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Abstract: Human speech is a means of communication that is very 
important in our daily lives. It is characterized by its great ability to 
transmit our ideas, our emotions, our personality etc. So, any alteration 
of the voice can prevent the person from exercising his professional and 
daily life naturally. It is for these reasons that it is very necessary to 
implement systems for detecting and classifying vocal pathologies. 
These automatic systems can help clinicians customize and detect the 
existence of any vocal pathology. In this context, several tools have 
been introduced to achieve early detection of voice disorders. Among 
these tools are the Human Factor Cepstral Coefficients (HFCC) 
combined with prosodic parameters, the Noise-Harmonic Ratio (NHR), 
the Harmonic-Noise Ratio (HNR), analysis of trend Fluctuations (DFA) 
and Fundamental frequency (F0). These parameters are introduced and 
calculated in every frame. In this study, we used a variation of HFCC 
called Equivalent Rectangular Bandwidth (ERB) to study the effects of 
HFCC on the classification of pathological voices. Using the HTK 
classifiers, the classification is carried out on two pathological 
databases, Massachusetts Eye and Ear Infirmary (MEEI) and 
Saarbruecken Voice Database (SVD). To assess the performance of the 
system, we used sensitivity and specificity. 
 
Keywords: Pathological Voices, Sensibility, Specificity, ERB, HFCC, 
HTK, MEEI, SVD 

 
Introduction 

In biomedical applications of speech technology, the 
diagnosis of pathological voice is an important matter. 
The human voice may be affected by several diseases 
that appear in the vocal cords. Thus, the vocal treatment 
of the pathological voice presents some favors, such as 
its non-invasive and quantitative nature. These benefits 
allow the identification and observation of diseases of 
the vocal system and reduce the cost and time required 
for its treatment. The main objective in the classification 
of pathological voices is to predict whether the patient's 
voice is normal or pathological. Proper grading will 
allow automatic diagnosis and treatment of the disease 
(Wang and Jo, 2007). 

For several years until now, the detection of vocal 
pathology can be evaluated in a subjective or objective 
way (Mehta and Hillman, 2008). Indeed, the objective 
evaluation of acoustic signals is done through computer 
tools. This assessment identifies and quantifies the 

underlying vocal pathology that humans cannot hear 
(Mekyska et al., 2015). 

Thanks to the technological revolution, the voice can be 
easily manipulated, so smart devices are used for recording 
and cloud technologies help with remote processing. 

In these works (Al-nasheri et al., 2017; Eskidere and 
Gürhanlı, 2015; Hemmerling et al., 2016;  
Muhammad et al., 2017a) the authors used signal 
processing techniques and machine learning algorithms 
to build a reliable system to distinguish precisely 
between healthy voices and pathological ones. 

In this same context, we have developed in this study 
an automatic recognition system for pathological voices. 
This system is composed of two basic modules which 
are the parametrization module which extracts the 
relevant parameters from pathological voices. This 
module is based on the Cepstral coefficient of the 
Human Factor (HFCC) proposed by (Skowronski and 
Harris, 2004). The second module is the classifier used 
to classify vocal pathologies. We used a Hidden Markov 
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Model with a Gaussian Mixture density (HMM-GM) 
(Ali et al., 2017), through The Hidden Markov Model 
Toolkit (HTK) (HTK 3.4.1) (Young et al., 2009).  

Researchers in this field have frequently used objective 
assessment of vocal pathology using several databases. 
We note here the most used databases such as the database 
(MEEI) (KAYPENTAX; Mekyska et al., 2015), 
Saarbruecken Voice Database (SVD) (Al-nasheri et al., 
2017; Muhammad et al., 2017a; Barry and Pützer, 
2016)   and Arabic Voice Pathology Database (AVPD) 
(Mesallam et al., 2017; Muhammad et al., 2017a). The 
research carried out on these bases is generally based on 
the analysis of the phonation of the vowel /a/, for example 
in the works (Al-Nasheri et al., 2014; Amami and Smiti, 
2017; Dahmani and Guerti, 2017; Muhammad et al., 
2017b). While in other works some researchers have 
combined vowels to do the analysis, for example 
(Eskidere and Gürhanlı, 2015; Hemmerling et al., 2016; 
Martínez et al., 2012). 

In our work, we used two databases MEEI 
Database and Saarbruecken Voice Database for the 
classification of pathological voices. By comparing 
our work to the previous ones, we did not analyze 
vowels but some sentences. In the first database, 
acoustic samples are recordings of up to 12 sec of 
readings of the sentence "Rainbow Passage" by men 
and women and in the other database, we used the 
recording of the sentence "Guten Morgen, wie geht es 
Ihnen?" ("Good Morning, how are you?"). Thus, our 
study is based on the HFCC method combined with the 
prosodic parameters, the Harmonic Noise Ratio (NHR), 
the Harmonic-Noise Ratio (HNR), the relaxed analysis 
of fluctuations (DFA) and the Fundamental frequency 
(F0) which are calculated for each image. 

