

 © 2019 Ghazi Shakah, Mutasem Alkhasawneh, Victor Krasnoproshin and Dzmitry Mazouka. This open access article is

distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Graphics Pipeline Evolution: Problems and Solutions

1
Ghazi Shakah,

1
Mutasem Alkhasawneh,

2
Victor Krasnoproshin and

3
Dzmitry Mazouka

1Department Computer Sciences, Faculty of Information Technology,

Aloun National University, Jordan 26810, Ajloun
2Department of Information Management Systems Faculty of Applied Mathematics and

Computer Sciences, Belarusian State University, Belarus
3New Zealand, 2/26 Sunset Road, Unsworth Heights, 0632 Auckland, New Zealand

Article history

Received: 11-12-2018
Revised: 27-03-2019
Accepted: 01-07-2019

Corresponding Author:
Ghazi Shakah
Department Computer
Sciences, Faculty of
Information Technology,
Aloun National University,
Jordan 26810, Ajloun

E-mail: g.shakah@anu.edu.jo

Abstract: Real-time computer graphics technologies such as graphics

engines and graphics pipeline (software and hardware components) have

improved considerably in the past decade. However, increase in efficiency

and broadening of the applicability area has come at the cost of complexity

of the tools. Therefore, development costs of advanced visualization

systems can increase considerably. In this research we explore the

possibility of addressing this problem by analyzing the software

development methodology of graphics pipeline. We believe that the

pipeline’s limitation regarding geometrical primitives in its operations is

one of the reasons for the development efficiency bottleneck. We propose

an approach that extends graphics pipeline with additional processing

stages that can operate with primitives of higher order. This new method

has the potential to reduce the pipeline’s application-level complexity for

developers to create better software.

Keywords: Computer Graphics, Rendering, Pipeline, Graphics Engines,

Software Development

Introduction

Computer graphics is a dynamically developing
area in computer science despite being two to three
decades old. Owing to the fact that people consume
most of the information visually, virtually all areas of
science, industry and entertainment are associated
with computer graphics. Therefore, graphics has
always been a primary focus of computer science
inquiry and industrial advancements.

Steady growth of application areas and

introduction of new technologies such as virtual

reality (ACM SIGGRAPH on Virtual Reality, 2017;

The Economist, 2014) and augmented reality (ACM

SIGGRAPH on Augmented Reality, 2015) have

increased the number of challenges in computer

graphics. The efforts invested in solving these

challenges are reflected in the incremental evolution of all

the aspects of the central technical solution-graphics

pipeline. However, as often reported in business news, the

expanding complexity of the problems negatively

affects the production costs of visualization software

(Adward and Shreiner, 2012; Avrsr, 2018). The

underlying standard technology is critically

insufficient by itself for product development and

many companies invest in the creation of higher level

assistant software-graphics engines.

Current common approach to visualization system
development often starts with problem analysis and

selection of the most appropriate graphics engine
suitable for the task. This is described in detail in
“Visualization and Interaction in Research, Teaching and
Scientific Communication” (Ammon, 2017). Given the
extensive variety of engines to choose from, this may
prove to be a serious problem. Additionally, in most

cases, the existing software frameworks are not partially
or fully applicable to the problems under consideration,
which results in changes to the problems to fit the existing
technologies or development of a new technological stack
up from the graphics pipeline.

Throughout the years, the graphics pipeline has
evolved in a process similar to precipitation: Chaotic
in nature and the number of higher-level software
implementations used to try out and choose the best
practices, which would then be considered for
standardization and incorporation into the pipeline (Tor et

al., 2018; Shakah, 2018; Natalya, 2017). This process is
ongoing and in this article, we will review the recent
changes introduced into the pipeline and offer another
perspective on possible steps for pipeline improvement.

Ghazi Shakah et al. / Journal of Computer Science 2019, 15 (7): 880.885

DOI: 10.3844/jcssp.2019.880.885

881

Analysis of Problem

Graphics pipeline is one the central notions in

computer graphics. It can be best described as a

technology comprising certain hardware and software

components that implement the process of rendering.

