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Abstract: Building robust Android apps is a non-trivial task that requires 

skilled developers to understand various Android platform peculiarities. 

However, among the Android developers community, a large fractions are 

considered to be novice and inexperienced developers. One of the main 

peculiarities in the Android app development is the activity lifecycle 

model. A developer needs to have deep understanding of the different 

lifecycle states and callback methods that an Android activity can go 

through during its runtime. These callback methods are called by the 

system whenever an app activity changes its state. The developer needs to 

override appropriate callback methods correctly to avoid app memory 

leaks and data loss or other phone resource compromise. Detailed static 

analysis of software applications provides actionable insights and helps us 

to understand how applications are actually built. Although there have 

been many studies focusing on static analysis of Android apps in the areas 

of testing, quality, design, privacy and security; no studies to date focus 

on lifecycle development practices and usage patterns thus far. In this 

paper, we analyzed 842 open-source Android apps containing 5577 

activities to explore and understand how Android developers actually 

comply with best practices regarding the Android activity lifecycle 

model. We developed a tool named SAALC that is capable of analyzing 

Android activities and extracting valuable information about lifecycle 

callback methods usage. Our results show, which callback methods are 

implemented and the nature of the code they contain. The results also 

show incorrect implementation of the callback methods and incorrect 

acquiring and releasing of system resources in many Android apps and we 

argue that a relatively large fraction of Android developers do not 

sufficiently well understand the app lifecycle model. We also discuss our 

results in comparison to the Android app lifecycle model best practices. 
 
Keywords: Android, Activity Lifecycle, Static Analysis, Application, 

Mobile Apps 
 

Introduction 

Mobile applications (apps) usage has increased 

exponentially with millions of apps being available at the 

online stores (Wasserman, 2010). Nowadays, users rely 

on mobile apps to deliver their daily tasks. Indeed, 

mobile apps cover various fields such as social, business, 

health, productivity and gaming to mention a few 

(Dehlinger and Dixon, 2011). Moreover, mobile devices 

offer the same functionality as PC through wireless, web 

browsers, video and audio. At the same time, the mobile 

app development is not a trivial task and has its own 

challenges (Zein et al., 2017). 

Android is the most common mobile platform in 

use and the most popular mobile open source 

Operating Systems (OS) in the mobile apps market 

(Lamba et al., 2015). Industrial analysts expect that 

the Android platform will remain the dominant mobile 

vendor for many years to come. Google Play is the 

main online store providing Android apps. Since the 
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Android first release in 2008, developers have been 

heavily contributing in developing new apps that 

facilitate various user needs. As a result, In April 2017, the 

number of available Android apps has exceeded 2.8 

millions (Wasserman, 2010; Number of apps, n.d.). 

Further, the number of worldwide downloaded Android 

apps from Google play was estimated in billions in 2016 

to 2017 (Number of apps, n.d). Accordingly, the 

complexities of mobile apps increase to fulfill a variety of 

functionality and features. 

Mobile app development is different than other 

traditional web and desktop paradigms. Developers face a 

new set of challenges, including developing apps for 

different platforms (iOS and Android), handling the issues 

of OS and hardware fragmentation and managing app 

lifecycle conformance (Joorabchi et al., 2013; Zein et al., 

2016; Franke et al., 2011; 2012). Even though much 

research has been directed to address some of these 

challenges, little research has been done in the area of 

lifecycle conformance. 

When developing for Android, activities represent the 

User Interface (UI) and each activity goes through 

different states during its lifecycle. These states are 

running, paused, stopped and shutdown. Each activity 

makes transitions between these states due to some 

events, such as receiving an incoming call, by calling a 

specific callback method (Joorabchi et al., 2013). 

Android developers need to have good understanding of 

the lifecycle model in order to develop apps that function 

correctly (Franke et al., 2011; 2012; Zein et al., 2017). 

Google documentation provides narrative information 

about the lifecycle model to assist developers in building 

robust apps (Franke et al., 2011). However, a large 

fraction of Android developers are known to be novices 

and amateurs who may not properly understand or 

follow the lifecycle model and will end up with 

unreliable and faulty apps (Zein et al., 2017). 

Additionally, there are as yet no automated testing tools 

available for Android that enable developers to fully 

check the correctness of the app adherence to the 

lifecycle model (Zein et al., 2017). 

This study aims to explore how android app 

developers actually utilize the lifecycle callback 

methods. More specifically, we aim at analyzing 

Android open-source apps to reveal how these apps 

are built in terms of lifecycle callback methods and 

the utilization of system resources such as memory, 

Camera, GPS, Sensors, etc. Analyzing Android app’s 

source code is a popular recent topic (Panichella et al., 

2015) and provides good insights about how these 

apps are developed and structured (Haotian and Shu, 

2013). For instance, this analysis helps increase the 

quality of app code and improve reliability and 

performance of the software (Haotian and Shu, 2013; 

Danphitsanuphan and Suwantada, 2012). Another 

example is rule mining (Khatoon et al., 2011). Rule 

mining aims to extract hidden rules from existing 

project in order to improve new development projects 

(Khatoon et al., 2011). Further, rule mining has been 

used in automated defect detection for complementing 

the compiler work and this is done through analyzing 

the source code to find the most common bugs 

(Panichella et al., 2015; Khatoon et al., 2011). Indeed, 

analyzing the source code gives more insights and 

helps the research community and the software industry 

to understand how developers actually code their apps. 

In other cases, it can be useful to understand the 

architecture of the app and consequently to reduce the 

development time and programming effort (Haotian 

and Shu, 2013; Khatoon et al., 2011). Other benefits 

of analyzing source code include identification and 

elimination of security vulnerabilities in software 

(Ramos, 2016) and providing statistical measures 

about the code complexity and quality, such as 

numbers of methods, attributes, parameters, children, 

line of codes, depth of inheritance, algorithm 

complexity, coupling and coherence, etc 

(Danphitsanuphan and Suwantada, 2012). 