There are various measures of the performance of 
a diagnostic test that include different indices such as 
sensitivity, specificity, accuracy, etc. (Grenier, 1999) 
and the use of ROC curves (operating characteristic of 
the receiver). 

The probability that the test is positive corresponds to 
the sensitivity, given that the subject is sick. So, it, 
measures the ability of a test to detect patients. The 
closer the sensitivity is to the unit, the fewer errors in the 
detection of sick subjects (false negatives). The 
probability that the test is negative corresponds to the 
specificity, considering that the subject is healthy. So, it 
measures the ability of a test to detect healthy 
individuals. The closer the specificity is to unity, the less 
false positives there are (Bertrand et al., 2010). 

The relation between the sensitivity and the 
specificity of a test is represented graphically by the 
ROC curve, calculated for all possible threshold values. 
The Area Under the ROC Curve (AUC) is one of the 
most used overall measures of test performance. It varies 

between 0.5 in the case of a non-informative test to 1 in 
the case of perfect execution (Bertrand et al., 2010). 

The aim of this work is to determine the capacity of 
these parameters to detect and classify voice pathologies. 
Another scenario has been used for the parameters alone 
with HFCC and hybrid. To validate the performance of 
the recognition system, we used the ROC curve and its 
under area (AUC). 

Materials and Methods 

Fundamental frequency F0, Human Factor Cepstral 
Coefficient (HFCC), the Harmonic to Noise Ratio 
(HNR) and Detrended Fluctuation Analysis (DFA) are 
essentially the classical characteristics used for the 
classification of pathological voices. These classic features 
are inspired by the cues used in the field of voice 
recognition. This section provides an overview of the most 
common features involved in the pathological voice. 

Fundamental Frequency 

The Fundamental frequency (F0) For a speech signal 
corresponds to the frequency of vibration of a speaker's 
vocal cords. This parameter is used in most studies, 
sometimes in conjunction with the Human Factor 
Cepstral Coefficient (HFCC) (Hamdi et al., 2018). The 
estimation of F0 has been widely dealt with in the 
literature and many methods have been proposed, 
including autocorrelation, instantaneous frequency, 
cross-correlation, etc. In this study, we used the 
Sawtooth Waveform Inspired Pitch Estimator (SWIPE) 
according to (Tsanas et al., 2014) and (Camacho and 
Harris, 2008). This algorithm makes it possible to 
estimate the pitch in the frequency domain. SWIPE 
builds on information that is found across the spectrum 
using kernels. It identifies the harmonics in the square 
root of the spectrum. Then it imposes kernels with 
decaying weights on the detected harmonic locations. 

Human Factor Cepstral Coefficient (HFCC) 

There are many methods of extracting robust 
functionality available; one of the efficient methods of 
feature extraction is the Human Factor Cepstral 
Coefficient (HFCC). This is a new approach to 
extracting speech characteristics that have been proposed 
and described in detail in (Skowronski and Harris, 2004).  

Skowronski and Harris (2004) introduced the HFCC 
variant, which is the most recent implementation of the 
mel band. HFCC is based on a measurement of the 
width of the filters called "Equivalent Rectangular 
Bandwidth, or Equivalent Rectangular Bandwidth 
(ERB)" proposed by Moore and Glasberg in 1983. For 
each filter, the ERB value is defined as the width of an 
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ideal bandpass filter of the same central frequency, the 
measurement of these ERBs illustrates the frequency 
resolution of the hearing system, it is given by the 
following formula: 

 
6 2 3

6.23 10  93.39 10  28.52 Hz
c c

ERB f f− −

= + +  (1) 

 
With the central frequency (fc) of the filter expressed 

in Hz. The bandpass filter calculated in (1) is weighted 
by a constant called (according to Skowronski and 
Harris, 2004) ERBscaleFactor (Larsson Alm, 2019). 

Figure 1 represents the 32 filters, which cover the 
frequency range of [115, 8000] Hz, With n = 1, 2,.. (L-1) 
and L equal to 512 samples. A filter can overlap its 
closest neighbors as well as its most distant neighbors as 
shown in the HFCC diagram. 

The block diagram of the extraction of the HFCC 
characteristics is shown in Fig. 2. 

First, the speech signal is pre-emphasized and then 
windowing and weighted by the Hamming window.     
25 ms with a frame offset of 10 ms and we apply, The 
DFT is applied for each frame to obtain the spectrum X 
(j). Then, the X (j) obtained is used to calculate the 
amplitude spectrum |X(j)|. Subsequently, the result is 

filtered by applying a Human Factor Filter Bank. The 
outputs of the filter bank are compressed by the 
logarithm function. Finally, the Discrete Cosine 
Transform (DCT) is used to decorrelate the obtained 
outputs, yielding the HFCC Coefficients (Ganchev, 2011): 
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where, N is the number of filters in the filter-bank, M is 
the number of HFCC coefficients and represents the 
logarithmic energy output of the kth filter (k = 1, 2… N). 
N and M are chosen as the following: N = 32 and M = 12 
for the HFCC computations and Hk(j), k = 1, 2,., N, 
represents the filter bank in the frequency space. 

