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Abstract: Real-time computer graphics technologies such as graphics 

engines and graphics pipeline (software and hardware components) have 

improved considerably in the past decade. However, increase in efficiency 

and broadening of the applicability area has come at the cost of complexity 

of the tools. Therefore, development costs of advanced visualization 

systems can increase considerably. In this research we explore the 

possibility of addressing this problem by analyzing the software 

development methodology of graphics pipeline. We believe that the 

pipeline’s limitation regarding geometrical primitives in its operations is 

one of the reasons for the development efficiency bottleneck. We propose 

an approach that extends graphics pipeline with additional processing 

stages that can operate with primitives of higher order. This new method 

has the potential to reduce the pipeline’s application-level complexity for 

developers to create better software.  
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Introduction 

Computer graphics is a dynamically developing 
area in computer science despite being two to three 
decades old. Owing to the fact that people consume 
most of the information visually, virtually all areas of 
science, industry and  entertainment are associated 
with computer graphics. Therefore, graphics has 
always been a primary focus of computer science 
inquiry and industrial advancements. 

Steady growth of application areas and 

introduction of new technologies such as virtual 

reality (ACM SIGGRAPH on Virtual Reality, 2017; 

The Economist, 2014) and augmented reality (ACM 

SIGGRAPH on Augmented Reality, 2015) have 

increased the number of challenges in computer 

graphics. The efforts invested in solving these 

challenges are reflected in the incremental evolution of all 

the aspects of the central technical solution-graphics 

pipeline. However, as often reported in business news, the 

expanding complexity of the problems negatively 

affects the production costs of visualization software 

(Adward and Shreiner, 2012; Avrsr, 2018). The 

underlying standard technology is critically 

insufficient by itself for product development and  

many companies invest in the creation of higher level 

assistant software-graphics engines. 

Current common approach to visualization system 
development often starts with problem analysis and 

selection of the most appropriate graphics engine 
suitable for the task. This is described in detail in 
“Visualization and Interaction in Research, Teaching and 
Scientific Communication” (Ammon, 2017). Given the 
extensive variety of engines to choose from, this may 
prove to be a serious problem. Additionally, in most 

cases, the existing software frameworks are not partially 
or fully applicable to the problems under consideration, 
which results in changes to the problems to fit the existing 
technologies or development of a new technological stack 
up from the graphics pipeline. 

Throughout the years, the graphics pipeline has 
evolved in a process similar to precipitation: Chaotic 
in nature and  the number of higher-level software 
implementations used to try out and choose the best 
practices, which would then be considered for 
standardization and incorporation into the pipeline (Tor et 

al., 2018; Shakah, 2018; Natalya, 2017). This process is 
ongoing and  in this article, we will review the recent 
changes introduced into the pipeline and offer another 
perspective on possible steps for pipeline improvement. 
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Analysis of Problem 

Graphics pipeline is one the central notions in 

computer graphics. It can be best described as a 

technology comprising certain hardware and software 

components that implement the process of rendering. 

Rendering is a process of data visualization using 

computer technology. Common rendering algorithms 

comprise several data transformation stages that start 

from an arbitrary data representation and finish with 

rasterized images on a display screen. Many of these 

stages have been standardized in the course of several 

years and  have finally been implemented as specialized 

hardware components such as graphics cards. 
However, specific visualization problems require a 

custom approach at various stages, especially at the 
highest application level. A special class of software 
called graphics engines emerges at this level. These 
engines can be categorized as middleware and  can help 
software developers in their use of computer graphics. 
Owing to a large number of application problems, the 
number of available graphics engines is also 
considerably high because they are often attuned to 
specifics of the tasks they help to solve. A graphics 
developer must choose an appropriate graphics engine to 
solve a particular visualization problem. However, this 
approach bears the risk of distortion of the original 
problem because it may require adaptation to existing 
technology. Otherwise, if adaptation is not possible, a 
new specialized visualization system should be 
developed, which is a costly task. 

Figure 1 illustrates the relative amount of 
implementations at each visualization stage. 
Standardized components of the visualization process are 
considerably less compared to those that are closer to 
end products. The number of practical problems is large; 

therefore, the number of products developed to address 
them is also large. Throughout the years, certain 
commonalities of visualization problems have been 
identified and slowly migrated towards standard 
components; they were initially introduced in the engines 
and  later became a part of the pipeline’s architecture. 

