ROC) curve and Precision-Recall curve to

further illustrate the difference in performance of all three algorithms

when dealing with IoT data.

Keywords: Machine Learning, Malware Detection, Operation Codes

Introduction

Today, the Internet of Things (IoT) has offered many

services through interconnection of huge number of

sensor devices, embedded systems or services (Mosenia

and Jha, 2016; Azmoodeh et al., 2018). IoT has become

a driving technology in many domain such as smart city,

intelligent transportation, as well as health and energy

systems (D’Orazio et al., 2016; Patel et al., 2012). The

massive expansion of IoT applications has resulted in

surge of data, hence opening to many security and

privacy challenges such as the malware attacks (Tankard,

2015; D’Orazio et al., 2016; Watson and Dehghantanha,

2016). The core reason of these challenges is simply

because any network is subject to threat and penetration

from devices that are connected to the network (Yang et al.,

2016; Li et al., 2019; Wazid et al., 2019).

Malware is the collective name for different types of

malicious software, including viruses, ransomware and

spyware. The main issue with malware detection lies in

the ineffective methods used for signing and monitoring

the suspected code for known security changes. This has

led to many investigation on formulating new methods

and techniques that can overcome different attack

vectors (Burguera et al., 2011).

Machine learning is a popular method used to detect

attacks and malware, as the concept of self-learning by

extracting data features and training them is able to identify

features of other data that have not been trained before

(Rehman et al., 2018). In 2016, feature selection methods

have been investigated in anomaly detection systems using

the Principle Component Analysis (PCA) and Guttman-

Kaiser (Kakavand et al., 2016). However, the study was not

limited to reducing the dimensions of the features but rather

preserving the information that is important in classifying

the anomalies. The results showed a high intrusion rate of

97% with a false positive rate of 1.2%.

Research by Milosevic et al. (2017) studied malware

detection that targeted android systems. This research

used permissions and source code analysis through the

use of the bag-of-words representation model and

features implemented using a privacy and security

protection application for Android devices called

OWASP Seraphim droid. The results showed that the

classification accuracy achieved was 89% and further

increased to 95% with source code analysis.

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318

DOI: 10.3844/jcssp.2020.1306.1318

1307

Subsequent research by Kakavand et al. (2018) applied

two machine learning algorithms, which are Support Vector

Machines (SVM) and K-Nearest Neighbors (k-NN),

through the supervised learning process in order to classify

malware and benign. This research focused on android

application data and reported 79.1 and 80.5% accuracy

percentage for SVM and k-NN, respectively.

In a more recent work, Kumar et al. (2019) presented

a new method that combined machine learning methods

and blockchain technology to improve the performance

of malware detection model in Android devices. The

proposal was implemented using a sequencing

approach that combined clustering and classification in

blockchain technology, as well as extracting

information about malware and storing it back in

blockchain. The main purpose was to develop a malware

database, thus easily detecting other malicious in the

future that do not exist previously.

Deep learning approaches have also been explored

to classify data based on the dynamic approach to

malware detection. A new method has been introduced

to extract features in order to analyze the dynamic

behavior and build a model of repeated neural networks

to extract the abstract features (Xiaofeng et al., 2018).

This research also studied many of the serial data

processing to get rid of redundant data. The results

showed that combining the two methods had better

results and it was 99.3% where the classification

performance was proven to be higher when merging

machine learning and deep learning methods as

compared to using the models separately.

In general, malware detection is an important and

fundamental matter in providing security in IoT-based

applications such as smart devices. According to the

Kaspersky Lab, in 2016 most of the Internet devices were

unsafe and most of the devices had a default password or

security glitches that were not processed, which lead to

easy penetration of these devices (Kolias et al., 2017;

HaddadPajouh et al., 2018; Goyal et al., 2019).

Security experts have warned the dangers to which the

Internet of Things (IoT) can cause, specifically the

malware due to the widespread dependence on devices

connected to the Internet. Organizations are in need of a

mechanism that has the ability to discover malware and

suspicious bugs when their devices and services are

connected to the Internet (Mahindru and Singh, 2017;

Meidan et al., 2017).

In detecting malware within IoT environment,

Bragen (2015) investigated both supervised and non-

supervised machine learning approach to detect attacks

on IoT-generated data such as spoofing attack

eavesdropping and jamming. HaddadPajouh et al. (2018)

used three different Long Short Term Memory (LSTM),

a type of Recurrent Neural Network (RNN) machine

learning architecture. The results showed that second

configurations with two-layer neurons achieved the

highest accuracy of 98.2%. Although various machine

learning and deep learning approaches have been used in

malware detection, the literature has shown that the

domain has evolved from email to mobile devices and

most recently, to IoT devices (Lu et al., 2003).