Although there are a lot of studies focusing on 

analyzing Android source code insights and usage 

patterns in different fields such as testing; quality; 

design; privacy and security, to our knowledge, there 

have been no studies to date focusing on analyzing 

Android source code for lifecycle adherence. To address 

this, we conducted a quantitative study to analyze 

Android source code. The main aim of our study is to 

explore how real Android developers develop their apps 

in terms of usage of lifecycle callback methods. To 

achieve this, we analyzed 842 open-source Android apps 

containing 5577 activities. These apps were downloaded 

from the FDriod repository. Our dataset includes 

different apps with varying code sizes and from different 

categories such as Gaming, Navigation, Internet, 

Multimedia, etc. We built a statistical analysis tool called 

SAALC which is able to analyze and extract all data 

related to activity lifecycle callback methods. The 

resulting statistics reveal the usage of callback methods 

and where system resources, such as camera, Bluetooth, 

GPS, etc., are acquired and released among other 

important information. Also, we analyzed the nature of 

code implemented inside these callback methods to 

understand for what they are used. 

More specifically, the results show that the 

onCreate() callback method is the one that is mostly 

utilized (92%) among all activities. On the other hand, 

the onRestart() and onStart() callback methods are about 

1% and 6% respectively. Further, the onDestroy() and 

onStop() have 14% and 6% usage respectively (Number 
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of apps,n.d.). We also found that the average percentages 

of wrongly acquired and wrongly released system 

resources are about 20% and 8% respectively. Such 

results enable us to better understand more how Android 

developers utilize lifecycle callback methods. Our study 

makes the following key contributions: 

 

• We developed a tool named SAALC for analyzing 

Android activity lifecycle files generated statistics 

about each callback method used 

• We conducted the first detailed study to explore how 

Android developers utilize activity lifecycle 

callback methods 

• We generated app lifecycle adherence statistics 

about acquiring and releasing of system resources 

during the lifecycle of Android apps from a large 

corpus of open source Android apps 

• We identified where improvements or alterations are 

required into aid developers 

 

The structure of the remainder of this paper is as 

follows. In section 1, we show a brief background about 

Android and activity lifecycle and the most research and 

related work for our study. Section 2 explains our study 

design which includes the research questions, data 

collection method and basic statistics of our collected 

data. Also, we show our proposed tool and algorithms 

which called SAALC. Section 3 present s the results of 

current state of Android lifecycle callback methods and 

system recourse usage. We discuss the results of the 

study in section 4. 

Background and Related Work 

In Android development, the “app lifecycle” can 

be defined as the different activity states and the 

transitions between them during the runtime of an 

Android activity (Franke et al., 2012). Every Android 

app consists of one or more activities which manage 

the behavior of the app. Each activity has its own 

lifecycle. When an activity is first run till the moment 

it is released and destroyed by the system, it passes 

through different states. Whenever an activity goes 

into a new state, a special callback method is called 

by the system. The developers respond to state 

transitions by overriding relevant callback methods. 

This event-driven behavior model is well-known to be 

challenging to manage when many activities are 

created or when activities go through complex sets of 

transitions. 

As with other mobile platforms android cannot 

preserve the state of an app during lifecycle changes 

due to the lack of system resources (Franke et al., 

2012). Thus the developers themselves must ensure 

that no data is lost when the state changes (Franke et al., 

2011; Zein et al., 2017). An activity changes its state 

due to some event such as the mobile phone receiving 

an incoming call, a user interaction event, or starting 

another activity to mention a few. Mobile operating 

systems such as Android are very efficient when 

dealing with the device resources such as memory, 

CPU and battery (Franke et al., 2012). Thus, the 

Android OS may swap out or kill an activity without 

saving its current state in case of lack of resources 

(Franke et al., 2012). It is the developer’s job to make 

sure the app conforms correctly to the lifecycle model 

(Franke et al., 2012). 

When activity callback methods are executed, the 

activity state will change and the control return to the 

system (Franke et al., 2011; 2012). Developers must follow 

Android lifecycle model documentation offered by the 

Android vendor (Franke et al., 2012). The Google official 

website is the main portal for the Android developer, it 

contains the guidelines of the Android development model 

lifecycle and documentation (Zein et al., 2017). The 

Android activity lifecycle model shown in Fig. 1 from 

the Android Developers Guide (Zein et al., 2017). An 

activity can be at one of the following states (Franke et al., 

2011; Zein et al., 2017): 

 

• Created: When the activity is first created and initiated 

• Started: Activity is ready 

• Resumed: Activity is ready and in the foreground, 

the user can start interacting with it 

• Paused: when anther activity obscured the running 

activity (Franke et al., 2011) 

• Stopped: when the activity is not visible on screen and 

running in the background, it will stay in the memory 

• Destroyed: Activity is removed from the memory 

and lo longer exists (Franke et al., 2011) 

 

In Fig. 1, the ellipse shape represents activity state 

while the arrows illustrate lifecycle callback methods, 

which the developer should override (Franke et al., 

2011). Note that the activities will not stay on created, 

started, paused states for a long time because it passes 

them quickly (Franke et al., 2011; Zein et al., 2017). 

However, researchers have found errors commonly 

occurring in the transitions between the states in the 

official model shown at Fig. 1. For instance, the study 

by (Franke et al., 2011) reversed-engineer the 

lifecycle of Android activities using assertion-based 

test cases. The results of their study show that the 

onStop() and onDestroy() callback methods are not 

guaranteed to be called by the system when the 

system is very low on resources. Thus, an activity 

may be destroyed and removed from memory without 

executing the code written inside onStop() and 

onDestroy() callback methods. 
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Fig. 1: Android activity lifecycle model (Franke et al., 2011) 

 

Zein et al. (2017) developed an automated testing 

tool called Android Lifecycle Inspector (ALCI) to check 
if system resources such as camera, GPS, sensors, etc., 
are correctly acquired and released by developers. This 
tool helps novice developers to build more robust mobile 
apps. The approach is based on mobile software model 
to extract lifecycle system resources rules and create 

repositories for these resources. ALCI approach analyzes 
the source code of an application against rule models to 
verify that the developer has been correctly initiated and 
release an application system resources. Also, ALCI 
generates a report notification of incorrect system 
resource for the developer. Bartel et al. (2014) presented 

a test suite approach using taint-based static analysis 
called FLOWDROID for evaluating the effectiveness 
and accuracy of Android apps and it take in the 
consideration Android lifecycle and callback methods 
challenges. In our study, we take in consideration the 
issues and problems presented by (Franke et al., 2011). 