The sampling frequency is 16000 Hz, Skowronski 
and Harris have proposed this implementation of the 32-
filter HFCC filter bench, which covers the frequency 
range [115 8000] Hz. 

 

  
 (a) (b) 

 

 
(c) 

 
Fig. 1: The HFCC filter bank shown in figures (a), (b) and (c) are respectively for ERB = 4, 5 and 6 
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Fig. 2: HFCC implementation 
 

The design of the HFCC filter bank is described as 
follows. First, we choose the number of filters M as well 
as the minimum frequency flow and maximum fhigh of the 
entire filter bank, the central frequencies fc1 and fcM are 
calculated as follows: 
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2
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With i is the index of the center frequency 1 or M, the 

coefficients b  and c  are defined by: 
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The constants a, b and c mentioned in (1) are expressed 

by the following values: 6.23*10−6, 93.39*10−3 and 28.52 
respectively and they vary in both cases, for the first filter, 

the coefficients â , b̂  and ĉ  are calculated as follows: 
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For the last filter, these coefficients are given by: 
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Once the center frequencies of the first and last filter 
are calculated, the generation of the center frequencies of 
the filters in the middle is easy because they are 

equidistant on the mel scale, the step �f∆ between the 
center frequencies of the filters adjacent is calculated by: 
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the formula: 
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the center frequencies of adjacent filters are calculated by: 
 
� � ( )� ( )1
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Finally, the maximum and minimum frequencies of 
each i filter are expressed by: 
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Harmonic to Noise Ratio (HNR) and Noise to 

Harmonic Ratio (NHR) 

The NHR measures the amount of noise in the voice 
signal and assesses vocal quality. When the signal-to-
noise ratio is high, there will be good voice signal quality 
(Grueber, 2011). Thus, the HNR is a measure examining 
the presence of noise during phonation. To calculate it, the 
signal is firstly down sampled to 16 kHz and split into    
25 ms length frames, with 10 ms shift. In each frame, a 
comb filter is applied to the signal to compute the energy 
in the harmonic components (Teixeira et al., 2013). 
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Detrended Fluctuation Analysis (DFA) 

This acoustic parameter characterizes the extent of 
the troubled noise in the voice signal. It determines the 
value of random automatic similarity to noise caused 
by turbulent airflow in the audio channel 
(Tsanas, 2012). For example, you may have an increase 
in the DFA value when the voice fold is incompletely 
closed (Little et al., 2007). 

Databases 

The experimental study was developed on two 
pathological voices databases, the MEEI database and 
the Saarbruecken Voice Database (SVD). In the first 
database, acoustic samples are recordings of up to 12 
seconds of readings of the sentence "Rainbow 
Passage" by men and women and in the other 
database, we used the recording of the sentence 
"Guten Morgen, wie geht es Ihnen?" ("Good Morning, 
how are you?"). 

For the MEEI database, we chose a subset comprising 
53 healthy voices (33 female voices and 20 male voices) 
and 96 pathological voices (47 female voices and 49 male 
voices). As well as for the second base Saarbruecken 
Voice Database (SVD), we selected a subset comprising 
211 healthy voices (127 female voices and 84 male 
voices) and 154 pathological voices (95 female voices and 
59 male voices). Tables 1 and 2 summarize the number of 
samples of pathological voices from each base. 

MEEI Database 

The database (MEEI) was registered at the 
Massachusetts Eyes and Ears Infirmary and marketed by 
Kay Elemetrics. It contains records of sustained vowel 
phonations [ah] (3 to 4 s long) and the first 12 sec of 
rainbow passage spoken by normalophonic subjects and 
patients with psychogenic, neurological, organic and 
traumatic, the voice at different stages (from beginning 
to full development). The environment of recording 
speech samples is controlled at 25 or 50 kHz and 16 bits 
resolution (KAYPENTAX). 

Saarbruecken Voice Database 

The Saarbruecken Voice Database (SVD) is available 
for free and was registered by the Institute of Phonetics 
at the University of Saarland. This is a collection of 
voice recordings of more than 2000 people. This 
database also contains the recording of the sentence 
"Guten Morgen, wie geht es Ihnen?" ("Good morning, 
how are you?") recorded by healthy subjects and those 
with pathologies. A total of 71 larynx pathologies are 
identified for this database. 1320 (609 males and 711 
females) sessions belong to pathological speakers and 
650 (400 males and 250 females) to normal speakers 
(Hamdi et al., 2018; Barry and Pützer, 2016). 