The process of pipeline enrichment is ongoing and  in 

this article, we will observe the newly introduced 

pipeline concepts that appear in DirectX12 and Vulcan 

graphics APIs. Additionally, we will trace a trajectory 

for further evolution of the higher abstraction level of 

graphics pipeline. 

Graphics Pipeline Development 

Graphics pipeline has evolved considerably. Two 

decades ago, it started with a couple of fixed functions 

programmed directly in the hardware and interfaces to 

tune them. The main graphics primitives of the 

pipeline were vertex and index data buffers that 

described surface geometry and topology. Early 

functionality of the pipeline included fixed functions 

for lighting calculation, which are now obsolete. It 

was evident that this early functionality was quite 

rigid and limiting for use in potential applications. 

The first major step was taken for making the 

pipeline programmable. The goal was to supersede the 

fixed functions technology with a capability of 

changing the behavior of the pipeline stages using 

custom programs for particular visualization intents. 

These custom programs were named shaders. Initially, 

there were two types of shaders: vertex and pixel that 

were responsible for vertex and pixel (fragment) 

processing, respectively. 

 

 
 

Fig. 1: Stages of visualization 
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The evolution of programmable graphics pipeline 

continued with the introduction of additional pipeline 

stages, additional types of shaders and  extension of 

shaders’ capabilities. Currently, the DirectX11 

pipeline is defined by nine stages of which, many are 

programmable and some tunable (essentially still 

fixed-function, but no to detriment). Access to the 

pipeline is provided via Hardware Abstraction Layer 

(HAL) libraries and drivers. This layer is represented 

by graphics APIs of which, the most prominent two 

are DirectX and OpenGL. Both these libraries have 

followed the evolution of the pipeline since its 

inception and  both have similar software abstractions 

and structure. The main difference between them is 

the programming paradigms used: DirectX is object-

oriented, whereas OpenGL is a procedural state 

machine. Despite the difference, they both are used in 

a very similar fashion. 

Recently, graphics hardware technology reached 

newer heights in terms of performance and the ability 

to process more data. These changes led to a greater 

refinement of the APIs, thereby uncovering flaws in 

the graphics hardware design and  further creating a 

bottleneck that prevents further improvement. The 

main reason for the bottleneck was the ever-increasing 

demand for parallel computing. This new requirement 

was not considered in the beginning of the 

development of the APIs. Both the standard libraries 

had intrinsic limitations because both used to work in 

the immediate device context. In other words, the 

HAL instructions would be directly sent to the 

hardware no sooner they were called and  in the same 

calling order. Meanwhile, a logical device model was 

built around a global state that was modified by 

instruction calls. This was one of the major 

roadblocks en route parallelization. 

Therefore, the Microsoft and Khronos groups have 

introduced substantially revised versions of their 
APIs: DirectX12 (John and Satran, 2018; KGI, 2019) 
and Vulkan (Khornos, 2019; Eric et al., 2016) 
(successor of OpenGL). Newer versions of these 
libraries offer a new class of programming primitives 
that enable efficient data management and instruction 

flows on the pipeline. Earlier, this functionality was a 
part of the internal implementation of graphical 
drivers; however, new visualization problems 
demonstrated that the entire mechanics needed to be 
revisited (Firaxis, 2011; John, 2016). Stateless 
rendering is the central idea of the new approach. Its 

crux lies in task decomposition: one single problem 
can be split into a number of smaller ones that can be 
solved independently and later reassembled into a 
final solution. The stateful model did not inherently 
support decomposition because the state of the 
rendering pipeline was global and any changes made 

to it at earlier stages would have to be undone to 
revert it back to the original. 

One of the most important features of the stateless 
model is its suitability for multithreaded execution. 
However, it introduces a number of new concepts that 
creates a requirement on the developers for advanced 
and overarching understanding of the graphics 
pipeline and related functional particularities of the 
hardware, right from the beginning. At the same time, 
the API provides much broader access to the hardware 
it abstracts, which enables development of 
applications with improved performance. The new 
concepts include execution queues, command buffers 
and  various synchronization objects. The additional 
capabilities enable flexible work balancing on both 
the CPU and GPU sides. The new API is a 
considerable change in how the rendering process is 
organized on the graphics pipeline. The introduced 
execution granularity and state control provide new 
opportunities in visual systems development. 