Android static analysis has become a popular 

research topic. Lamba et al. (2015) proposed an 

approach of analyzing and mining 1,120 android source 

code applications from F-Driod using Java parser to 

extract API Call Usage Patterns (ACUP), methods, 

classes, interfaces and packages information to show 

the developer styles and feedback of using android 

platforms in the mobile application for the new 

developers. Batyuk et al. (2011) proposed a static 

analysis service that is able to assess the apps market and 

provide a user with a detailed report on the security and 

privacy insight level inside an app. It offers the user the 

ability to mitigate the malicious code and security threats 

inside the app. Schmidt et al. (2009) suggested a static 

analysis for Android executable which locate inside a 

lunix system (ELF file inside/bin) using a command 

readelf in order to extract the functions calls and 

compare them with a malware executable to detect them 

using three simple classifiers. Payet and Spoto (2012) 

used the Julia static analyzer for Java byte code inside 

Android apps to ensure that the apps doesn’t contain 

programming bugs. Bartel et al. (2014) proposed an 

automatic static analyzer called SCANDAL and used it 

to analyze 90 Android apps in order to detect privacy 

leaks. Zhongyang et al. (2013) suggested alarm attack 

called DroidAlarm which used static analysis and able to 

parse for sensitive permissions and public interfaces for 

identifying potential capability leaks for Android apps. 

Feng et al. (2014) showed an approach called 

Apposcopy which uses a taint static analysis and 

represent Android code in Inter-Component Call Graph 

to detect control and flow of data that causes a malware. 

Desnos (2012) presented a static analysis algorithm 

which based on a customized similarity distance to 

decide if the developer protect them app from piracy and 

identify code updates and releases to find dissimilarities 

between versions of an app. 

The above studies signify a growing interest in the 

software engineering research community to analyze 

Android source code apps. However, to our best 

knowledge, there are no studies so far that analyze 

Android apps for their lifecycle usage and conformance 

except one study for Zein et al. (2017) which used 

analysis for testing lifecycle conformance. However, in 

this study, we fill this gap by presenting the analysis of 

Android lifecycle activities on a large number of open 

source apps and describe how Android developers 

utilize lifecycle callback methods and the system 

resources acquired/released. 

Study Design 

We first present the key research questions 

investigated in this study. We also present information 

about our data set. 

Resumed 
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onResume() onPause() 
onResume() 
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Research Questions 

After analyzing 5000+ activities from various 

Android apps, we wanted to know how callback methods 

are typically utilized by developers. We developed a set 

of research questions to help us to understand the 

activity lifecycle practices commonly followed by real 

Android developers. First, we want to understand the 

usage of lifecycle callback methods in Android 

activities. This leads us to our first research question: 
 
RQ1: To what extent Android developers utilize the 

lifecycle callback methods in developing mobile 

apps? 
 

Similar to the first RQ, we are also motivated to 

analyze the source code related to activities and collect 

statistics about main system resources management, such 

as camera and Bluetooth, GPS, sensors, etc. We want to 

know whether Android developers acquired and released 

these system resources correctly as compared to the 

standard Google documentation. Thus, our second 

research question is: 
 
RQ2: Do Android developers correctly acquire and 

release the Android system resources? 
 

In the third RQ, we aim to analyze all activities to 
better understand the nature of code implemented inside 

the key onPause(), onStop() and onDestroy() callback 
methods. We decided that the nature of this code 
includes three categories - releasing, database or 
threading actions. According to the Android 
documentation site the database and threading actions 
are considered as long running code (Activity android 

developers, n.d.). Accordingly, this question will give us 
some statistics about how the developer uses these 
callback methods and, if they implemented a long 
running code approach or not: 
 
RQ3: What is the nature of the code implemented inside 

onPause(), onStop() and onDestroy() callback 

methods? In order to answer these questions, we 

divided our work into four phases. Firstly, we built a 

statistical analysis tool which is able to read and 

analyze Android source code. Secondly, we 

generated usage statistics about the override 

callback methods. In the third part, we generated 

statistics about system resource management. In the 

last phase, we collected information about the nature 

of code inside important callback methods namely 

onPause(), onStop() and onDestroy(). We present 

our research results in section 5. 
 

Data Collection 

We collected URLs of all apps stored on the F-Droid 

repository and selected apps that are hosted on GitHub. 

F-Droid is a popular platform and online software 

repository which contains open source code for a very 

diverse range of Android apps. Each app in F-Droid is 

also available on Google play  (FDroid, n.d.). F-Droid 

was selected because it provides useful categorizing and 

classification of the Android apps. This classification 

will be used to help us when analyzing Android apps 

according the category type of the app. As of Dec 8, 

2016, there were 2001 apps in the F-Droid repository 

(and 1420 also on Google Play) organized into 17 

categories (FDroid, n.d.). The apps were downloaded 

manually from their individual pages. In total, we 

have 842 apps in our data set from 17 categories. We 

manually checked the manifest XML file for each app 

and collected all activity files. In total, we have 5577 

activities extracted from 842 Android apps as shown 

in Table 1. 

The data shown in Table 1 indicates that the 

system category has the largest number of apps 

(Apps) which is equal to 265 in the F-droid data set; 

followed by multimedia (242) and Internet category 

(221). The largest number of activities (Activity) is 

found in the internet category (952) then Science and 

Education (624) category. Figure 2 shows a Pareto 

chart that shows our data set with a graphical 

distribution using a combination of a line and bar 

chart. The bar chart represents the cumulative total 

#Activity across each category while the line graph 

shows the cumulative percentage of apps. The Pareto 

chart reveals that 57% of activities in the data set 

belong to 29% of the categories inside the first five 

categories which are internet, science and education, 

multimedia, games and navigation. 

SAALC Architecture and Implementation 

To assist us with our static analysis work we 
developed a new tool called Static Analysis of 
Android Lifecycle (SAALC). SAALC is able to read a 
data set of Android activities that is written in the 
Java programming language. SAALC is the first tool 
that analyzes a dataset of Android source code to 
extract information related to activity lifecycle 
callback methods. Figure 3 shows a block diagram of 
the main components of SAALC as well as the 
approach of the analysis process. 

SAALC includes the following key components: 
 

• Java Parser component: This is an open source and 

free parser available at GitHub. It is used to parse 

and convert Android source code into AST object 

model (Abstract Syntax Tree). The AST object 

model contains a list of imported packages, methods 

and fields declarations for each class of a source 

code to mention a few. We used these declarations in 

the analysis of Android activities. Using an import 

package declaration, we can get a name of the 
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package that declared in the class. Additionally, using 

a field declaration, we can get the field name and its 

type. Additionally, using the method declaration, we 

can get a method name and its body contents 

• Android Source Codes Reader component: This 

component reads a data set of Android’s activities. 