Table 1: The number of samples of the pathological voices of 

MEEI database 

 Female  Male 

 ------------------------ ----------------------- 

Pathology TEST TRAIN TEST TRAIN 

Ventricular 10 19 7 14 

Gastric 5 10 7 15 

Edema 11 22 4 7 

Paralysis 11 22 11 20 

Hyperfunction 10 21 12 25 

Normal 11 22 7 13 

Total 58 174 47 94 

 
Table 2: The number of samples of the pathological voices of 

SVD database 

 Female  Male 

 ------------------------ ---------------------- 

Pathology TEST TRAIN TEST TRAIN 

Hyperfunction 55 111 15 30 

laryngitis 19 38 27 54 

Polyp 7 12 9 16 

Spasmodic 14 28 8 14 

Normal 127 255 84 168 

Total 222 444 143 282 

 
Hidden Markov Model Toolkit 

The Hidden Markov Model Toolbox (HTK 3.4.1) is a 
portable tool used to build and manipulate hidden 
Markov models. HTK is used primarily in the field of 
search for voice recognition as well for speech synthesis 
[htk link]. For each pathological voice we associate it 
with a Hidden Markov Model with a density of Gaussian 
Mixture (HMM-GM), four mixtures of diagonal state 
and five states of observation (Young et al., 2009). 

An HMM is a probabilistic automaton. It is 
controlled by the first hidden stochastic process that is 
internal to HMM, this process begins on the initial 
state and then moves from state to state respecting the 
topology of the HMM. The second stochastic process 
that controls HMM generates the language units that 
correspond to each state traversed by the first process. 
A GMM is defined as a mixture of probability 
distributions that allows you to follow a multivariate 
Gaussian law. It is the basis of the HMMs recognition 
systems that are most used. A probability density 
function is estimated by the finite sum of the Gaussian 
components of the GMM. 

Our developed parametrization method extracts 
HFCC coefficients with the prosodic parameters of the 
voice signal (such as F0, HNR, NHR, DFA). These 
parameters are calculated for each frame. 

Evaluation Measures 

When we refer to the performance of a classification 
model, we are concerned with the model's ability to 
predict or separate diseases correctly. When examining 
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the errors made by a classification model, the confusion 
matrix gives an overview. 

Performance 

Several terms are commonly used with the description 
of sensitivity and specificity. They are True Positive (TP), 
True Negative (TN), False Negative (FN) and False-
Positive (FP). A true positive test is when such a disease is 
proven on a patient by the diagnostic test. Similarly, the 
test result is true negative if the disease is proven to be 
absent in a patient. Besides, if the diagnostic test indicates 
the presence of the disease to a person who does not suffer 
from any disease, the result in this case of the test is 
falsely positive. Also, if a patient is 100% affected by the 
disease and the result of the diagnostic test suggests that 
the disease is absent from that patient, we talk about a 
false-negative test result (Zhu et al., 2010). 

Accuracy 

Shows us how accurate the model is to detect the 
negative and positive class. It is calculated as the sum of 
correct classifications divided by the total number of 
classifications. 

Precision 

It indicates the probability of a successful classification 
of a predicted positive class. It is defined by:  
 

TP
precision

TP FP
=

+

 (17) 

 
Sensitivity 

It corresponds to how positive the test is, given that 
the subject is ill. It measures the ability of a test to detect 
diseases. It is written by the formula: 
 

TP
sensitivity

TP FN
=

+

 (18) 

 
Specificity 

Specificity is the probability that the test will be 
negative, knowing that the subject is healthy. It, 
therefore, measures the ability of a test to detect healthy 
individuals. It is defined by the formula: 
 

TN
specificity

TN FP
=

+

 (19) 

 
The Receiver Operating Characteristic (ROC) 

Receiver Operating Characteristics (ROC) analysis is 
a useful method of measuring the ability of a voice 
recognition model to distinguish between people with 
illness and those without. Its use in speech processing 

was born as a method to synthesize the specificity and 
sensitivity of diagnostic tests across a range of possible 
cutting points. The area under the ROC curve can be 
interpreted as a probability of correct classification or 
prediction (Hajian-Tilaki, 2013). 

We discuss in this study the use of the Area Under 
the ROC Curve (AUC) as a measure of the performance 
of a classifier. 

The Area Under the ROC Curve 

The Area Under the ROC Curve (AUC) is one of the 
most popular summary indices that are associated with 
the ROC curve. It is an overall measure that indicates the 
performance of the diagnostic test. AUC's value is 
between 0 and 1. The overall diagnostic performance of 
the test is precise when the value of AUC is close to 1 
(Obuchowski, 2003; Zhou et al., 2009). 

Results and Discussion 

The results of the experiments carried out for the 
detection and classification of pathologies are expressed 
in different terms. 

These terms are accuracy (the ratio of correctly detected 
samples to the total number of samples), sensitivity 
(proportion of pathological samples identified positively), 
specificity (proportion of normal samples identified 
negatively) and the area below the Receiver Operating 
Characteristic curve (ROC), called the area under the curve. 

The functionality extracted from the two different 
databases must be checked in the detection and 
classification processes. Therefore, many of experiments 
have been carried out to verify their reliability and 
accuracy in both processes. To ensure accuracy, different 
detection and classification experiments were carried out 
individually for each combination of parameters (HFCC, 
F0, HNR, NHR and DFA) and for each value of ERB. 

Overall Recognition Rate for the MEEI Database 

Figure 3 below illustrates the results of the 
pathological voice recognition rate for the MEEI 
database. The acoustic modeling of this database is 
refined, estimating the probability densities of four-
Gaussian. The best recognition rates are obtained for 
HFCC-NHR with ERB = 6 and HFCC-F0-NHR with 
ERB = 4 (99.07%), HFCC-F0-NHR with ERB = 5 and 
HFCC-HNR-DFA with ERB = 6 (98.13%) respectively. 