In order to address the gap in providing adequate

protection systems among IoT-based applications and

smart devices, this research is set to provide a

preliminary analysis of malware detection for

operation code (Opcode) sequences within IoT

environment as benchmark performance for future

works. The remaining of this paper is organized as

follows. Section 2 presents the materials and methods

along with validation methods and algorithms. Section

3 presents the results, Section 4 discusses the results

and finally section 5 concludes with future work.

Materials and Methods

In detecting malware within IoT-based applications, a

classification methodology is adopted to predict

categorical class labels (malware vs. benign) from the

operational codes (Opcode) sequence dataset. The

classification experiments will be carried out based on

training and testing dataset to classify newly available

data (Allahyari et al., 2017). The classification

methodology is shown in Figure 1. The sub-sections will

detail out the dataset, pre-processing, model validation,

algorithms and the evaluation metrics.

Dataset

This research focuses on malware detection within

data generated by IoT-based applications. With

Raspberry Pie II, it is worth noting that AMD

processors have been widely used in cloud edge

devices, hence qualifying Raspberry Pi II as an IoT

cloud edge device. The dataset used in this research

was sourced from the Linux Debian package

repositories (https://pkgs.org/).

The dataset is based on 32-bit ARM-based malware
within the Virus Total Threat Intelligence platform as of
30 September 2017 in the form of Executable and
Linkable Format (ELF). The ELF is used because it

consideres the structure for binaries, libraries and core
files, as well as roles in the process of linking program
and execution. Since ELF features are considered static
features, higher accuracy in malware detection is
expected. Analyzing ELF is also important as it gives
generic understanding of how an operating system works

during software development.
Following HaddadPajouh et al. (2018), a Linux bash

script for the Opcode samples in the dataset was written

to extract the sequence of Opcodes in each sample.

After extracting the ELF files using the Debian bundle,

the dataset provided 280 malware and 270 benign

https://pkgs.org/

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318

DOI: 10.3844/jcssp.2020.1306.1318

1308

programs samples. Next, Object-Dump tool was used to

decompile all samples to extract Opcode sequences in

each sample. Fig. 2 and Fig. 3 show the excerpts of

malware and benign samples.

Fig. 1: Research methodology

Fig. 2: Excerpt of attack (malware) samples

Initial dataset

0: B480 pus

2: B083 sub

4: Af00 add

6: 6078 str

8: 687a ldr

Opcode sequence

Filtered opcode sequence

 Normalizing

 Centering

 Scaling

Pre-processed dataset

X1 X2 X3 X4 X5 Y

0.5 2.7 8 8.1 2 1

0.4 55 7 3 0.8 0

5 32 5 9 10 0

2 23 56 7.9 11 1

10 44 1.6 5.6 13 0

Disassembling

Cross validation

model

Using machine algorithms

 Random forest algorithm (RF)

 K-Nearest Neighbors (KNN)

 Support Vector Machine (SVM)

Model training

Test model

Prediction malware

Evaluate model

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318

DOI: 10.3844/jcssp.2020.1306.1318

1309

Fig. 3: Excerpt of normal (benign) samples

Fig. 4: Validation methodology

Pre-Processing

After disassembling, the opcode sequences extracted

will be pre-processed through various pre-processing

steps, which include normalizing, centering and scaling.

A Phyton code is used to convert the opcodes into Excel

file with rows of opcodes and columns of features before

they are ready for splitting into training and testing set.

Normalizing can give us several meanings, is used

informally in statistics, it is the ability to remove the

unit’s measurement of data, which allows us to compare

data from different places with greater ease.

For many types of data, centering and scaling are

intertwined. Centering corresponds to a subtraction of a

reference vector (often represented by the mean values

of the variables or the settings of the setpoint). Scaling

corresponds to a multiplication by a vector. The choice

of scaling vector is crucial (Bro and Smilde, 2003).

Model Validation

The anomaly detection or malware classification

experiments were carried out using the k-fold validation

method for training and testing as shown in Fig. 4. In the

ten-fold validation setting, eight times was used for

training, one for documentation and the rest for testing.

