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Abstract: Tracking objects on video sequences is a very challenging task in 

computer vision applications. However, there is few articles that deal with 

this topic in catadioptric vision. This paper describes a new approach of 

omnidirectional images (gray level) processing based on inverse 

stereographic projection in the image plane. Our work is based on minimizing 

the distance between two models. The model named von Mises-Fisher 

distribution have as input the gabor phase and the measure used is Kullback–

Leibler Divergence (KLD). In one hand, this model matching respect the 

deformed geometry of omnidirectional images due to using the spherical 

neighbourhood. In the other hand, the simulation results show that our 

approach gives as better performance in terms of overlapping estimation. 
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Introduction 

In the context of monitoring system, we describe a 

method for images processing and analysing. Indeed, 

Object Tracking is an important task in computer 

vision applications including video surveillance, 

Radar, robot navigation. 

This work defines this process in a omnidirectional 

images sequence. This is a challenging task because 

these images contain significant distortions because of 

mirror geometry. This is why; we must take them into 

account during processing. 

This work is focused on two main goals: The one 

including detection and matching features. After that, the 

adapted process according to spherical coordinates (, ) 

over the image plane in order to make possible the non-

rigid objects tracking. 

The omnidirectional image provided by a camera 

with a Single View Point [(SVP) (Geyer and Daniilidis, 

2000; Barreto and Araujo, 2001; Chiuso and Picci, 

1998)] is modelled by a spherical image (Fig. 1). This 

model called unified projection model and was 

introduced in (Geyer and Daniilidis, 2000) and used in 

(Baker and Nayar, 1998). Also (Mei and Rives, 2007) 

make using this model for camera calibration. 

Following the catadioptric mirror shape used 

(parabolic in our case), the projection process onto the 

sphere and the catadioptric plan is shown in Fig. 2. 

The 3D point P (Equation 1) is projected onto the 
sphere in Ps. 

This point then changed to new reference frame 

centred in Pm using  (camera parameter). This value 

ranges between 0 (planar mirror) and 1 (parabolic mirror). 

Then, the point Pm: (xs; ys; zs-) is projected from the 

coordinate system to the point m = (u; v; 1) onto the 

normalized plane. The image point Pi is obtained by pi = 

m. Where  is a 33 matrix containing the camera 

intrinsic parameters. The matrix  and  values are obtained 

by the calibration procedure. For our case (parabolic 

mirror),  = 1 and  = f (u; v; u0; v0). In this study, we 

assume that our Catadioptric camera is calibrated. 
Spherical coordinates of Ps are defined in Equation (1): 
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The stereographic projection of Ps from the sphere to 

the catadioptric plane can be expressed on Cartesian 
coordinates in Equation (2): 
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 (a) (b) (c) 

 
Fig. 1: Ominidirectional image geometry; (a) Omnidirectional Image; (b) Spherical Image (c) spherical coordinates 

 

 
 

Fig. 2: Unified projection model for central catadioptric cameras of Geyer and Daniilidis (2000) 

 

Using Equation (1) and (2), we obtain the image point 

P(u, v) expressed on spherical coordinates as Equation (3): 
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where,  is the latitude varying between 0 and  and  is 

the longitude varying between 0 and 2. The localization 

of a spherical point according to spherical coordinates 

system is defined by (, ). 

In the context of tracking, catadioptric cameras 

give us the advantage of making possible to find 

objects in surrounding scene. According to many 

works, we get constraints either when omnidirectional 

image is presented by a set of perspective images or 

as a panoramic image without taking into account 

existing distortions. That is why; we must adapt the 

algorithm according to omnidirectional image 

geometry. This method must takes into account the 

specific geometry of the calibrated camera by 

representing the image onto the unit sphere. The 

object motion, changing illumination and background, 

are issues to solve. In this study, we address the 

problem related to changing size and shape of object 

by using model matching method. 

In our work, we perform the tracking as a Model 

Matching Algorithm where the underlying Model is a 

distribution on the spherical space, named von Mises-

Fisher distribution (Chiuso and Picci, 1998). After 

computing models that have as input the Gabor phase, 

we minimize the distance (KLD) between two image 

block and this algorithm is repeated in the rest of 

sequence in order to track the object block. 

The paper is organized as follows. Section II presents 

the general mathematical background and formulas for 

tracking onto the sphere with the von Mises-Fisher 

distribution. Section III describes the proposed object 

tracking approach based on the von MisesFisher 

distribution. Section IV presents the results and 

 

 



Khald Anisse et al. / Journal of Computer Science 2020, 16 (9): 1229.1236 

DOI: 10.3844/jcssp.2020.1229.1236 

 

1231 

discussion of the synthetic data experiments, while 

Section V concludes the paper. 

Related Works 

Object tracking in a complex environment needs a 

powerful algorithm. Consequently, many methods have 

been developed in literature and can be divided into 

tree groups: Tracking based on kernel, based on point 

and based on edges. These methods have been 

successfully employed in various application domains. 