We notice that if we increase the ERB, the 
recognition rate will be better. In this case, the best rate 
is obtained for ERB = 4, 5 and 6. 

Overall Recognition Rate for the Saarbruecken 

Voice Database 

Figure 4 below illustrates the results of the 
pathological voice recognition rate for the SVD 
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database. The acoustic modeling of this database is 
refined, estimating the probability densities of four-
Gaussian. The best recognition rates are obtained for 
HFCC-NHR with ERB = 6 (87.40%) and HFCC-HNR-
NHR with ERB = 6 (86.03%) respectively. 

We notice that if we increase the ERB, the 
recognition rate will be better. In this case, the best rate 
is obtained for ERB = 6. 

Pathology Recognition Rate of Male and Female 

Voices for the MEEI Database 

Combining HFCC-NHR Parameters 

According to Fig. 3, the combination of the HFCC-
NHR parameters gives the highest overall recognition 
rate for ERB = 6. This result is detailed in Table 3, 
which gives the recognition rate by pathology for female 
and male voices for each ERB value. We notice in this 
case that the best recognition was for the female voices. 

Tables 3 and 4 present the classification results for 
each type of pathology and for different ERB values for 
female and male voices.  

Table 3 gives different performance results of the 
recognition system for the type of female voices and for 
the combination of HFCC-NHR parameters. We notice 
that the precision varies between 83 and 100% for a 
variation of ERB between 1 and 6. Furthermore, we 
conclude that the increase in the value of ERB improves 
the general performance of pathology recognition. 

Figure 5 shows a combined measurement of 
sensitivity and specificity and we see that the 
pathological voice recognition system, in this case, is 
efficient. The Area Under the Curve (AUC) varies 
between 0.99 and 1 for the different ERB values. It 
shows that the best performance could be obtained in the 
case of the Equivalent Rectangular Bandwidth (ERB) 
equal to 5 and equal to 6. In, this case, the distinction 
between people with the disease and those who do not 
have the disease is perfect. 

Similarly, for male voices, the performance results of 
the recognition system for the combination of HFCC-
NHR parameters are mentioned in Table 4. It is noted 
that the system is precise; the precision varies between 
84 and 100% for a variation ERB between 1 to 6. 
Besides, it is noted that the increase in the value of the 
ERB improves the general performance of the 
recognition of pathologies. (For ERB = 5 and ERB = 6 
all diseases are predicted). 

Figure 6 shows a combined measure of sensitivity 
and specificity and we see that the pathological voice 
recognition system, in this case, is efficient. The Area 
Under the Curve (AUC) varies between 0.99 and 1 for 
the different ERB values. It shows that the best 
performance could be obtained in the case of the 
Equivalent Rectangular Bandwidth (ERB) equal 
respectively to 5 and 6. In, this case, the distinction 
between the different types of pathology is perfect. 

 
Table 3: Evaluation measures for the combination of HFCC-NHR parameters and for different ERB values for each pathology of the 

MEEI base of female voices 

  Ventricular Gastric Edema Paralysis Hyperfunction Normal 

ERB = 1 ACC (%) 100.00 100.0 100.00 100.00 100.00 100.00 

 Precision 0.90 1.0 1.00 0.84 0.90 1.00 

 Sensitivity 1.00 1.0 1.00 1.00 1.00 1.00 

 Specificity 0.98 1.0 1.00 0.97 0.98 1.00 

ERB = 2 ACC (%) 100.00 100.0 100.00 100.00 100.00 100.00 

 Precision 1.00 1.0 0.91 1.00 0.83 0.91 

 Sensitivity 1.00 1.0 1.00 1.00 1.00 1.00 

 Specificity 1.00 1.0 0.98 1.00 0.97 0.98 

ERB = 3 ACC (%) 90.00 100.0 100.00 100.00 100.00 100.00 

 Precision 0.90 1.0 1.00 0.91 1.00 0.91 

 Sensitivity 0.90 1.0 1.00 1.00 1.00 1.00 

 Specificity 0.98 1.0 1.00 0.98 1.00 0.98 

ERB = 4 ACC (%) 100.00 80.0 100.00 100.00 100.00 100.00 

 Precision 0.90 1.0 1.00 1.00 1.00 0.91 

 Sensitivity 1.00 0.8 1.00 1.00 1.00 1.00 

 Specificity 0.98 1.0 1.00 1.00 1.00 0.98 

ERB = 5 ACC (%) 100.00 10.0 100.00 100.00 100.00 100.00 

 Precision 1.00 1.0 0.91 0.91 1.00 0.91 

 Sensitivity 1.00 1.0 1.00 1.00 1.00 1.00 

 Specificity 1.00 1.0 0.98 0.98 1.00 0.98 

ERB = 6 ACC (%) 100.00 100.0 100.00 100.00 100.00 100.00 

 Precision 1.00 1.0 1.00 1.00 1.00 0.91 

 Sensitivity 1.00 1.0 1.00 1.00 1.00 1.00 

 Specificity 1.00 1.0 1.00 1.00 1.00 0.98 
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Table 4: Evaluation measures for the combination of HFCC-NHR parameters and for different ERB values for each pathology of the 