Following (Davis and Goadrich, 2006). A confusion

matrix was derived summarized from 10 experiments

together, analyzed and reported. Based on this figure, the

k-fold cross-validation method divides n samples into k

groups, whereby validation uses n/k a sample in each

group at a time. When a group is chosen for a test, the

group of k-1 and the other is used for training, after

Performance 1

Performance 2

Performance 3

Performance 4

Performance 5

Performance 6

Performance 7

Performance 8

Performance 9

Performance 10

Validation

fold data

Model

Prediction

Performance

Validation label

Validation fold Training fold

Training fold data

Training fold label

Hyperparameter

value

10

1

1
Performace

10 i



Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318

DOI: 10.3844/jcssp.2020.1306.1318

1310

which the training is switched to the test group every

time (cycle). In this way, the performance of the

classifier can be determined by calculating the average

error of k in each cycle (Varoquaux, 2018; Zhang et al.,

2016).

Algorithms

Three machine learning algorithms are used in the

preliminary experiments, which are k-Nearest Neighbor

(k-NN), Support Vector Machines (SVM) and Random

Forest. All the algorithms were implemented using the

Anaconda Navigator, TensorFlow, scikit-learn machine

learning, Jupyter note-book, as well as tools in Phyton.

All three algorithms have served as benchmark

algorithms under the machine learning approach in many

malware or anomaly detection problems in Internet-of-

Things (IoT) devices (Hasan et al., 2019; Nakhodchi et al.,

2020; Darabian et al., 2020), networks (Kumar and Lim,

2019) and services (Ham et al., 2014; Sethi et al., 2017;

Tien et al., 2020). The other reason is that these

algorithms are more efficient with a small data set if

compared to other methods such as deep learning

methods that need big data since the data set of this

research is considered small in size (Gislason et al.,

2003; Noi and Kappas, 2018; Wang et al., 2018a).

k-Nearest Neighbor (k-NN)

k-NN is an algorithm that determine a class of k

nearest training samples through finding the most

frequent class available in the feature space (Gupta and

Mittal, 2018; Wang et al., 2018b). Given a set of features

and classes (x1, y1),…, (xn, yn), where features x1 Rd and

classes y1y, then for a given i, k-NN rates the neighbors

of a test sequence among the training sample and use the

class labels for the nearest neighbors in order to expect

the test vector class (Allahyari et al., 2017). Therefore, k

takes the new k-points and ranks them according to the

majority of votes obtained for the closest k. This

algorithm uses the Euclidean distance to measure the

resemblance between two vectors points (Aburomman

and Reaz, 2016). The formula for k-NN is shown in

Equation 1:

   

   

2
2

1

1 2

, ,

, , , ,...

d

i j i i ik jkk

d

i j i i i id

d x x x x x x

x x R x x x x


  

 


 (1)

Fig. 5 illustrates the concept of k-NN with two

classes; when k = 3 and k = 7.

Support Vector Machines (SVM)

SVM is a group classifier models that is considered

one of the effective methods with high popularization

ability in practice (Huang et al., 2018). In contrast to

statistical methods that are based on reducing

experimental risks, SVM is based on reducing structural

risks, this indicates the ability of this algorithm to avoid

overrun. The way the algorithm works is to create

hyperlinked decision plans that are divided into two

categories with the maximal margin in the Fig. 6. These

decisions are known as hyperplane as defined in

Equation 2 where w is the weight vector, x is the input

feature vector and b is the bias:

0Twx b  (2)

The objective of SVM is to find decision

boundaries between two classes that allow predictions

of labels from one or more features, in a way that it

separates the data and maximum the margin 1/||w||2,

making them as close as possible to data points from

each of these categories is called close points

(Apostolidis-Afentoulis and Lioufi, 2015).

Fig. 5: K-NN algorithm concept

Fig. 6: Support Vector Machine (SVM)

X1

X2

K = 7

K = 3

Support vector

Malignant

Margin

Benign

F
ea

tu
re

 

Feature 

Support vector

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318

DOI: 10.3844/jcssp.2020.1306.1318

1311

Random Forests (RF)

RF is one of the groups of classification algorithms

that depend on decision trees. This algorithm consists of

different subsets of training data taken from the original

data set using the method bootstrap sampling approach,

after that creating the decision tree k through training the

sub-groups, in the end building a random forest of

decision trees as shown in Fig. 7 (Chen et al., 2016). RF

has the least error in classifying data if compared with

other traditional tree-based methods. The number of

trees, the minimum node size and the number of features

that are used to divide each node have several

advantages such as, after completing the random tree

forest can be referred to in the future, RF has the ability

to overcome the over fitting (Farnaaz and Jabbar, 2016).

An RF algorithm can be formalized as Equation 3:

  , ,i iS x y (3)

where x is the sample, y is the feature variable of s, n is

the number of samples, m is the feature variable for each

sample, i = 1,2,…, n and j = 1,2,…, m.