They cannot be directly applied to images acquired by 

catadioptric cameras like the work’s (Kumar, 2015). 

When the author attempts to estimate self-position of 

intelligent vehicles by fusion several techniques. Also 

in (Aggarwal, 2015), the same author use GPS 

information for estimation self-position of mobile 

robots. Mei et al. (2006), the author presents a 

homography-based approach for tracking multiple 

planar templates. First, the adaptation of conventional 

particle filter to the catadioptric geometry was 

purposed in (Lucas and Kanade, 1981). A few methods 

have been developed in the literature in this context. 

Consequently, the must adapted methods are based on 

statistic estimation. We find the adaptation of 

conventional particle filter to the catadioptric geometry 

that was purposed in (Ikoma, 2008). This is done by 

adapting the window used to define the object 

appearance on the unitary sphere. Also, authors in 

(Hurych et al., 2011) propose a new method to display 

tracking result from weighted particles obtained from 

the estimation process by Sequential Monte Carlo 

(SMC) implementation of Probability Hypothesis 

Density (PHD) filter. Also Radgui et al. (2011) using 

spherical adaptation of the KLD method makes flow 

estimation in omnidirectional images.  

In this study, we use methods based on kernel. 

Specially, based probability distributions whither give us 

information about area of block without knowing size or 

shape. In addition, in context of computer vision, there 

are many sets of probability distributions on the sphere 

in several fields. 

In signal processing, spherical distributions have 

been used for multiple speaker tracking (Traa and 

Smaragdis, 2014) and speaker clustering (Tang et al., 

2009). Most applications include quaternion-based 

orientation estimation (Kurz et al., 2014; Glover and 

Kaelbling, 2014), protein structure modelling in 

biology (Kent and Hamelryck, 2005), machine 

learning (Bijral et al., 2007; Banerjee et al., 2005) and 

neuroscience (Leong and Carlile, 1998). 

Early uses of spherical distributions was found in 

geology field (Bingham, 1974). 

In recent years, these approaches have found their 

way into many domains like estimation and filtering 

not just to descriptive statistics. For example, the task 

of tracking objects using omnidirectional cameras 

(Marković et al., 2014a) can naturally be mapped to a 

spherical process problem by using the probability 

estimation. Thus, it even becomes possible to consider 

multiple objects tracking onto the unit sphere 

(Marković et al., 2014b). 

In the same context, we consider the Gabor phase 

information as estimator input. This is because it can take 

very different values even if it is sampled at image locations 

only a few pixels apart (Struc and Pavesic, 2010). 

General Background 

Wavelet Gabor phase 

Gabor kernels or also called Gabor wavelets or filters 

have known to be a robust tool for feature detection. 

They represent an optimal localization in the spatial and 

frequency domains. They extract, multi-scale invariant, 

spatially local features of a suitable frequency band. In 

the spatial domain (Struc and Pavesic, 2010), the family 

of Gabor filters is defined as follows: 
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where, x = xcos(v + ysinv and y = -sin(v) + ycos(v) 

denote axes that are rotated by v = 
8

v


. fu is the 

frequency defined by fu = max

22
u

f
. Each filter function 

represents a Gaussian kernel function has centre 

frequency and orientation defined respectively by fu and 

v.  and  determine the ratio between center frequency 

and size of Gaussian envelope. 

Parameters v and fu define the passband of the 

Gabor in frequency domain and the spectral 

characteristics of the Gabor kernel. The Gabor filter 

kernels are given by: 
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where,  is a constant. 

In Equation (6), G(u,v)(x,y) represents the complex 

convolution which can be decomposed into real 

R(u,v)(x,y) and imaginary parts I(u,v)(x,y) as follows: 
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where, I(x, y) is the input image. the local magnitude M 

and the phase  of the output are given by: 
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The gabor phase is represented in Fig. 3. 

We apply the Gabor filter over each block image. 

This block in perspective image corresponds to the 

different shape block in omnidirectional image. In our 

algorithm, we defined the neighborhood by size block 

given by  and  as follows: 
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N et M are the neighborhood orders. We extract the 

histogram phase of each block and it will be the input of 

simulator in order to create the model. 

Von Mises-Fisher Distribution 

The probability distribution f (, ) onto the unit 

sphere defined by density function (pdf) firstly in 

(Mardia and Jupp, 1999) as Directional distribution: 
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Is called von Mises-Fisher (vMF) distribution with 

parameters   0 and   Sd-1 denote respectively the 

concentration and the mean direction: 
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Cd() is the normalization constant, where Ip denotes 

the modified Bessel function (Wood, 1994) at order p = 

2

d
-1. The density in Equation (Ikoma, 2008) invariant 

by rotation around the mean direction. Also it is 

equivalent to the multivariate Gaussian distribution. This 

distribution is characterized by the maximum entropy 

Principe in order to maximize the Boltzmann–Shannon 

entropy according to the directional mean. Von Mises-

Fisher distributions presents an exponential family 

(Rényi, 1961) defined by parameters  =   Rd and the 

log-normalizing function given by: 

 

   logd dF C    (11) 

 

The vMF distribution is generally determined by the 

directional (angular) mean: 
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where, Ad is the ratio of the following Bessel functions: 
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In order to simulate the VMF distribution, we 

obtain a random vector from the VMF knowing  and 

. To get the desired direction, we only need to apply 

the suitable rotation. 
 