MEEI base of male voices 

  Ventricular Gastric Edema Paralysis Hyperfunction Normal 

ERB = 1 ACC (%) 85.70 62.500 50.00 100.00 100 100 

 Precision 1.00 1.000 1.00 0.84 1 1 

 Sensitivity 0.85 0.625 0.50 1.00 1 1 

 Specificity 1.00 1.000 1.00 0.97 1 1 

ERB = 2 ACC (%) 85.70 62.500 75.00 100.00 100 100 

 Precision 1.00 1.000 1.00 0.91 1 1 

 Sensitivity 0.85 0.625 0.75 1.00 1 1 

 Specificity 1.00 1.000 1.00 0.99 1 1 

ERB = 3 ACC (%) 100.00 87.500 50.00 100.00 100 100 

 Precision 0.87 1.000 1.00 1.00 1 1 

 Sensitivity 1.00 0.875 0.50 1.00 1 1 

 Specificity 0.99 1.000 1.00 1.00 1 1 

ERB = 4 ACC (%) 100.00 87.500 50.00 100.00 100 100 

 Precision 0.87 1.000 1.00 0.91 1 1 

 Sensitivity 1.00 0.875 0.50 1.00 1 1 

 Specificity 0.99 1.000 1.00 0.98 1 1 

ERB = 5 ACC (%) 100.00 87.500 50.00 100.00 100 100 

 Precision 1.00 1.000 1.00 1.00 1 1 

 Sensitivity 1.00 0.875 0.50 1.00 1 1 

 Specificity 1.00 1.000 1.00 1.00 1 1 

ERB = 6 ACC (%) 100.00 87.500 100.00 100.00 100 100 

 Precision 1.00 1.000 1.00 1.00 1 1 

 Sensitivity 1.00 0.875 1.00 1.00 1 1 

 Specificity 1.00 1.000 1.00 1.00 1 1 

 

 
 

Fig. 3: Performance of the extracted features on each ERB with Four Gaussians for the MEEI Database 

 

 
 

Fig. 4: Performance of the extracted features on each ERB with Eight Gaussians for the SVD Database 
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Fig. 5: ROC for classification by HFCC-HNR for the MEEI database for female voices 
 

 
 

Fig. 6: ROC for classification by HFCC-HNR for MEEI database for male voices 
 
Combining HFCC-F0-NHR Parameters 

In this study for the combination of HFCC-F0-NHR 
parameters, we can see that the recognition system is 
more precise concerning type pathologies (ventricular, 
paralysis and hyperfunction) for male voices and for all 
ERB values. On the other hand, we note that for all 
types of pathologies and at different ERB values, the 
recognition rate of female voices is better. Tables 5 and 
6 give an overview of the different results. Figure 7 
shows that the test is perfectly discriminating when 
ERB equal to 4 and 5 for the HFCC-F0-NHR 
combination for female voices in the MEEI database. 
While for male voices and in the same base, Fig. 8 
shows that the test is perfectly discriminating for ERB 
equal to 3, 4 and 5. 

Pathology Recognition rate of Male and Female 

Voices for the SVD Database for Combining 

HFCC-NHR Parameters 

According to Fig. 3, the best pathology recognition 
rate for the combination of HFCC-NHR parameters is 
obtained for female voices. Table 7 shows that laryngitis 
and spasmodic pathologies have a recognition rate of 
100% for an ERB value, respectively equal to 3, 4 and 5. 

While for male type voices, the best recognition rate is 
obtained for healthy voices of 98.8%. 

We note that the recognition rate of pathologies is 
improved when the value of ERB increases. 

Table 7 illustrates the different performance values of 
the recognition system for the SVD database for female 
voices and for the combination of HFCC-NHR 
parameters. We note that the best recognition rates for 
the different pathologies are 100% (ERB = 3, 4 et 5), 
96.1% (ERB = 6) and 90.9% (ERB = 6) corresponds 
respectively to pathologies of laryngitis, Spasmodic type, 
Normal and Hyperfunction. However, the accuracy is not 
enough to give a conclusion on the effectiveness of the 
recognition system and therefore these measures should 
be supplemented by the ROC curve as shown in Fig. 9. 
The latter shows that the best performance is obtained 
with the values of the highest Equivalent Rectangular 
Bandwidth (ERB) (AUC = 0.9704). 

Table 8 illustrates the different performance values of 
the recognition system for the SVD database for male’s 
voices and for the combination of HFCC-NHR parameters. 
We find that the best recognition rates for the different 
pathologies are 98.8% (ERB = 5), 87.5% (ERB = 1,2,4), 
77.8% (ERB = 3, 6) and 76.7% (ERB = 6) corresponds 
respectively to Normal, Spasmodic, laryngitis, polyp and 
Hyperfunction pathologies, However, the accuracy is not 
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sufficient to give a final conclusion on the effectiveness of 
the recognition system and therefore these measures should 
be supplemented by the Curve ROC as shown in Fig. 10. 
This last shows that the best performance is obtained with 

the values of the Equivalent Rectangular Bandwidth (ERB) 
equal respectively 5, 4 and 3 with the values of the Area 
Under the Curve (AUC) equal respectively AUC = 0.9752, 
0.9734 and 0.9671. 