Evaluation Metrics

Following Nikam (2015), the evaluation metrics

used in the experiments are accuracy, precision, recall

and F-measure. The percentage is calculated based on

confusion matrix, where the rows in the matrix

represent instances of the actual class and each

column represent instances of the predicted class. A

confusion matrix is implemented based on the results

illustrated in Table 1. The correct forecasts are

distributed with the number of values distributed for

each category given the total expected results after

classification (Powers, 2011).

Based on Table 1, a TP means the instance

originally labeled as benign is correctly predicted as

benign. A TN means the instance originally labeled as

malware is correctly predicted as malware. An FP

means the instance originally labeled as malware is

incorrectly predicted as benign. Finally, an FN means

the instance originally labeled as benign is incorrectly

predicted as malware. Equation 4-7 show the formula

for calculating the evaluation metrics.

Fig. 7: Construction process of RF algorithm

Table 1: Confusion matrix

 Predicted

 --

Actual Positive class (Benign) Negative class (Malware)

Positive class (Benign) True Positive (TP) False Negative (FN)

Negative class (Malware) False Positive (FP) True Negative (TN)

S = N  M

S1 = N  M S2 = N  M Sk = N  M

X

1  M

h1 (x) h2 (x) hk (x)

h1 (x) h2 (x) hk (x)

H (X)

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318

DOI: 10.3844/jcssp.2020.1306.1318

1312

Accuracy

Accuracy is number of correct predictions from all

predictions made. The formula for calculating accuracy

is shown in Equation 4:

TP TN
Accuracy

TP TN FP FN




  
 (4)

Precision

Precision is the ratio of predicted malware that are

correctly labeled a malware. The formula for calculating

accuracy is shown in Equation 5:

TP
Precision

TP FP



 (5)

Recall

Recall or detection rate is the ratio of malware

samples that are correctly predicted. The formula for

calculating accuracy is shown in Equation 6:

TP
Recall

TP FN



 (6)

F-Measure

F-Measure is the harmonic mean of precision and recall,

which is a very useful measure of success of prediction

when the classes are imbalanced. In information retrieval,

precision is a measure of result relevancy, while recall is a

measure of how many truly relevant results are returned

(Sabharwal and Sedghi, 2017). The formula for calculating

accuracy is shown in Equation 7:

2

2

TP
F measure

TP FP FN


 

  
 (7)

Precision, recall and F-measure is measured because

accuracy alone can be misleading. The Confusion Matrix

as a way of describing the breakdown of errors in

predictions for an unseen dataset. Precision will give

exactness of a model while recall gives completeness the

model. Finally, F-measure or F1 score gives the balance

between the two.

Results

The purpose of the experiments is to compare the

performance of three algorithms, which are k-Nearest

Neighbor (k-NN), Support Vector Machines (SVM) and

Random Forest (RF). The full results of accuracy,

precision, recall and F-measure are shown in Table 2.

Next, the results in Table 2 are analyzed based on

Receiver Operating Characteristic (ROC) curve and

Precision-Recall (PR) curve. Both types of curves played

a fundamental role in understanding the technique of the

various systems in the presence of uncertainty. These

curves were used in several areas such as radiology,

electrical engineering and several other arenas to

education the performance of a binary forecast system as

a function of a control parameter. As the control

parameter, it is possible to increase the accuracy and

reduce the false positive rate of the system according to

the lower recall, which is the true positive rate or

sensitivity (Pavlick et al., 2015; Ekelund, 2017).

The Area Under Curve (AUC) will be used as a
summary of the model skill. The model skill will be
compared against a no-skill classifier, which is the one

that cannot discriminate between the classes and would
predict a random class or a constant class in all cases. A
model with no-skill is represented at the point (0.5, 0.5).
A model with no-skill at each threshold is represented by
a diagonal line from the bottom left of the plot to the top
right and has an AUC of 0.5. Table 3 summarizes the

results of AUC for both ROC and PR curves across all
three algorithms.

Receiver Operating Characteristic (ROC) Curve

A Receiver Operating Characteristic (ROC) curve

summarizes the trade-off between TP rate and FP rate for

a predictive model using different probability thresholds.

It has two dimensions where the x-axis indicates the

False Positive (FP) rate and the y-axis indicates the True

Positive (TP) rate (Grau et al., 2015). Fig. 8 shows the

ROC curve for k-Nearest Neighbor (k-NN). The ROC

AUC is 0.959 with no-skill AUC at 0.500.