• Output Report component: Produces output reports 

in CSV (Comma Separated Values) file format. 

• Resource List component: Produces a list of resources  

• Resource DB component: Resources information in 

an XML file 

• Analyzer component: The main that applies two 

handling algorithms. State Analyzer: Inspects data 

set source code to collect statistics about callbacks 

methods and the natures of code inside them. 

Resource Analyzer: Inspects data set source code to 

collect statistical information about managing 

system’s resources 

 

 

 
Fig. 2: Distribution of activities on data set across the 17 categories 

 

 
 

Fig. 3: Structure diagram of SAALC 
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Table 1: Distribution of the data set over the app categories 

  #App  

Category #APP Downloaded #Activity 

System 265 78 325 

Multimedia 242 104 532 

Games 221 93 422 

Internet 217 122 952 

Navigation 135 58 370 

Science and Education 118 45 624 

Theming 108 26 94 

Reading 104 40 347 

Time 104 55 328 

Writing 94 37 242 

Development 92 28 182 

Connectivity 84 51 236 

Security 68 32 215 

Phone and SMS 53 15 159 

Money 40 26 266 

Sports and Health 35 23 247 

Graphics 21 9 36 

Total 2001 842 5577 

 

The key processing steps of our approach are as 

follows: 

 

• First, SAALC reads the system resources 

information from the repository using Read 

Resource component, then produces a list of 

resources using Resource List component 

• Secondly, The Java Parser component parses 

Android source code and produces the detailed AST 

object model 

• Then, using the resulting object model produced by 

Java Parser, SAALC applies two analysis 

algorithms. The State Analyzer is responsible for 

collecting information about each callback method 

such as the count of each callback method and the 

nature of code inside them. The Resource Analyzer 

inspects the source code against the system 

resources list 

• Finally SAALC produces a results report in CSV 

file format using the Output Report component 

 

We stored the system resources using the Resource 

DB component in an XML repository. We chose 9 

system resources to track and analyze including Camera, 

USB, Sensor, Network, Input, GPS, Database, Bluetooth 

and Audio. For each of these system resources, we 

stored the resource name, package name, the name of 

acquiring and releasing methods and the name of 

callback methods which used to acquire and release the 

resource. All the above information is taken from the 

official Google Android site (Activity android 

developers, n.d.). Table 2 shows a sample repository 

information for Camera resource. 

The analysis algorithms are able to analyze the 

common coding patterns applied by developers. Below 

are the common coding patterns is used by developers 

according to the study by (Zein et al., 2017): 

 

• Developer calls the acquired or release method 

directly inside callback method block 

• Developer calls another method or nested methods 

inside a callback method which in turn calls the 

acquired or release method 

• Developer calls the acquired or release method 

inside if, while, for, switch, try catch, threads or 

object block statements which are inside the 

callback method or other nested methods 

 

Additionally, during our study, we found that in 

some cases the developers did not acquire or release 

system’s resource inside callback methods. Instead, 

they manage system resources inside the event 

handlers. Accordingly, we analyzed Android source 

code against these events. 

These events include methods which were overridden 

in the activity source code and did not a callback 

method. We refer to these event methods in the Results 

Section using the ”OTHER” keyword. 

The outline of our two analysis algorithms are 

described as follows: 

State Analyzer Algorithm: 

The proposed algorithm for State Analyzer can be 

described in pseudo-code as shown in as follows: 

 

• Algorithm Input: List of all activities source code 

in our dataset 

• Algorithm Output: A report result in CSV.  

 

Algorithm basic steps: 

 

1. Load a list of activities source code 

2. For each activity in the list of activities, parse and 

traverse the activity source code into AST. Then, 

analyze the source code to find and count the 

occurrences of the callback methods which were used 

3. If onPause(), onDestroy() or onStop() callback 

methods were founded in the source code, then 

analyze the nature of code inside each of them 

related to releasing, database or threading actions 

 

Resource Analyzer Algorithm 

The proposed algorithm for Resource Analyzer can 

be described in pseudo-code as shown in as follows: 

 

• Algorithm Input: List of all activities source code, 

List of system’s resources information 

• Algorithm Output: Reports result in CSV 
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Table 2: Camera resource information 

  Name of acquiring Name of releasing Name of acquire Name of release 

Resource name Package name method method callback method callback method 

Camera Camera open(), release(), onResume() onPause() 

  startPreivew() stopPreview() 

 Camera2 open(), release(), 

  startPreivew() stopPreview() 

 CameraManager openCamera() release() 

 CameraDevice openCamera(), release(), 

  onOpened() onClosed() 

      

Algorithm basic steps: 

 

1. Load a list of activities source code and list of 

resource information. This includes all resource 

names, package names, names of acquiring and 

releasing methods 

2. For each activity in the list of activities, parse and 

traverse the activity source code into AST 

3. For each system resources such as Camera, GPS 

etc, analyze the source code of each activity to 

find in any methods (callback or OTHER 

methods) where this resource has been acquired 

and released 

 

Results 

In this section, we present the results of our study 

after analyzing the data set. The results are divided 

into three parts as shown in subsections below. The 

first part is for callback methods usage counts; the 

second part is for system resource management; and 

the third for the nature of code inside some of the 

most important callback methods; namely, onPause(), 

onStop() and onDestroy(). 

Part I: Usage of Callback Methods 

In the first stage of analysis, we counted the totals 

of each callback method for the 5577 activities. We 

present the result set in Fig. 4, which shows the 

number of each callback method found in the data set. 

Figure 4 shows the results of as a Bubble Chart. The 

Bubble Chart is based on three dimensions: (i) The 

horizontal axis represents the callback methods 

names;(ii) the vertical axis represents the counts of 

occurrence of each callback method; (iii) the bubble 

size indicates the third dimension which represents the 

cumulative percentage of callback methods. The 

Bubble Chart also shows that the most occurrences 

callback method are onCreate() (92%) followed by 

onResume() (23%) then onPause() (16%), onDestroy() 

(14%), onStart() (6%), onStop() (6%) and the last is 

onDestroy() (1%). 

Additionally, we show the counts and percentages of 

callback methods in relation to the categories of the 

Android apps in Table 3. The highest value is (888) 16% 

for onCreate() callback method and category Internet 

followed by value (550) 10% for onCreate() and 

category Science Education and then the value of (514) 

9% for onCreate() with category Multimedia. Moreover, 

The lowest values are for onRestart() callback method 

across all the categories. Finally, the map shows that the 

Internet category is the most frequently used for all 

callback methods. 