High-Level Primitives in Visualization 

Systems 

The introduction of DirectX12 and Vulcan clearly 

demonstrates that the graphics pipeline development has 

not stopped and  there is scope for intensive 

improvements. However, as aforementioned, the API 

became more complex for understanding and use, which 

is a fair trade-off for the flexibility it provides. 

Consequently, efficient usage of graphics pipeline is 

more challenging for new and experienced graphics 

developers. A common solution to this problem is 

graphics engines middleware. 

Graphics engines usually address the problem of 
pipeline complexity by encapsulating it into a 
substitutive framework of objects and processes. The 

user of such visualization system is not required to know 
the implementation details of the engine and how it 
interacts with the pipeline-the engine claims to 
efficiently translate the user’s intent into pipeline actions 
behind the scenes. The degree to which the graphics 
engine abstracts away from the pipeline’s functionality 

differs according to the engine. However, there is a 
common abstraction called scene graph. 

Scene graph is a common name of the data structures 
that are used by most graphics engines for defining the 
input data model ready for visualization. Scene graph has 
objects as nodes and relations between them as edges. 
Objects can define entities in a visual scene or various 
sets of properties such as materials. Relations can define 
parent-child relationships in logical or geometrical sense. 
The goal of the user is to represent the visualization 
problem in terms of a specific implementation of the 
scene graph. The engine’s job is to translate the graph 
into rendering commands for the graphics pipeline. In 
more advanced engines, the user gets more opportunities 
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to define different aspects of how the translation is 
performed. However, analogous to earlier pipeline 
implementations, the functionality of engines is usually 
at the level of the fixed-function pipeline. This implies 
the existence of considerable limitations to applicability 
and flexibility of the current visualization systems. 

In our previous works we explored the possibility of 
introducing a different level of logical primitives 
(Shakah, 2019) and  provided details on a possible 
technical implementation of the methodology using 
newly introduced object shaders (Krasnoproshin and 
Mazouka, 2014; Victor and Mazouka, 2017). 
Additionally, the new developments in graphics pipeline 
architecture strongly suggest that this approach may be 
the point where the current industry trends converge. 
Previously, we argued that graphics pipeline is 
functionally limited at the abstraction level of data 
primitives with which it operates; this means that a 
geometrical surface is the single largest object that the 
pipeline considers. Moreover, all visualization systems 
employ the notion of a logical object that can be 
represented with a collection of resources that define its 
look. In “An Incremental Rendering VM” (Haaser, 2015) 
define this representation as a simple abstraction. The goal 
of graphics engines in this sense is to lower the abstraction 
of programmer’s rendering intent from the highest (product 
specific) to the lowest (hardware/pipeline specific) level. 

Disregarding the implementation details, graphics 
engines translate the initial scene graph representation 
into lists of simple abstraction objects in a readily 
available format for graphics pipeline consumption. 

Our approach aims at formalization of the lower level 
of objects’ abstraction in a manner that is compatible 
with the rest of the graphics pipeline architecture. The 
model that we construct can be formalized in algebraic 
terms with a notion of generic objects, frames and  
operations that perform the transformations: 
 

• Sample-An operation that selects a subset of objects 

using predefined criteria. This procedure performs 

task decomposition by extracting objects with 

particular properties that require distinct processing. 

For example, we can separate transparent and 

opaque objects by using corresponding sampling 

operations 

• Render-An operation that transforms a set of objects 

and/or frames into one frame, which is essentially a 

subdivision of the entire visualization process. The 

procedure solves a visualization subtask. In a 

degenerate case, the entire scene can be set as input 

to the rendering procedure 

• Blend-An operation that combines multiple frames. 

This procedure performs task results composition 

and  ultimately combines the rendering outputs into 

the final frame 

 

At this level of abstraction, the entire visualization 

problem for any system can be formulated as follows. 
Given a data set of objects, build a visualization 

expression using algebraic operations that transform the 
initial data set into a single frame. This approach brings 
structure into the visualization process development 
and helps identify meaningful points of data 
interactions. The entire process can be represented 
with a data flow graph Fig. 2 that ends with a single 
node that plays the role of a resulting frame. 