Rendering is a process of data visualization using

computer technology. Common rendering algorithms

comprise several data transformation stages that start

from an arbitrary data representation and finish with

rasterized images on a display screen. Many of these

stages have been standardized in the course of several

years and have finally been implemented as specialized

hardware components such as graphics cards.
However, specific visualization problems require a

custom approach at various stages, especially at the
highest application level. A special class of software
called graphics engines emerges at this level. These
engines can be categorized as middleware and can help
software developers in their use of computer graphics.
Owing to a large number of application problems, the
number of available graphics engines is also
considerably high because they are often attuned to
specifics of the tasks they help to solve. A graphics
developer must choose an appropriate graphics engine to
solve a particular visualization problem. However, this
approach bears the risk of distortion of the original
problem because it may require adaptation to existing
technology. Otherwise, if adaptation is not possible, a
new specialized visualization system should be
developed, which is a costly task.

Figure 1 illustrates the relative amount of
implementations at each visualization stage.
Standardized components of the visualization process are
considerably less compared to those that are closer to
end products. The number of practical problems is large;

therefore, the number of products developed to address
them is also large. Throughout the years, certain
commonalities of visualization problems have been
identified and slowly migrated towards standard
components; they were initially introduced in the engines
and later became a part of the pipeline’s architecture.

The process of pipeline enrichment is ongoing and in

this article, we will observe the newly introduced

pipeline concepts that appear in DirectX12 and Vulcan

graphics APIs. Additionally, we will trace a trajectory

for further evolution of the higher abstraction level of

graphics pipeline.

Graphics Pipeline Development

Graphics pipeline has evolved considerably. Two

decades ago, it started with a couple of fixed functions

programmed directly in the hardware and interfaces to

tune them. The main graphics primitives of the

pipeline were vertex and index data buffers that

described surface geometry and topology. Early

functionality of the pipeline included fixed functions

for lighting calculation, which are now obsolete. It

was evident that this early functionality was quite

rigid and limiting for use in potential applications.

The first major step was taken for making the

pipeline programmable. The goal was to supersede the

fixed functions technology with a capability of

changing the behavior of the pipeline stages using

custom programs for particular visualization intents.

These custom programs were named shaders. Initially,

there were two types of shaders: vertex and pixel that

were responsible for vertex and pixel (fragment)

processing, respectively.

Fig. 1: Stages of visualization

Graphics
engine

Product

Battlefield

Mirro’s edge

Mass effect

Pokemon go

Universe sandbox

Frostbite

Unreal

Unity

Graphics card

Image
DirectX

OpenGL

Hardware
pipeline

API

Ghazi Shakah et al. / Journal of Computer Science 2019, 15 (7): 880.885

DOI: 10.3844/jcssp.2019.880.885

882

The evolution of programmable graphics pipeline

continued with the introduction of additional pipeline

stages, additional types of shaders and extension of

shaders’ capabilities. Currently, the DirectX11

pipeline is defined by nine stages of which, many are

programmable and some tunable (essentially still

fixed-function, but no to detriment). Access to the

pipeline is provided via Hardware Abstraction Layer

(HAL) libraries and drivers. This layer is represented

by graphics APIs of which, the most prominent two

are DirectX and OpenGL. Both these libraries have

followed the evolution of the pipeline since its

inception and both have similar software abstractions

and structure. The main difference between them is

the programming paradigms used: DirectX is object-

oriented, whereas OpenGL is a procedural state

machine. Despite the difference, they both are used in

a very similar fashion.

Recently, graphics hardware technology reached

newer heights in terms of performance and the ability

to process more data. These changes led to a greater

refinement of the APIs, thereby uncovering flaws in

the graphics hardware design and further creating a

bottleneck that prevents further improvement. The

main reason for the bottleneck was the ever-increasing

demand for parallel computing. This new requirement

was not considered in the beginning of the

development of the APIs. Both the standard libraries

had intrinsic limitations because both used to work in

the immediate device context. In other words, the

HAL instructions would be directly sent to the

hardware no sooner they were called and in the same

calling order. Meanwhile, a logical device model was

built around a global state that was modified by

instruction calls. This was one of the major

roadblocks en route parallelization.

Therefore, the Microsoft and Khronos groups have

introduced substantially revised versions of their
APIs: DirectX12 (John and Satran, 2018; KGI, 2019)
and Vulkan (Khornos, 2019; Eric et al., 2016)
(successor of OpenGL). Newer versions of these
libraries offer a new class of programming primitives
that enable efficient data management and instruction

flows on the pipeline. Earlier, this functionality was a
part of the internal implementation of graphical
drivers; however, new visualization problems
demonstrated that the entire mechanics needed to be
revisited (Firaxis, 2011; John, 2016). Stateless
rendering is the central idea of the new approach. Its

crux lies in task decomposition: one single problem
can be split into a number of smaller ones that can be
solved independently and later reassembled into a
final solution. The stateful model did not inherently
support decomposition because the state of the
rendering pipeline was global and any changes made

to it at earlier stages would have to be undone to
revert it back to the original.