Acquiring and Releasing of System Resources 

In the second part of our analysis, we present the 

occurrence of each system recourse in the 5577 activities 

extracted from the selected apps. In order to decide on 

the correct/incorrect management of the system 

resources, we referred to the Google Android official 

documentation (Activity android developers, n.d.). 

Google Android documentation provides guidelines 

about system resource usage and any callback method 

that is responsible for acquiring or releasing the 

resources (Activity android developers, n.d.). 

The distribution of callback methods is shown in 

Fig. 5 as a Column Chart. It shows the number of 

occurrence of each system’s resource founds in the 

data set. We implement the analyzer over nine 

resources which are Camera, Audio, Bluetooth, 

SQLite Database, GPS, Input, Network, Sensor and 

USB. The results show that the total number of the 

resource used is (178) 3% over 5577 activities. Also, 

it shows that the Database occurrence equals to 52 

(0.93%), so it is the most popular system’s resource 

used by developer followed by Sensor (0.46%) then 

Camera (0.37%), USB (0.34%), Input (0.32%), Audio 

(0.26%), Network (0.23%), GPS (0.16%) And, 

Bluetooth (0.08%) is the lowest popular resource. 

Additionally, we present the occurrences for system 

resources in relation to the categories of the Android 

apps at Table 4 the highest value is 17 for SQLite 

Database resource and category Multimedia followed by 

value 14 for USB and category Multimedia and then 

value 11 for Sensor, 8 for GPS and category Navigation. 

Moreover, the lowest values for Bluetooth resource 

across all versions categories. The Table shows that 

Multimedia category is the most frequent use of 

Database resources. 
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Fig. 4: Distribution of callback methods: Bubble chart showing the most popular callback methods over the data set 

 

 
 

Fig. 5: Distribution of System Resources: showing the most popular System Resources over the data set 

 
Table 3: Distribution of callback methods in terms of presence of activities 

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() 

Connectivity (224) 4% (28) 1% (59) 1% (46) 1% (21) 0% (77) 1% (4) 0% 

Development (167) 3% (14) 0% (38) 1% (22) 0% (9) 0% (18) 0% (0) 0% 

Games (392) 7% (22) 0% (107) 2% (93) 2% (21) 0% (49) 1% (1) 0% 
Graphics (35) 1% (0) 0% (11) 0% (3) 0% (3) 0% (7) 0% (2) 0% 

Internet (888) 16% (77) 1% (261) 5% (181) 3% (80) 1% (138) 2% (4) 0% 
Money (227) 4% (8) 0% (79) 1% (44) 1% (10) 0% (44) 1% (0) 0% 

Multimedia (514) 9% (49) 1% (133) 2% (108) 2% (35) 1% (100) 2% (8) 0% 
Navigation (309) 6% (26) 0% (95) 2% (68) 1% (24) 0% (35) 1% (1) 0% 

Phone and SMS (150) 3% (10) 0% (46) 1% (26) 0% (6) 0% (19) 0% (0) 0% 
Reading (331) 6% (16) 0% (55) 1% (48) 1% (15) 0% (46) 1% (2) 0% 

Science and Education (550) 10% (11) 0% (115) 2% (46) 1% (22) 0% (35) 1% (0) 0% 
Security (196) 4% (10) 0% (50) 1% (38) 1% (11) 0% (26) 0% (2) 0% 
Sports and Health (215) 4% (12) 0% (28) 1% (19) 0% (13) 0% (30) 1% (0) 0% 

System (295) 5% (26) 0% (74) 1% (42) 1% (28) 1% (59) 1% (4) 0% 
Theming (70) 1% (4) 0% (14) 0% (4) 0% (3) 0% (14) 0% (0) 0% 

Time (317) 6% (20) 0% (68) 1% (51) 1% (32) 1% (54) 1% (2) 0% 
Writing (235) 4% (13) 0% (66) 1% (49) 1% (8) 0% (29) 1% (1) 0% 
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Table 4: Distribution of the system resources in terms of presence of activities 

Category Database Sensor Camera USB Input Audio Network GPS Bluetooth 

Connectivity (0) 0% (1) 0.02% (1) 0.02% (1) 0.02% (0) 0% (2) 0.04% (5) 0.09% (0) 0% (2) 0.04% 
Development (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% 
Games (4) 0.07% (4) 0.07% (0) 0% (0) 0% (0) 0% (3) 0.05% (0) 0% (0) 0% (1) 0.02% 
Graphics (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% 
Internet (3) 0.05% (1) 0.02% (2) 0.04% (1) 0.02% (5) 0.09% (1) 0.02% (2) 0.04% (0) 0% (0) 0% 
Money (8) 0.14% (0) 0% (9) 0.16% (1) 0.02% (2) 0.04% (0) 0% (0) 0% (0) 0% (0) 0% 
Multimedia (17) 0.30% (3) 0.05% (4) 0.07% (14) 0.25% (2) 0.04% (6) 0.10% (0) 0% (0) 0% (0) 0% 
Navigation (1) 0.02% (11) 0.20% (0) 0% (0) 0% (1) 0.02% (0) 0% (3) 0.05% (8) 0.14% (0) 0% 
Phone and SMS (0) 0%% (2) 0.04% (2) 0.04% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% 
Reading (1) 0.02% (2) 0.04% (0) 0% (0) 0% (2) 0.04% (0) 0% (2) 0.04% (0) 0% (0) 0% 
Science and Education (8) 0.14% (1) 0.02% (1) 0.02% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (1) 0.02% 
Security (4) 0.07% (0) 0% (0) 0% (0) 0% (3) 0.05% (0) 0% (1) 0.02% (0) 0% (0) 0% 
Sports and Health (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (2) 0.04% (0) 0% (1) 0.02% (1) 0.02% 
System (2) 0.04% (0) 0% (2) 0.04% (2) 0.04% (2) 0.04% (0) 0% (0) 0% (0) 0% (0) 0% 
Theming (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% 
Time (0) 0% (1) 0.02% (0) 0% (0) 0% (0) 0% (1) 0.02% (0) 0% (0) 0% (0) 0% 
Writing (4) 0.07% (0) 0% (0) 0% (0) 0% (1) 0.02% (0) 0% (0) 0% (0) 0% (0) 0% 