  
 

Fig. 3: Phase histogram at a particular wavelet for spherical block 
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Fig. 4: Samples on the unit sphere of the von Mises-Fisher distribution with different mean directions and concentration parameters 

of 50 (red), 150 (green), 500 (blue) 

 

Due to the present application of objects tracking, we 

are particularly interested in case of 3D domain (sphere) 

and vMF distributions on the unit sphere, where the 

above expressions simplify to  
 

3
4 sinh
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An example of a von Mises-Fisher distribution on the 

unit sphere with different mean directions and 

concentration parameters is shown in Fig. 4. 

KL-Divergence for the VMF Distribution 

In this study, we use a method that requires to 

compute the distance between the current model and 

others in their vicinity. We propose the following 

procedure based on statistical distances (Diethe, 2015). 

Given that, we derive the Renyi -divergence (Rényi, 

1961) for the vMF distribution as a distance that will be 

used to determine the measurement. 

We chose this divergence because is a statistical class 

of generalized distances including the Kullback-Leibler 

(KL) distance and the Bhattacharyya distance. 

The Renyi -divergence is given by the following 

expression: 
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And it is characterised by the real parameter a when 

in the limit   1. The KLD distance expression 

becomes as follows: 
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where, pq = ||pp+(1-)qq||. For  = 1, the KL 

distance well be: 
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Algorithm 

The tracking algorithm of our approach is presented 

beside. 

Evaluation Methodology 

In this study, we use the Spatial Overlapping 

estimation. Overlapping estimation. This metric is the 

bounding box overlap as shown in Fig. 5. Given the 

tracked bounding box rt and the ground truth box ra, 

the overlap measure is defined as t a

t a

r r
S

r t





where  

and  represent the intersection and union of two 

regions, respectively and || denotes the number of 

pixels in the region. To measure the performance on a 

sequence of frames, we count the number of 

successful frames whose overlap S is larger than the 

given threshold equal to 0.2. 



Khald Anisse et al. / Journal of Computer Science 2020, 16 (9): 1229.1236 

DOI: 10.3844/jcssp.2020.1229.1236 

 

1234 

 
 

Fig. 5: Spatial overlap estimation. (left.) rt  ra; (right) rt  ta 
 

 
 
Fig. 6: Tracking results. Tracking results with the conventional Template matching are depicted in blue. Results with the proposed 

method are shown in red and the ground truth is in green 
 
Table 1: Adapted Model Block Matching 

Seq.  Average  SMM  Adapted MS (2) 

Seq.1  Spatial  70,4%  65% 

Seq.2  Ovelapping  65,3%  60% 
 

In Table 1, we compared the adapted Mean Shift 

algorithm (Rameau et al., 2011) with our approach based 

on adapted model matching in omnidirectional images in 

term of the Spatial Overlapping. 

The results in Fig. 6 show that the directional model 

matching in spherical domain gives better performances. 
 

Algorithm 1 Spherical model matching 

Require: N: Frame number; I1, I2: current and next 

images;  = 
40


;  = 

15


 

 for n = 1: N do 

Ensure: Initialization: First image block 

 if i = 1 then 
 Select the object block gi(, ); 

 Compute Gabor phase Pgi 

 Estimate VMF parameters [gi, gi] = VMF(Pgi) 

 else 

Require: gi, fi: image blocks in I1 and I2 

Ensure: research zone: 

 The Search zone SZ size is equal to (M, W) 

 Ci = (pi, qi) = Center position of gi 

 Cs = (p, q) = Center position of Search zone 

 ,
2 2

i i

M M
p p p

  
   
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rt rt 

ra ra 
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 for i = 1: size(SZ, 1) do 

 for j = 1: size(SZ, 2) do 

 Compute Gabor phase Pfi 

 [fi, fi] = VMF(Pfi) 

 Compute kldfg (gi gi, fi fi) 

 Where fi(pi, qi) blocks in the vicinity of gi. 

 Storage all kldfg 

 end for 

 end for 

 [I, j, kld] = argmin KLD 

Ensure: Block move: 

 wi = i, ti = j 

 (wi, ti) = position of fi 

 Mi = [pi + wi, qi + ti] 

 end if 

 end for 

 

Conclusion 

In this study, we present a tracking method in 

catadioptric system. It is based on an adapted Model 

Matching. In one hand, we the adapted process done by 

image projection onto the sphere. In the other hand, the 

model was defined by Von mises Fisher Distribution 

parameters. In tracking, we optimize the distance between 

models for finding the moving object block. Experimental 

results taking into account the change size and shape of 

block show the good performance of our approach. A 

direction of future work would be an extension for 

multiple objects tracking with real time processing. 
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