One of the most important features of the stateless
model is its suitability for multithreaded execution.
However, it introduces a number of new concepts that
creates a requirement on the developers for advanced
and overarching understanding of the graphics
pipeline and related functional particularities of the
hardware, right from the beginning. At the same time,
the API provides much broader access to the hardware
it abstracts, which enables development of
applications with improved performance. The new
concepts include execution queues, command buffers
and various synchronization objects. The additional
capabilities enable flexible work balancing on both
the CPU and GPU sides. The new API is a
considerable change in how the rendering process is
organized on the graphics pipeline. The introduced
execution granularity and state control provide new
opportunities in visual systems development.

High-Level Primitives in Visualization

Systems

The introduction of DirectX12 and Vulcan clearly

demonstrates that the graphics pipeline development has

not stopped and there is scope for intensive

improvements. However, as aforementioned, the API

became more complex for understanding and use, which

is a fair trade-off for the flexibility it provides.

Consequently, efficient usage of graphics pipeline is

more challenging for new and experienced graphics

developers. A common solution to this problem is

graphics engines middleware.

Graphics engines usually address the problem of
pipeline complexity by encapsulating it into a
substitutive framework of objects and processes. The

user of such visualization system is not required to know
the implementation details of the engine and how it
interacts with the pipeline-the engine claims to
efficiently translate the user’s intent into pipeline actions
behind the scenes. The degree to which the graphics
engine abstracts away from the pipeline’s functionality

differs according to the engine. However, there is a
common abstraction called scene graph.

Scene graph is a common name of the data structures
that are used by most graphics engines for defining the
input data model ready for visualization. Scene graph has
objects as nodes and relations between them as edges.
Objects can define entities in a visual scene or various
sets of properties such as materials. Relations can define
parent-child relationships in logical or geometrical sense.
The goal of the user is to represent the visualization
problem in terms of a specific implementation of the
scene graph. The engine’s job is to translate the graph
into rendering commands for the graphics pipeline. In
more advanced engines, the user gets more opportunities

Ghazi Shakah et al. / Journal of Computer Science 2019, 15 (7): 880.885

DOI: 10.3844/jcssp.2019.880.885

883

to define different aspects of how the translation is
performed. However, analogous to earlier pipeline
implementations, the functionality of engines is usually
at the level of the fixed-function pipeline. This implies
the existence of considerable limitations to applicability
and flexibility of the current visualization systems.

In our previous works we explored the possibility of
introducing a different level of logical primitives
(Shakah, 2019) and provided details on a possible
technical implementation of the methodology using
newly introduced object shaders (Krasnoproshin and
Mazouka, 2014; Victor and Mazouka, 2017).
Additionally, the new developments in graphics pipeline
architecture strongly suggest that this approach may be
the point where the current industry trends converge.
Previously, we argued that graphics pipeline is
functionally limited at the abstraction level of data
primitives with which it operates; this means that a
geometrical surface is the single largest object that the
pipeline considers. Moreover, all visualization systems
employ the notion of a logical object that can be
represented with a collection of resources that define its
look. In “An Incremental Rendering VM” (Haaser, 2015)
define this representation as a simple abstraction. The goal
of graphics engines in this sense is to lower the abstraction
of programmer’s rendering intent from the highest (product
specific) to the lowest (hardware/pipeline specific) level.

Disregarding the implementation details, graphics
engines translate the initial scene graph representation
into lists of simple abstraction objects in a readily
available format for graphics pipeline consumption.

Our approach aims at formalization of the lower level
of objects’ abstraction in a manner that is compatible
with the rest of the graphics pipeline architecture. The
model that we construct can be formalized in algebraic
terms with a notion of generic objects, frames and
operations that perform the transformations:

• Sample-An operation that selects a subset of objects

using predefined criteria. This procedure performs

task decomposition by extracting objects with

particular properties that require distinct processing.

For example, we can separate transparent and

opaque objects by using corresponding sampling

operations

• Render-An operation that transforms a set of objects

and/or frames into one frame, which is essentially a

subdivision of the entire visualization process. The

procedure solves a visualization subtask. In a

degenerate case, the entire scene can be set as input

to the rendering procedure

• Blend-An operation that combines multiple frames.