 
Table 5: Distribution of acquired API for each system resource 

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER 

DataBase (44) 85% (0) 0% (4) 8% (4) 8% (0) 0% (8) 15% (0) 0% (35) 67% 

Sensor (26) 100% (0) 0% (2) 8% (0) 0% (0) 0% (0) 0% (0) 0% (1) 4% 
Camera (4) 19% (1) 5% (7) 33% (0) 0% (0) 0% (0) 0% (0) 0% (17) 81% 

USB (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% 
Input (6) 33% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% 

Audio (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% 
Network (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% 

GPS (1) 11% (0) 0% (1) 11% (0) 0% (0) 0% (0) 0% (0) 0% (1) 11% 
Bluetooth (2) 40% (1) 20% (1) 20% (0) 0% (0) 0% (1) 20% (0) 0% (2) 40% 

 
Table 6: Distribution of released API for each system resource 

Resource onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER 

Database (0) 0% (0) 0% (0) 0% (2) 4% (0) 0% (8) 15% (0) 0% (0) 0% 

Sensor (1) 4% (0) 0% (0) 0% (1) 4% (0) 0% (0) 0% (0) 0% (1) 4% 

Camera (1) 5% (0) 0% (2) 10% (12) 57% (1) 5% (3) 14% (0) 0% (12) 57% 
USB (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% 

Input (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% 
Audio (7) 47% (0) 0% (0) 0% (3) 20% (0) 0% (1) 7% (0) 0% (2) 13% 

Network (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% 
GPS (1) 11% (0) 0% (0) 0% (1) 11% (0) 0% (1) 11% (0) 0% (1) 11% 

Bluetooth (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% 

 
Moreover, The Resource Analyzer was run In order 

to find the most popular acquired/released resources. The 
results of this analysis is shown in Table 5 and 6. Table 5 
shows the most popular callback methods that used by 
developers to acquire each system’s resources. The 
results show that: 
 
• Database was acquired mostly on the onCreate() 

callback method with the percentage of occurrence 
equal to 85% over 52 activities which used Database 
resource. Also, 8% used the onPause(), 8% the 
onResume() and 15% used the onDestroy(). 
Whereas, around 67% of activities acquired 
Database on OTHER methods 

• Sensor was acquired on the onCreate() method with 
the percentage of occurrence equal to 100% over 26 
activities which used Sensor resource. Also, 8% 
used by the onResume(). Whereas, around 4% of 
activities acquired Sensor on OTHER methods 

• Camera was acquired mostly on OTHER methods 
with the percentage of occurrence equal to 81% over 
29 activities which used Camera resource. Also, 
33% used the onResume(), 19% used the onCreate() 
and 5% used the onStart() 

• Input was acquired mostly on the onCreate() with 

the percentage of occurrence equal to 33% over 18 

activities which used Input resource 

• GPS used 11%s of activities over 9 activities which 

acquired GPS resource in the onCreate(), 

onResume() and OTHER methods 

• Bluetooth was acquired mostly on the onCreate() and 

OTHER methods callback methods with percentage 

of occurrence equal to 40% over 5 activities which 

used Bluetooth resource. Also, 20%s used the 

onStart(), onResume() and onDestroy() 

• USB, Audio and Network resources had nothing of 

the percentages of acquired 
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However, Table 6 shows the results of the most 

popular callback method used to release resources. The 

results show that: 

 

• Database was released mostly on the onDestroy() 

callback method with the percentage of occurrence 

equal to 15% over 52 activities which used Database 

resource. Also, 4% used the onPause() 

• Sensor used 4%s of activities over 26 activities 

which released the onCreate(), onPause() and 

OTHER methods 

• Camera was released mostly on the onPause() 

method with the percentage of occurrence equal to 

57% over 29 activities which used Camera resource. 

Also, 5% used the onCreate(), 10% used the 

onResume(), 5% used the onStart(), 14% used the 

onDestroy(). whereas, around 57% of activities 

released Camera on OTHER methods 

• Audio was released mostly on the onCreate() with 

the percentage of occurrence equal to 47% over 18 

activities which used Audio resource. Also, 20% 

used the onPause() and 7% used the onDestroy(). 

Whereas, around 13% of activities released Audio 

on OTHER methods 

• GPS used 11%s of activities over 9 activities which 

released GPS resource in the onCreate(), onPause(), 

onDestroy() and OTHER methods 

• USB, Input, Network and Bluetooth resources had 

nothing of the percentages of released 

 

In order to obtain more supportive results, the correctly 

acquired and released percentages was decided depending 

on Android documentation information. For each system’s 

resources, the callback methods which is responsible to 

acquired and released resource were decided. Then, the 

value of percentages for these callback methods were 

decided as the correctly percentages of acquired and 

released the resource. On the other hand, the average of 

wrongly acquired and released percentages was 

computed by finding the averages of the callback 

methods percentages that were registered to acquire and 

to release but did not have a responsibility to do that. 

Figure 6 and 7 show these comparisons of 

correctly/wrongly acquired and released percentages for 

the system’s resources. These results show that: 

 

• Database resource should be acquired at onCreate() 

and released at onPause() methods (Activity android 

developers, n.d.). Our result shows that about 85% 

activities used onCreate() to acquire Database resource 

and 4% of activities used onPause() to release 

Database resource correctly. However, the average of 

wrongly acquired is equal to 25%. It includes 67% of 

activities used OTHER method, 15% used onDestroy() 

and 8% used onResume() or onPause() to acquire 

Database resource. Additionally, the average of 

wrongly released is equal to 15% of activities used 

onDestroy() to release Database resource 
• Sensor resource should be acquired at onResume() and 

released at onPause() (Activity android developers, 
n.d.). Our result shows that about 4% of activities used 
onResume() to acquire Sensor resource and 4% of 
activities used onPause() to release Sensor resource 
correctly. However, the average of wrongly acquired is 
equal to 52%. It includes 100% of activities used 
onCreate() method and 4% used OTHER to acquire 
Sensor resource. Additionally, the average of wrongly 
released is equal to 4%. It includes 4% of activities 
used onCreate() method and also 4% used OTHER to 
release Sensor resource 