 
Table 5: Evaluation measures for the combination of HFCC-F0-NHR parameters and for different ERB values for each pathology of 

the MEEI base of female voices 

  Ventricular Gastric Edema Paralysis Hyperfunction Normal 

ERB = 1 ACC (%) 100.00 80.00 100.00 90.9 100.0 100.00 

 Precision 0.90 0.80 1.00 0.90 1.0 0.91 

 Sensitivity 1.00 0.80 1.00 0.90 1.0 1.00 

 Specificity 0.98 0.99 1.00 0.98 1.0 0.98 

ERB = 2 ACC (%) 100.00 80.00 100.00 100.00 100.0 100.00 

 Precision 0.83 1.00 0.91 0.91 1.0 0.91 

 Sensitivity 1.00 0.8 1.00 1.00 0.9 1.00 

 Specificity 0.97 1.00 0.98 0.98 1.0 0.98 

ERB = 3 ACC (%) 100.00 100.00 100.00 100.00 100.0 100.00 

 Precision 0.83 1.00 1.00 1.00 1.0 0.91 

 Sensitivity 1.00 1.00 1.00 1.00 1.0 1.00 

 Specificity 0.97 1.00 1.00 1.00 1.0 0.98 

ERB = 4 ACC (%) 100.00 100.00 100.00 100.00 100.0 100.00 

 Precision 1.00 1.00 1.00 1.00 1.0 0.91 

 Sensitivity 1.00 1.00 1.00 1.00 1.0 1.00 

 Specificity 1.00 1.00 1.00 1.00 1.0 0.98 

ERB = 5 ACC (%) 100.00 100.00 100.00 100.00 100.0 100.00 

 Precision 1.00 1.00 0.91 1.00 1.0 0.91 

 Sensitivity 1.00 1.00 1.00 1.00 1.0 1.00 

 Specificity 1.00 1.00 0.98 1.00 1.0 0.98 

ERB = 6 ACC (%) 90.00 100.00 100.00 100.00 100.0 100.00 

 Precision 0.81 1.00 0.91 0.91 1.0 0.91 

 Sensitivity 0.90 1.00 1.00 1.00 1.0 1.00 

 Specificity 0.97 1.00 0.98 0.98 1.0 0.98 

 
Table 6: Evaluation measures for the combination of HFCC-F0-NHR parameters and for different ERB values for each pathology of 

the MEEI base of male voices 

  Ventricular Gastric Edema Paralysis Hyperfunction Normal 

ERB = 1 ACC (%) 100 75.000 25.00 100.00 100.00 100 

 Precision 1 1.000 1.00 0.84 0.92 1 

 Sensitivity 1 0.750 0.25 1.00 1.00 1 

 Specificity 1 1.000 1.00 0.97 0.98 1 

ERB = 2 ACC (%) 100 75.000 25.00 100.00 100.00 100 

 Precision 1 1.000 1.00 0.91 0.92 1 

 Sensitivity 1 0.750 0.25 1.00 1.00 1 

 Specificity 1 1.000 1.00 0.98 0.98 1 

ERB = 3 ACC (%) 100 75.000 75.00 100.00 100.00 100 

 Precision 1 1.000 1.00 1.00 1.00 1 

 Sensitivity 1 0.750 0.75 1.00 1.00 1 

 Specificity 1 1.000 1.00 1.00 1.00 1 

ERB = 4 ACC (%) 100 87.500 100.00 100.00 100.00 100 

 Precision 1 1.000 1.00 1.00 1.00 1 

 Sensitivity 1 0.875 1.00 1.00 1.00 1 

 Specificity 1 1.000 1.00 1.00 1.00 1 

ERB = 5 ACC (%) 100 75.000 100.00 100.00 100.00 100 

 Precision 1 1.000 1.00 1.00 1.00 1 

 Sensitivity 1 0.750 1.00 1.00 1.00 1 

 Specificity 1 1.000 1.00 1.00 1.00 1 

ERB = 6 ACC (%) 100 75.000 25.00 100.00 100.00 100 

 Precision 1 1.000 1.00 0.91 1.00 1 

 Sensitivity 1 0.750 0.25 1.00 1.00 1 

 Specificity 1 1.000 1.00 0.98 1.00 1 
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Table 7: Evaluation measures for the combination of HFCC-NHR parameters and for different ERB values for each pathology of the 