This procedure performs task results composition

and ultimately combines the rendering outputs into

the final frame

At this level of abstraction, the entire visualization

problem for any system can be formulated as follows.
Given a data set of objects, build a visualization

expression using algebraic operations that transform the
initial data set into a single frame. This approach brings
structure into the visualization process development
and helps identify meaningful points of data
interactions. The entire process can be represented
with a data flow graph Fig. 2 that ends with a single
node that plays the role of a resulting frame.

This toolset enables process and data-flow
abstraction level thinking and aids development of the
visualization systems. To build a visualization system for
a concrete visualization problem, one needs to determine
distinct classes of simple abstraction objects and their
characteristics and define corresponding rendering
procedures for the processes’ subroutines. The
procedures can then be implemented independently and
later included into the complete scheme. In the event of
requirements refinement, corresponding modifications
can be done more efficiently in specific procedures or in
the visualization process graph.

Fig. 2: Data flow graph

Objects Subset 2

Render 2 Scene

Sampel 1

Render 1

Sampel 2

Frame 1

Resulting Frame

Objects Subset 1

Ghazi Shakah et al. / Journal of Computer Science 2019, 15 (7): 880.885

DOI: 10.3844/jcssp.2019.880.885

884

Generally, a higher abstraction level allows more
expressive description of the developer’s intent. The
problem of decomposition frequently appears in
visualization and currently there are no good tools in the
pipeline for convenient rendering specialization. This is
the main reason why developers have to implement the
corresponding functionality again or use graphics engines.
This results in higher development costs or a risk of the
original problem’s maladaptation to the engine’s data
model. Our approach preserves pipeline flexibility while
expanding its functionality to lower usage complexity.

Decomposition also plays a substantial role in the
recent DirectX12 and Vulkan developments. New
primitives and procedures were added to aid stateless
multithreading development in the graphics pipeline.

Development Methodology

The general methodology for applying the proposed

approach comprises the following steps:

1. The initial visualization problem should be analyzed

in terms of identification of smaller independent
sub-problems, e.g., lighting, material shading and
separation of animations into individual processes

2. Each of the smaller problems should be provided

with input and output interface definition, e.g.,

lighting process requires information of light

sources, solid objects and their reflective properties.

As an output, the lighting process may generate a

frame containing scene illumination

3. Each of the processes should implement a set of

sample, render and blend procedures that produce

the expected results, e.g., lighting process requires at

least two sample procedures to extract the light

sources and solid objects from the scene. The render

procedure may be implemented to generate the

illumination frame of a single light/object pair. The

blend procedure would be required to properly use

illumination in the context of the entire visualization

4. After all the sub-processes have been implemented,

they should be combined as a single visualization

process for the target problem

This method allows efficient deconstruction of
visualization problems into smaller sub-processes that
can be implemented separately and reused in later
applications. Our approach offers a different perspective
at visualization problems that can be completely
divorced from any particular visualization system or
application. Potentially, it could result in the creation
of a standard library of visualization algorithms that
could be used in new visualization systems at minimal
developmental costs.

Recent works explicitly acknowledge the problem of

development complexity but offer different solutions. In

“Shader Components: Modular and High Performance

Shader Development” (Yong et al., 2017; lake et al.,

2000), described a method of organization of shader

programs into higher units of modularity-shader

components. In “Slang: language mechanisms for

extensible real-time shading systems” (Yong et al.,

2018; Thomas, 1996). built on top of their previous

developments and introduce a higher-level shader

language that allows for host/shader objects data

reflection. The difference with our approach is that our

method concentrates on the building of processes and

follows the data-driven paradigm of graphics pipeline.

Conclusion

Graphics pipeline has evolved considerably by

adapting to immediate problems faced by visualization

systems developers. However, it is evident that the

pipeline may require more significant conceptual

changes by including higher level abstractions. This is

because the pipeline’s technical complexity expands

rapidly, whereas its operational primitives remain

very basic. This puts considerable pressure on product

or engine developers and may lead to less stable and

higher cost systems.

In the past couple of years, the computer graphics

community has introduced few novel concepts into

graphics pipeline that are reflected in DirectX12 and

Vulcan APIs. The new capabilities provide greater

control over the pipeline’s process construction in

multithreaded environment, which, if used correctly,

will help achieve better performance of real-time

rendering systems. However, this does not solve

bigger issues in graphics development-general

software complexity and redundancy.

Our approach to solving this problem, briefly

described in this article and in a number of previous

works, sets another strategic goal for pipeline evolution

in a different direction. We propose a set of basic

operations and primitives that encapsulate common use

cases of the visualization process and are open to further

automation. We believe this will help improve graphics

pipeline’s comprehensibility and visualization systems’

maintainability while maintaining their flexibility and

empowering them.