Table 2: Comparison of results

Algorithm Accuracy Rate Precision Rate Recall Rate F- Measure

k-Nearest Neighbor (k-NN) 0.91 0.91 0.91 0.864

Support Vector Machines (SVM) 0.91 0.91 0.91 0.905

Random Forest (RF) 0.98 0.98 0.98 0.980

Table 3: Area Under Curve (AUC) for both ROC and PR

Algorithm ROC AUC PR AUC

k-Nearest Neighbor (k-NN) 0.959 0.960

Support Vector Machines (SVM) 0.888 0.885

Random Forest (RF) 0.981 0.983

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318

DOI: 10.3844/jcssp.2020.1306.1318

1313

Fig. 8: ROC curve for k-Nearest Neighbor (k-NN)

Fig. 9: ROC curve for Support Vector Machines (SVM)

Fig. 10: ROC curve for Random Forest (RF)

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

No skill

K-Neighbors

T
ru

e
p
o

si
ti

v
e

ra
te

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

No skill

SVM

T
ru

e
p
o

si
ti

v
e

ra
te

False positive rate

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

No skill

Random forest

T
ru

e
p
o

si
ti

v
e

ra
te

False positive rate

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318

DOI: 10.3844/jcssp.2020.1306.1318

1314

Fig. 11: PR curve for k-Nearest Neighbor (k-NN)

Fig. 12: PR curve for Support Vector Machines (SVM)

Fig. 13: PR curve for Random Forest (RF)

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

No skill

K-Neighbors
P

re
ci

si
o

n

Recall

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

No skill

SVM

P
re

ci
si

o
n

Recall

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

No skill

Random forest

P
re

ci
si

o
n

Recall

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318

DOI: 10.3844/jcssp.2020.1306.1318

1315

Fig. 9 shows the ROC curve for Support Vector

Machines (SVM). The ROC AUC is 0.888 with no-skill

AUC at 0.500. Meanwhile, Fig. 10 shows the ROC curve

for Random Forest (RF). The ROC AUC is 0.981 with no-

skill AUC at 0.500.

Precision-Recall Curve

A Precision-Recall (PR) curve summarize the trade-

off between the true positive rate and the positive

predictive value for a predictive model using different

probability thresholds. PR curve is a plot of the precision

in the y-axis and the recall in the x-axis for different

probability thresholds. Basically, it is the plot of Recall

(x) vs. Precision (y). Fig. 11 shows the PR curve for k-

Nearest Neighbor (k-NN). The F-measure is 0.864 and

PR AUC is 0.960. Fig. 12 shows the PR curve for

Support Vector Machines (SVM). The F-measure is

0.802 and PR AUC is 0.885. Finally, Fig. 13 shows the

PR curve for Random Forest (RF). The F-measure is

0.925 and PR AUC is 0.983.

Discussion

The preliminary analysis was carried out based on

Area Under Curve (AUC) of two curves; Receiver

Operating Characteristic (ROC) curve and Precision-

Recall (PR) curve. AUC is the best measurement as

AUC does not have errors in the prediction, so ideal

classifiers can an ideal that classifies data into two

classes, which means the model succeeded in being

without any false positives. Another benefit of using the

ROC and PR curves together is to find points that are

close or shared to give the best evaluation of the models

used in this research as shown in Table 3.

In both ROC and AUC, the threshold was used to

apply to the cut-off point in probability between the

positive and negative classes where the threshold is

chosen by default for any classifier at 0.5 in the middle

area of the outputs (0 and 1). The classifier that does not

have the ability to distinguish between positive and

negative class will be the diagonal line between the

false rate of 0 and the true positive rate of zero (0, 0)

and in the case of predicting all negative class to the

false positive rate 1 or the true positive rate (1, 1) or

expect all positive class. So, the line represented by the

points below is the inability predictability of and there

is no-skill in distinguishing between positive and

negative class. So, the perfect classifier when the value

between (0.0 and 1.0).

The performance of the perfect model for the

malware detection for the dataset depends on the

choice of the appropriate model for the dataset. In k-

Nearest Neighbor model, it can be seen that the ROC

AUC for k-NN model on the synthetic dataset is about

0.903, which is much better than a no-skill classifier

with a score of about 0.500. In SVM, it can be seen

that the ROC AUC model on the synthetic dataset is

about 0.903, which is much better than a no-skill

classifier with a score of about 0.500. Finally, in RF,

it can be seen that the ROC AUC model on the

synthetic dataset is about 0.981, which is much better

than a no-skill classifier with a score of about 0.500.