SVD database of female voices 

  Hyperfunction laryngitis Polyp Spasmodic Normal 

ERB = 1 ACC (%) 67.30 36.80 28.60 78.60 92.90 

 Precision 0.75 0.77 0.66 0.91 0.83 

 Sensitivity 0.67 0.58 0.40 0.78 0.92 

 Specificity 0.96 0.97 0.99 0.99 0.90 

ERB = 2 ACC (%) 67.30 73.70 28.60 92.90 92.10 

 Precision 0.82 0.63 1.00 0.61 0.91 

 Sensitivity 0.67 0.73 0.28 0.92 0.92 

 Specificity 0.97 0.97 1.00 0.97 0.95 

ERB = 3 ACC (%) 69.10 100.00 14.30 85.70 92.90 

 Precision 0.80 0.67 0.50 0.52 0.96 

 Sensitivity 0.69 1.00 0.14 0.85 0.92 

 Specificity 0.95 0.97 0.99 0.96 0.98 

ERB = 4 ACC (%) 56.40 68.40 28.60 100.00 92.90 

 Precision 0.83 0.76 1.00 0.50 0.90 

 Sensitivity 0.56 0.68 0.28 1.00 0.92 

 Specificity 0.98 0.98 1.00 0.96 0.94 

ERB = 5 ACC (%) 69.10 100.00 28.60 85.70 83.50 

 Precision 0.86 0.70 1.00 0.32 0.96 

 Sensitivity 0.69 1.00 0.28 0.85 0.84 

 Specificity 0.98 0.97 1.00 0.93 0.98 

ERB = 6 ACC (%) 90.90 78.90 42.90 92.90 96.10 

 Precision 1.00 1.00 0.75 0.61 0.97 

 Sensitivity 0.90 0.78 0.42 0.92 0.96 

 Specificity 1.00 1.00 0.99 0.97 0.98 

 
Table 8: Evaluation measures for the combination of HFCC-NHR parameters and for different ERB values for each pathology of the 

SVD database of male voices 

  Hyperfunction laryngitis Polyp Spasmodic Normal 

ERB = 1 ACC (%) 26.700 70.40 33.30 87.500 92.90 

 Precision 0.260 0.57 1.00 1.000 0.89 

 Sensitivity 0.260 0.70 0.33 0.875 0.92 

 Specificity 0.960 0.95 1.00 1.000 0.96 

ERB = 2 ACC (%) 53.300 74.10 66.70 87.500 91.70 

 Precision 0.570 0.64 0.46 1.000 0.93 

 Sensitivity 0.530 0.74 0.66 0.875 0.91 

 Specificity 0.980 0.96 0.98 1.000 0.98 

ERB = 3 ACC (%) 40.000 59.30 77.80 75.000 97.60 

 Precision 0.350 0.76 0.58 1.000 0.92 

 Sensitivity 0.400 0.59 0.77 0.750 0.97 

 Specificity 0.970 0.98 0.98 1.000 0.97 

ERB = 4 ACC (%) 60.000 74.10 55.60 87.500 96.40 

 Precision 0.750 0.64 0.55 1.000 0.88 

 Sensitivity 0.600 0.74 0.55 0.875 0.96 

 Specificity 0.990 0.96 0.98 1.000 0.96 

ERB = 5 ACC (%) 40.000 55.60 22.20 75.000 98.80 

 Precision 0.850 0.68 0.66 0.750 0.79 

 Sensitivity 0.400 0.55 0.22 0.750 0.98 

 Specificity 0.990 0.97 0.99 0.990 0.92 

ERB = 6 ACC (%) 76.700 77.80 44.40 62.500 94.00 

 Precision 0.875 0.51 1.00 0.550 0.89 

 Sensitivity 0.460 0.77 0.44 0.625 0.94 

 Specificity 0.990 0.94 1.00 0.980 0.96 
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Fig. 7: ROC for classification by HFCC-F0-NHR for MEEI database for female voices 

 

 
 

Fig. 8: ROC for classification by HFCC-F0-NHR for MEEI database for male voices 

 

 
 

Fig. 9: ROC for classification by HFCC-NHR for SVD database for female voices 
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Fig. 10: ROC for classification by HFCC-NHR for SVD database for male voice 

 
Conclusion 

As part of this work, we improved the assessment of 
voice disorder using prosodic parameters using two 
different types of MEEI and SVD databases. 
Recognition rates varied from the database to database 
with the same combination of prosodic parameters. The 
best overall recognition rates are 99.07% for the 
samples taken in MEEI and 87.40% for the samples 
taken in SVD. 

The recognition rates obtained, as well as the 
sensitivities in this study, are essential to detect and 
classify vocal pathologies. For example, certain 
combinations of parameters have an excellent indication 
that they can contribute to the detection and 
classification of voice pathologies such as HFCC-NHR 
and HFCC-F0-NHR.  

For the MEEI database, the recognition of pathological 
voices is better for female type voices for these two 
combinations of parameters. The recognition system is 
more precise for the value of the Equivalent Rectangular 
Bandwidth (ERB) equal to 6. HFCC-F0-NHR. 

For the SVD database for specific pathologies, we 
conclude that the recognition of female type voices is 
better compared to those of male type such as 
(spasmodic, laryngitis and hyperfunction). On the other 
hand, for the male polyp pathology is well recognized 
compared to that of the female. 
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