Acknowledgment

The authors would like to thank Ajloun National

University for the facilities used in this work.

Author’s Contributions

All the authors contributed to the final version of

the manuscript.

Ghazi Shakah et al. / Journal of Computer Science 2019, 15 (7): 880.885

DOI: 10.3844/jcssp.2019.880.885

885

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and there are no ethical issues involved

References

ACM SIGGRAPH on Augmented Reality, 2015.

SIGGRAPH on augmented reality. ACM.

ACM SIGGRAPH on Virtual Reality, 2017.

SIGGRAPH on virtual reality. ACM.

Adward, A. and D. Shreiner, 2012. Interactive Computer

Graphics: A Top-Down Approach with Shader-

Based OpenGL. 6th Edn., Addison-Wesley, Boston,

ISBN-10: 0132545233, pp: 730.

Ammon, C.J., 2017. Visualization and Interaction in

Research, Teaching and Scientific Communication.

Fall Meeting, American Geophysical Union.

AVRSR, 2018. Augmented and Virtual Reality Survey

Report. AVRSR.

Eric, M., U. Hideaki and S. Fabien, 2016. Pose

estimation for augmented reality: A hands-on

survey. IEEE Trans.. Visualizat. Comput.

Graphics 22: 12-12.

Firaxis, L., 2011. Uses of D3D11. Proceedings of the

Game Developers Conference, (GDC’ 11).

https://www.slideserve.com/admon/firaxis-lore

Haaser, G., 2015. An incremental rendering VM.

Proceedings of the 7th Conference on High-

Performance Graphics Aug. 07-09, Los Angeles,

California, pp: 51-60. DOI: 10.1145/2790060.2790073

John, K. and M. Satran, 2018. Microsoft direct3d 12

graphics programming guide. Important Changes

from Direct3D 11 to Direct3D 12.

John, M., 2016. High performance vulkan: Lessons

learned from source 2. Proceedings of the

GPU,Technology Conference (GTC’ 16).

KGI, 2019. Vulkan. Khronos Group Inc.

https://www.khronos.org/vulkan/

Khronos. 2019. WebGL 2.0 Specification. (2019).

https://www.khronos.org/registry/

webgl/specs/latest/.

Krasnoproshin, V. and D. Mazouka, 2014. High-level

rendering pipeline construction tools. Proceedings of

International Conference on Pattern Recognition and

Information Processing (PRIP' 14).

Lake, A., C. Marshall, M. Harris and M. Blackstein,

2000. Stylized rendering techniques for scalable

real-time 3D animation. Proceedings of the

Symposium on Non-Photorealistic Animation and

Rendering , Jun. 7-8, Annecy, France, pp: 13-20.

Doi: 10.1145/340916.340918

Natalya, T., 2017. Chris tchou destiny shader pipeline.

Unity Technologies, Unity 5.6 Users Manual.

The Economist, 2014. Why video games are so

expensive to develop. The Economist.

Shakah, G., 2019. A new method for solving hard

diagnosis problems. Comput. Eng. Intelli. Syst., 1:

13-20. DOI: 10.14419/ijet.v7i4.28039

Shakah, G., 2018. The problem of image segmentation

and de-noising methods and various approaches to

its solution. Int. J. Eng. Technol., 4: 5297-5301.

Thomas, W.C., 1996. Beyond the renderer: Software

Architecture for Parallel Graphics and Visualization.

NASA Langley Res. Center.

Tor, M.A., W.W. Fung, T.G. Rogers, 2018. General-

purpose graphics processor architectures. Synthesis

Lectures on Computer Architecture, 2: 1-140.

Victor, K. and D., Mazouka, 2017. Frame Manipulation

Techniques in Object-Based Rendering. In: Pattern

Recognition and Information Processing,

Krasnoproshin, V. and S. Ablameyko (Eds.), Springer,

Cham, ISBN-10: 978-3-319-54220-1, pp: 97-105.

Yong, H., K. Fatahalian and T. Foley, 2018. Slang:

Language mechanisms for extensible real-time

shading systems. ACM Trans. Graphics.

Yong, H., T. Foley, T. Hofstee, H. Long and K.

Fatahalian, 2017. Shader components: Modular and

high performance shader development. ACM Trans.

Graph., 36: 4-4. DOI: 10.1145/3072959.3073648