The results showed that operational code (Opcode)

sequence dataset generated from IoT sensors are

highly useful in developing a malware detection

model within the Internet of Things environment. The

accuracy rates are considerably high and this indicates

the possibility of developing and using machine

learning methods with real-data from the Internet of

things. The challenges facing the operational code

sequence (Opcode) dataset is that not every sample

consisting of all cipher codes in its vector feature,

hence the features may have a zero value. Therefore,

using word embedding technology to convert each

sample into a digital sequence representation is possibly

required (Puthal et al., 2016).

Conclusion

This paper presented a preliminary analysis of

malware detection models within the scope of Internet-of-

Things (IoT) applications. The dataset used is in the form

of operational codes (Opcodes) sequences generated from

IoT-based devices (HaddadPajouh et al., 2018). Three

machine learning algorithms were constructed and

compared, which are k-Nearest Neighbor (k-NN), Support

Vector Machines (SVM) and Random Forest. The

experimental results showed that RF outperformed both k-

NN and SVM with 98% of detection accuracy as

compared to 91% for both k-NN and SVM. These results

are supported by analysis of Receiver Operating

Characteristic (ROC) curve and Precision-Recall (PR)

curve, which showed that the best methods used in this

study is Random Forest, with highest accuracy of 0.98

and supported by ROC/PR curves 0.983.

The results from this preliminary analysis will be

used as benchmark results for exploring deep learning

methods with the same or similar dataset from IoT

environment. It is hoped that these detection models will

be embedded in the IoT application in order to secure the

systems from malware attacks.

Acknowledgement

This research is supported by Universiti Putra Malaysia.

Author’s Contributions

Firas Shihab Ahmed: Conceived the original idea,

carried out experiments, collected the results and drafted

the manuscript.

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318

DOI: 10.3844/jcssp.2020.1306.1318

1316

Norwati Mustapha: Supervised the project, advised

on structure of manuscript, in charge of overall direction

and planning.

Aida Mustapha: Conceived the original idea,

worked on the manuscript.

Mohsen Kakavand: Processed the dataset, helped

with the experiments, and interpreted the results.

Cik Feresa Mohd Foozy: Worked on the literature

reviews and revising the manuscript.

Ethics

All authors have been personally and actively

involved in substantial work leading to the paper, and

will take public responsibility for its content.

References

Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S.,

Trippe, E. D., Gutierrez, J. B., & Kochut, K. (2017).

A brief survey of text mining: Classification,

clustering and extraction techniques. arXiv preprint

arXiv:1707.02919.

Apostolidis-Afentoulis, V., & Lioufi, K. I. (2015). Svm

classification with linear and rbf kernels. July): 0-7.

http://www. academia.

edu/13811676/SVM_Classification_with_Linear_an

d_RBF_kernels.[21]

Aburomman, A. A., & Reaz, M. B. I. (2016). A novel

SVM-kNN-PSO ensemble method for intrusion

detection system. Applied Soft Computing, 38,

360-372.

Azmoodeh, A., Dehghantanha, A., & Choo, K. K. R.

(2018). Robust malware detection for internet of

(battlefield) things devices using deep eigenspace

learning. IEEE Transactions on Sustainable

Computing, 4(1), 88-95.

Bragen, S. R. (2015). Malware detection through

opcode sequence analysis using machine learning

(Master's thesis).

Bro, R., & Smilde, A. K. (2003). Centering and scaling

in component analysis. Journal of Chemometrics,

17(1), 16-33.

Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S.

(2011, October). Crowdroid: behavior-based

malware detection system for android. In

Proceedings of the 1st ACM workshop on

Security and privacy in smartphones and mobile

devices (pp. 15-26).

Chen, J., Li, K., Tang, Z., Bilal, K., Yu, S., Weng, C., &

Li, K. (2016). A parallel random forest algorithm for

big data in a spark cloud computing environment.

IEEE Transactions on Parallel and Distributed

Systems, 28(4), 919-933.

D’Orazio, C. J., Choo, K. K. R., & Yang, L. T. (2016).

Data exfiltration from Internet of Things devices:

iOS devices as case studies. IEEE Internet of Things

Journal, 4(2), 524-535.

Darabian, H., Dehghantanha, A., Hashemi, S.,

Homayoun, S., & Choo, K. K. R. (2020). An

opcode‐based technique for polymorphic Internet

of Things malware detection. Concurrency and

Computation: Practice and Experience, 32(6),

e5173.

Davis, J., & Goadrich, M. (2006, June). The relationship

between Precision-Recall and ROC curves. In

Proceedings of the 23rd international conference on

Machine learning (pp. 233-240).