This toolset enables process and data-flow 
abstraction level thinking and  aids development of the 
visualization systems. To build a visualization system for 
a concrete visualization problem, one needs to determine 
distinct classes of simple abstraction objects and their 
characteristics and define corresponding rendering 
procedures for the processes’ subroutines. The 
procedures can then be implemented independently and 
later included into the complete scheme. In the event of 
requirements refinement, corresponding modifications 
can be done more efficiently in specific procedures or in 
the visualization process graph. 

 

 
 

Fig. 2: Data flow graph 
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Generally, a higher abstraction level allows more 
expressive description of the developer’s intent. The 
problem of decomposition frequently appears in 
visualization and  currently there are no good tools in the 
pipeline for convenient rendering specialization. This is 
the main reason why developers have to implement the 
corresponding functionality again or use graphics engines. 
This results in higher development costs or a risk of the 
original problem’s maladaptation to the engine’s data 
model. Our approach preserves pipeline flexibility while 
expanding its functionality to lower usage complexity. 

Decomposition also plays a substantial role in the 
recent DirectX12 and Vulkan developments. New 
primitives and procedures were added to aid stateless 
multithreading development in the graphics pipeline. 

Development Methodology 

The general methodology for applying the proposed 

approach comprises the following steps: 
 
1. The initial visualization problem should be analyzed 

in terms of identification of smaller independent 
sub-problems, e.g., lighting, material shading and 
separation of animations into individual processes 

2. Each of the smaller problems should be provided 

with input and output interface definition, e.g., 

lighting process requires information of light 

sources, solid objects and  their reflective properties. 

As an output, the lighting process may generate a 

frame containing scene illumination 

3. Each of the processes should implement a set of 

sample, render and  blend procedures that produce 

the expected results, e.g., lighting process requires at 

least two sample procedures to extract the light 

sources and solid objects from the scene. The render 

procedure may be implemented to generate the 

illumination frame of a single light/object pair. The 

blend procedure would be required to properly use 

illumination in the context of the entire visualization 

4. After all the sub-processes have been implemented, 

they should be combined as a single visualization 

process for the target problem 
 

This method allows efficient deconstruction of 
visualization problems into smaller sub-processes that 
can be implemented separately and reused in later 
applications. Our approach offers a different perspective 
at visualization problems that can be completely 
divorced from any particular visualization system or 
application. Potentially, it could result in the creation 
of a standard library of visualization algorithms that 
could be used in new visualization systems at minimal 
developmental costs. 

Recent works explicitly acknowledge the problem of 

development complexity but offer different solutions. In 

“Shader Components: Modular and High Performance 

Shader Development” (Yong et al., 2017; lake et al., 

2000), described a method of organization of shader 

programs into higher units of modularity-shader 

components. In “Slang: language mechanisms for 

extensible real-time shading systems” (Yong et al., 

2018; Thomas, 1996). built on top of their previous 

developments and introduce a higher-level shader 

language that allows for host/shader objects data 

reflection. The difference with our approach is that our 

method concentrates on the building of processes and 

follows the data-driven paradigm of graphics pipeline. 

Conclusion 

Graphics pipeline has evolved considerably by 

adapting to immediate problems faced by visualization 

systems developers. However, it is evident that the 

pipeline may require more significant conceptual 

changes by including higher level abstractions. This is 

because the pipeline’s technical complexity expands 

rapidly, whereas its operational primitives remain 

very basic. This puts considerable pressure on product 

or engine developers and  may lead to less stable and 

higher cost systems. 

In the past couple of years, the computer graphics 

community has introduced few novel concepts into 

graphics pipeline that are reflected in DirectX12 and 

Vulcan APIs. The new capabilities provide greater 

control over the pipeline’s process construction in 

multithreaded environment, which, if used correctly, 

will help achieve better performance of real-time 

rendering systems. However, this does not solve 

bigger issues in graphics development-general 

software complexity and redundancy. 

Our approach to solving this problem, briefly 

described in this article and in a number of previous 

works, sets another strategic goal for pipeline evolution 

in a different direction. We propose a set of basic 

operations and primitives that encapsulate common use 

cases of the visualization process and are open to further 

automation. We believe this will help improve graphics 

pipeline’s comprehensibility and visualization systems’ 

maintainability while maintaining their flexibility and 

empowering them. 
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