• Camera resource should be acquired at onResume() 

and released at onPause() (Activity android 

developers, n.d.). Our result shows that about 33% of 

activities used onResume() to acquire Camera 

resource and 57% of activities used onPause () to 

release Camera resource correctly. However, the 

average of wrongly acquired is equal to 35%. It 

includes 81% of activities used OTHER method, 19% 

used onCreate() and 5% used onStart() to acquire 

Camera resource. Additionally, the average of 

wrongly released is equal to 13%. It includes 14% of 

activities used onDestroy() and 57% used OTHER 

method to release Camera resource 

• USB should be acquired at onResume() and released 

at onPause() (Activity android developers, n.d.). Our 

result showed that there are no occurrences of 

acquired or released USB resource in our data set 
• Input resource should be acquired at onCreate() and 

released at onPause() (Activity android developers, 
n.d.). Our result showed that about 33% of activities 
used onResume() to acquire Input resource. 
However, there are no occurrences of released Input 
resource in our dataset 

• Audio resource should be acquired at onCreate() and 
released at onPause() (Activity android developers, 
n.d.). Our result showed that there are no occurrences 
of acquired Audio resource at onCreate() in our dataset 
and 20% of activities used onPause() to release Audio 
resource correctly. However, the average of wrongly 
released is equal to 30%. It includes 47% of activities 
used onCreate() method, 7% used onDestroy() and 
13% used OTHER to release Audio resource 

• Network resource should be acquired at onCreate() 
and released at onPause() (Activity android 
developers, n.d.). Our result showed that there are 
no occurrences of the acquired or released Network 
resource in our dataset 

• GPS resource should be acquired at onCreate() and 

released at onPause() (Activity android developers, 
n.d.). Our result showed that about 11% of activities 
used onCreate() to acquired and also11% of 
activities used onPause() released GPS resource 
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correctly. However, the average of wrongly acquired 
is equal to 11%. It includes 11% of activities used 
onResume() method and 11% used OTHER to 
acquire GPS resource. Additionally, the average of 
wrongly released is equal to 11%. It includes 11% of 
activities used onCreate()method and 11% used 

OTHER to release GPS resource. 

• Bluetooth resource should be acquired at onCreate() 

and released at onPause() (Activity android 

developers, n.d.). Our result showed that about 40% 

of activities used onCreate() to acquire Bluetooth 

resource correctly and there are no occurrences of 

released Bluetooth resource at onPause() method. 

However, the average of wrong acquired is equal to 

25%. It includes 40% of activities 40% used OTHER 

method, 20% used onPause() and onResume() to 

acquire Bluetooth resource 

Part III: The Nature of the Code Implemented 

Inside Callback Methods 

The third part of our analysis focuses on the nature of 

code inside the most important callback methods 

onPause(), onStop() and onDestroy(). We divided the 

nature of code into three categories. The first group is 

that code used for releasing actions; the second is 

associated with the code used for database actions; and 

the third code is related to managing threading actions. 

We also considered the second and third categories 

(database and threading actions) as a long running and 

heavy code actions doc.

 

 
 

Fig. 6: The average of correctly and wrongly acquired of system’s resources 

 

 
 

Fig. 7: The average of correctly and wrongly released of system’s resources 
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Table 7: Long Running code analysis on OnPause(), OnStop() and OnDestrory() methods 

# Category Name onPause() onStop() onDestroy() 

I Releasing Resources actions - (50) 15% (214) 27% 

II Database actions (104) 12% (35) 10% (41) 5% 

III Threading actions (43) 5% (8) 2% (45) 6% 

 Total (147) 17% (341) 27% (780) 38% 

 

Using SAALC, we applied analysis using keywords 

representing each of these code categories for on 

onPause(), onStop() and onDestroy() methods. However, 

due to the onPause() callback method used to release 

system resources, we analyzed the data set for onPause() 

callback method over the second and third categories 

(long running code) only to avoid the conflict with the 

main purpose of its usage which is releasing actions. 

The results of this analysis are shown in Table 7. It 

shows that the total percentages of all three categories 

inside onPause() is (147)17%. This includes the 

percentages of long running code (104) 12% for database 

actions; and (43) 5% for threading actions. On the other 

hand, the total percentage for the three categories at 

onStop() is (341)27%. This includes (50)15% for 

releasing actions; (35) 10% for database actions; and 

(8)2% for threading actions. Further, the total of 

percentages for the nature of code inside onDestroy() is 

(780) 83%. this includes (214) 27% for releasing actions, 

(41)5% and (45) 6% for long running code (database 

and threading actions respectively). We discuss these 

results in more detail in Section 4. 

Discussion 

In this section we provide a discussion of the 

experimental results in terms of our research questions. 

 

RQ1: To what extent Android developers utilize the 

lifecycle callback methods in developing mobile 

apps? 

 

Answering RQ1 gives us the first indication about 

Android lifecycle callback methods’ utilization in actual 

real-world apps. The results in Result section  show that 

the onCreate() callback method is the one that is mostly 

implemented (92%) in the activities of the selected apps. 

This is not surprising since the onCreate() method is the 

main method to start and setup Android activities 

(Activity android developers, n.d.). Implementing the 

onCreate() callback method is important to initialize the 

user interface of the activity as well as its various data 

binding operations. Moreover, app developers use the 

onCreate() method to do all normal operations of 

creating views and activity setup. 

The onResume() callback method is implemented 

by 23% of the total number of app activities extracted. 

It is usually called when the activity is in the 

foreground and about to start interacting with users’ 

interactions (Activity android developers, n.d.). 

Additionally, it is used for acquiring system resources 

among other services by developers. Thus, we can 

assume that such percentage of utilizing the 

onResume() method is reasonable. 

The onPause() callback method usage percentage is 

implemented by 16% of activities and is normally used 

when an activity is about to go to the background 

(Activity android developers, n.d.). More specifically, it 

is used to commit unsaved changes, release system 

resources, stop animations and other processes that can 

consume the CPU. We can also conclude here that such 

usage percentage is also reasonable. This is because not 

all actives need to deal with releasing system resources 

or to persist data. 

On the other hand, the onRestart() callback method is 

rarely implemented (1%) in the activities. The 

onRestart() callback method is normally used after an 

activity has stopped and before it is started back again 

(Activity android developers, n.d.). Additionally, it is 

used to acquire a row cursor objects if a developer has 

already deactivated it at onStop() method (Activity 

android developers, n.d.). Cursor objects provide random 

read-write access to the result set returned by a database 

query (Activity android developers, n.d.). Accordingly, 

we can assume that the usage percentage of onRestart() 

method (1%) can also be reasonable since it has limited 

usage scenarios. 
The onStart() and onStop() callback methods both 

have usage percentage implementation in activities of 
(6%. The onStart() callback method is normally called 
when an activity is newly created and becoming visible 
to the user (Activity android developers, n.d.). 
However Google documentation do not provide clear 
description of when to use this method.Whereas, The 
onStop() callback method is normally used to save 
app data to permanent storage and to execute long 
running code (Activity android developers, n.d.). 
According to (Activity android developers, n.d.)), 
developers must execute long running code at 
onStop() instead of onPause() method. This is due to 
the fact that onPause() method must be executed 
quickly so that other activities can start seamlessly. 
Thus 6% implementation for onStart() and onStop() 
are reasonable percentages as well. 