Ekelund, S. (2017). Precision-recall curves–what are

they and how are they used?. acutecaretesting. org.

Farnaaz, N., & Jabbar, M. A. (2016). Random forest

modeling for network intrusion detection system.

Procedia Computer Science, 89(1), 213-217.

Gislason, P. O., Benediktsson, J. A., & Sveinsson, J.

R. (2003). Random forests for land cover

classification. Pattern Recognition Letters, 27(4),

294-300.

Goyal, M., Sahoo, I., & Geethakumari, G. (2019).

HTTP Botnet Detection in IOT Devices using

Network Traffic Analysis. In 2019 International

Conference on Recent Advances in Energy-

efficient Computing and Communication

(ICRAECC) (pp. 1-6). IEEE.

Grau, J., Grosse, I., & Keilwagen, J. (2015). PRROC:

computing and visualizing precision-recall and

receiver operating characteristic curves in R.

Bioinformatics, 31(15), 2595-2597.

Gupta, V., & Mittal, M. (2018). KNN and PCA classifier

with autoregressive modelling during different ECG

signal interpretation. Procedia Computer Science,

125, 18-24.

HaddadPajouh, H., Dehghantanha, A., Khayami, R., &

Choo, K. K. R. (2018). A deep recurrent neural

network based approach for internet of things

malware threat hunting. Future Generation

Computer Systems, 85, 88-96.

Ham, H. S., Kim, H. H., Kim, M. S., & Choi, M. J.

(2014). Linear SVM-based android malware

detection for reliable IoT services. Journal of

Applied Mathematics, 2014.

Hasan, M., Islam, M. M., Zarif, M. I. I., & Hashem, M.

M. A. (2019). Attack and anomaly detection in IoT

sensors in IoT sites using machine learning

approaches. Internet of Things, 7, 100059.

Huang, S., Cai, N., Pacheco, P. P., Narrandes, S., Wang,

Y., & Xu, W. (2018). Applications of support vector

machine (SVM) learning in cancer genomics.

Cancer Genomics-Proteomics, 15(1), 41-51.

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318

DOI: 10.3844/jcssp.2020.1306.1318

1317

Kakavand, M., Dabbagh, M., & Dehghantanha, A.

(2018, November). Application of machine learning

algorithms for Android malware detection. In

Proceedings of the 2018 International Conference on

Computational Intelligence and Intelligent Systems

(pp. 32-36).

Kakavand, M., Mustapha, N., Mustapha, A., & Abdullah,

M. T. (2016). Effective Dimensionality Reduction of

Payload-Based Anomaly Detection in TMAD Model

for HTTP Payload. TIIS, 10(8), 3884-3910.

Kolias, C., Kambourakis, G., Stavrou, A., & Voas, J.

(2017). DDoS in the IoT: Mirai and other botnets.

Computer, 50(7), 80-84.

Kumar, A., & Lim, T. J. (2019, April). EDIMA: Early

detection of IoT malware network activity using

machine learning techniques. In 2019 IEEE 5th

World Forum on Internet of Things (WF-IoT) (pp.

289-294). IEEE.

Kumar, R., Zhang, X., Wang, W., Khan, R. U., Kumar,

J., & Sharif, A. (2019). A multimodal malware

detection technique for Android IoT devices using

various features. IEEE Access, 7, 64411-64430.

Li, W., Tug, S., Meng, W., & Wang, Y. (2019).

Designing collaborative blockchained signature-

based intrusion detection in IoT environments.

Future Generation Computer Systems, 96, 481-489.

Lu, J., Yu, C. S., Liu, C., & Yao, J. E. (2003).

Technology acceptance model for wireless Internet.

Internet research.
Mahindru, A., & Singh, P. (2017, February). Dynamic

permissions based android malware detection
using machine learning techniques. In
Proceedings of the 10th innovations in software
engineering conference (pp. 202-210).

Meidan, Y., Bohadana, M., Shabtai, A., Ochoa, M.,

Tippenhauer, N. O., Guarnizo, J. D., & Elovici, Y.

(2017). Detection of unauthorized iot devices using

machine learning techniques. arXiv preprint

arXiv:1709.04647.
Milosevic, N., Dehghantanha, A., & Choo, K. K. R.

(2017). Machine learning aided Android malware
classification. Computers & Electrical Engineering,
61, 266-274.

Mosenia, A., & Jha, N. K. (2016). A comprehensive

study of security of internet-of-things. IEEE

Transactions on Emerging Topics in Computing,

5(4), 586-602.

Nakhodchi, S., Upadhyay, A., & Dehghantanha, A.

(2020). A comparison between different machine

learning models for IoT malware detection. In

Security of Cyber-Physical Systems (pp. 195-202).

Springer, Cham.

Nikam, S. S. (2015). A comparative study of

classification techniques in data mining algorithms.

Oriental journal of computer science & technology,

8(1), 13-19.

Noi, P. T., & Kappas, M. (2018). Comparison of random

forest, k-nearest neighbor and support vector

machine classifiers for land cover classification

using Sentinel-2 imagery. Sensors, 18(1), 18.

Patel, S., Park, H., Bonato, P., Chan, L., & Rodgers,

M. (2012). A review of wearable sensors and

systems with application in rehabilitation. Journal

of neuroengineering and rehabilitation, 9(1), 1-17.

Pavlick, E., Rastogi, P., Ganitkevitch, J., Van Durme,

B., & Callison-Burch, C. (2015, July). PPDB 2.0:

Better paraphrase ranking, fine-grained

entailment relations, word embeddings and style

classification. In Proceedings of the 53rd Annual

Meeting of the Association for Computational

Linguistics and the 7th International Joint

Conference on Natural Language Processing

(Volume 2: Short Papers) (pp. 425-430).

Powers, D. M. (2011). Evaluation: from precision, recall

and F-measure to ROC, informedness, markedness

and correlation.

Puthal, D., Nepal, S., Ranjan, R., & Chen, J. (2016).

Threats to networking cloud and edge datacenters in

the Internet of Things. IEEE Cloud Computing,

3(3), 64-71.

Rehman, Z. U., Khan, S. N., Muhammad, K., Lee, J.

W., Lv, Z., Baik, S. W., ... & Mehmood, I.

(2018). Machine learning-assisted signature and

heuristic-based detection of malwares in Android

devices. Computers & Electrical Engineering, 69,

828-841.

Sabharwal, A., & Sedghi, H. (2017). How Good Are

My Predictions? Efficiently Approximating

Precision-Recall Curves for Massive Datasets. In

UAI.

Sethi, K., Chaudhary, S. K., Tripathy, B. K., & Bera, P.

(2017, October). A novel malware analysis for

malware detection and classification using machine

learning algorithms. In Proceedings of the 10th

International Conference on Security of Information

and Networks (pp. 107-113).

Tankard, C. (2015). The security issues of the Internet

of Things. Computer Fraud & Security, 2015(9),

11-14.

Tien, C. W., Chen, S. W., Ban, T., & Kuo, S. Y. (2020).

Machine Learning Framework to Analyze IoT

Malware Using ELF and Opcode Features. Digital

Threats: Research and Practice, 1(1), 1-19.

Varoquaux, G. (2018). Cross-validation failure: small

sample sizes lead to large error bars. Neuroimage,

180, 68-77.

Wang, F., Zhen, Z., Wang, B., & Mi, Z. (2018a).

Comparative study on KNN and SVM based

weather classification models for day ahead short

term solar PV power forecasting. Applied Sciences,

8(1), 28.

Firas Shihab Ahmed et al. / Journal of Computer Science 2020, 16 (9): 1306.1318

DOI: 10.3844/jcssp.2020.1306.1318

1318

Wang, H., Zheng, B., Yoon, S. W., & Ko, H. S.

(2018b). A support vector machine-based

ensemble algorithm for breast cancer diagnosis.

European Journal of Operational Research,

267(2), 687-699.

Watson, S., & Dehghantanha, A. (2016). Digital

forensics: the missing piece of the Internet of Things

promise. Computer Fraud & Security, 2016(6), 5-8.

Wazid, M., Das, A. K., Rodrigues, J. J., Shetty, S., &

Park, Y. (2019). IoMT malware detection

approaches: Analysis and research challenges. IEEE

Access, 7, 182459-182476.

Xiaofeng, L., Xiao, Z., Fangshuo, J., Shengwei, Y., &

Jing, S. (2018). ASSCA: API based sequence and

statistics features combined malware detection

architecture. Procedia Computer Science, 129,

248-256.

Yang, K., Hicks, M., Dong, Q., Austin, T., &

Sylvester, D. (2016, May). A2: Analog malicious

hardware. In 2016 IEEE symposium on security

and privacy (SP) (pp. 18-37). IEEE.

Zhang, Y. D., Yang, Z. J., Lu, H. M., Zhou, X. X.,

Phillips, P., Liu, Q. M., & Wang, S. H. (2016).

Facial emotion recognition based on biorthogonal

wavelet entropy, fuzzy support vector machine

and stratified cross validation. IEEE Access, 4,

8375-8385.