The onDestroy() callback method has implementation 
percentage of 14%. The onDestroy() callback methods 
are normally called before an activity is destroyed 
(Activity android developers, n.d.). It acts as the last 
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chance for developers to free resources and threads that 
are associated with the activity before it is removed from 
memory (Activity android developers, n.d.). However, 
according to the study by (Franke et al., 2012), the 
onStop() and onDestroy() methods may not be called by 
the system in cases were the system is very low in 
resources (battery and memory). In such a situation, 
developers may face a dilemma. This is because both the 
onStop() and onDestroy() methods are normally used to 
execute long-running code such as data persistence. We 
will have more on this in the discussion for RQ3. 
 
RQ2: Did each Android developer correctly acquire and 

release Android system resources? 
 

The averages of correctly acquiring and releasing of 

the nine system resources mentioned at Result section  

are 23% and 11% respectively. However, the averages 

of wrongly acquiring and releasing system resources 

are 16% and 8% respectively. Such results show that a 

relatively large percentage of system resources are not 

correctly released by the developers in the activities for 

the apps that we selected for analysis. According to the 

study by (Franke et al., 2012), this will lead to incorrect 

behavior of Android apps as well as memory leaks and 

run-time errors. Furthermore, we argue that due to this 

high number of misuses, the developers seem to be not 

fully aware of the importance of correctly managing the 

system resources. 
 
RQ3: What is the nature of code implemented inside 

onPause(), onStop and onDestroy() callback 

methods? 
 

Regarding the analysis of the nature of code 

implemented inside onPause(),onStop and onDestroy() 

callback methods, we found that the onStop() method 

has a 12% of code that is considered to be long 

running code such as database and threading actions. 

Further the onDestroy() method has 11% of code is 

considered to be long running code. This is acceptable 

from the point of view of the Android official 

documentation (Activity android developers, n.d.). It 

is true that the study by (Franke et al., 2012) argue 

that the onStop() and onDestroy() methods may not be 

called, but this can only happen at very extreme cases 

when the Android system is very low in resources. 

And since the developers should not implement such 

long running code at onPause(), we can conclude that 

onStop() and onDestroy() are still the best place to 

implement such code. Regarding the nature of code 

inside onPause() callback method, we found this has 

17% of code that we considered to be long running 

code. This is a problematic issue as discussed above 

since this will possibly block other activities from 

running seamlessly. 

Our results show that Android developers, in 

general, appear to posses limited knowledge and 

awareness of the importance of writing an app that 

conforms to the lifecycle model. This will adversely 

affect their apps’ reliability and performance. Further, 

we argue that Android documentation needs to be more 

useful, complete and clear in describing how 

developers should apply activity callback method and 

system resources. We also argue that Android 

developers and more specifically the novice, should get 

more help in terms of managing system resources from 

the development environment, namely the Android 

Studio. Having the Android Studio automatically 

manage lifecycle conformance wherever feasible can be 

beneficial, especially for less expert developers. 

Android developers can use our findings to gain deep 

insights about their Android apps development and pay 

particular attention to their use of callback methods and 

resource management. Moreover, software researchers 

can use our findings to provide better support to 

developers by providing analysis tools, in order to help 

developers of building more robust apps. In the future, 

we aim to expand our study by analyzing more apps 

from different platforms such as iOS and by adding 

further mining and analysis techniques to our approach. 

Threat to Validity 

Threats to internal validity include that we 
automatically identified apps which contain system 
resources using imported API packages in the .java files. 
Sometimes developers insert unused resources that are 
not called. Also, we used the fields’ names according to 
the type of API to check where the resource acquired and 
released inside the methods. Further, the limitation in our 
tool is that it is currently unable to recognize the 
inheritance mechanism and code hierarchy that may exist 
in the app code. Threats to external validity are present 
as the results may not generalize to other kinds of 
applications, the applications selected may not be 
representative and other app store repositories may 
provide apps with different characteristics. It is 
important to note that in our data set, some categories, 
such as Graphics, were small and thus cannot be 
representative sample. However, we have tried to 
mitigate this by selecting a range of apps and 
investigating 5577 Android activities from842 out of 
2001 apps from F-Droid, which is one of the largest 
repositories of open-source Android apps. 

Conclusion 

The Android mobile app activity lifecycle model is 
very important to understand in order to develop robust 
apps. With an ever-growing app community, activity 
lifecycle holds more importance to ensure that apps are 
adequately reliable and robust. Our study is the first 
study to explore the activity’s lifecycle callback methods 
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usage in the Android development community. We built 
a tool called SAALC to analyze 5577 activities residing in 
842 Android apps from F-Droid repository. We analyzed 
activities to collect statistics about the utilization of each 
callback method; the averages of correct and wrong 
acquired/released system resources; and the nature of long 
running process inside onPause(), onStop() and 
onDestroy() callback methods. Our findings can be 
summarized as follows: 

 
• The percentages of occurrences of callback methods 

are about 1% of the activities used onRestart() 

method, 6% used onStop(), 23%usedonResume(), 

16% used onPause() and 14% used onDestroy(). The 

most occurrences for onCreate() callback methods 

for about 92% of activities 

• Only about 3% of activities contain Camera, 

Audio, Bluetooth, Database, GPS, Input, Network, 

Sensor and USB system’s resources 

• The average % of callback method code that 

wrongly acquires a system’s resource is 16%, 

whereas the average of wrongly released is 8%. 

This will adversely influence the app reliability 

• About 17% of activities used long running code 

inside onPause() callback methods and this will 

adversely influence the app performance 

• 27% of activities used releasing and long running 

code inside onStop() callback method, whereas 

38% used inside onDestroy() 

 

We propose that developers need further guidance 

about correct use of lifecyle-related callback method 

usage and code. We also propose that improved 

development tool support for Android developers is 

needed to provide improved automatic detection of 

lifecycle resource management problems in apps. 
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