

 © 2019 Karim El Bouchti, Soumia Ziti, Fouzia Omary and Nassim Kharmoum. This open access article is distributed under

a Creative Commons Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

A New Database Encryption Model Based on Encryption

Classes

Karim El Bouchti, Soumia Ziti, Fouzia Omary and Nassim Kharmoum

 Department of Computer Science, Intelligent Processing Systems & Security Team, Faculty of Sciences,

 Mohammed V University in Rabat, Morocco

Article history

Received: 30-03-2019

Revised: 17-05-2019

Accepted: 25-06-2019

Karim El Bouchti

Department of Computer

Science, Intelligent Processing

Systems and Security Team,

Faculty of Sciences,

Mohammed V University in

Rabat, Morocco

E-mail: elbouchtikarim@gmail.com

Abstract: Data encryption is one of the advanced measures used to

consolidate data security inside Databases. It is an essential technique to

protect data against theft, disclosure or modification from different typologies

of attacks. In this work, we will propose a new database encryption model. It

is based on a novel concept called "Encryption Classes". The proposed model

is full compared to the existing models; it integrates many security

mechanisms starting from the keys generation and their protection until the

data encryption. Furthermore, our proposed model performed a new feature

which is the Database structure encryption.

Keywords: Database Security, Database Security Model, Data Security,

Computer Security, Database Encryption Model, Database Encryption

Introduction

Recently, the security of databases (DB) has been

subject of multiple studies and researches conducted by

the computer security worldwide community; it aims to

protect sensitive data stored in centralized or distributed

DB against attacks from malicious entities (Elbouchti et

al., 2018). The conventional solutions and mechanisms

to secure DB are based on the implementation of three

security levels: 1/-Physical security level, 2/-Operating

system security level, 3/- Database Management System

(DBMS) security level (Elovici et al., 2018). The access

control mechanism implemented inside the DBMS level

is considered as a strong means that controls the access

of subjects (users) to DB objects; it includes

identification, authentification and auditing. Although

this mechanism consolidates the DB security, it doesn't

protect against administrator attacks. Furthermore, it is

ineffective against DBMS bugs and physical access

attacks as theft or destruction of data (Elbouchti et al.,

2018; Jacob, 2012).

DB encryption is one of the necessary security

measures to implement beside the access control

mechanism. It can be implemented on several levels:

application, DBMS and hard disk (Shmueli et al., 2010;

Mattsson, 2005). For example, in a cloud, encryption is a

crucial operation that ensures confidentiality and

integrity of data exported to external service providers.

Several architectures using encryption inside clouds have

been developed (Ma et al., 2018; Chen et al., 2018)

The DBs encryption is based on developing efficient

encryption models. A relevant model must meet criteria

such as encryption granularity level, efficient encryption

keys management and high performance (Shmueli et al.,

2014; Elovici et al., 2018). In the literature, several DB

encryption models have been proposed. The most relevant

is the work developed by Elovici et al. (2018) and Shmueli

et al. (2014). They suggested a model that protects data

confidentiality and integrity using the DB cell coordinates.

In order to improve the performance, they implemented this

model in the DBMS just above the DB cache. Their

approach uses a single encryption key with a single

algorithm. Also, Sesay et al. (2005) presented another

model that classifies data and users according to categories.

The level of encryption and keys generation is determined

according to these categories. This approach uses a single

encryption algorithm and the encryption keys are generated

from a master key which is stored in a tamper-proof

controller. Another multi-level DB model with its prototype

has been proposed by Sallam et al. (2012). It allows the

insertion of an encryption system at the top of the multi-

level DB. This solution will reduce the DB size and

improve queries performance.
Any DB encryption model is limited by the policy of

generation and protection of the encryption keys. Getting

the encryption keys is the ultimate goal of any attacker.

Besides the standard keys protection approaches presented

in (Bouganim and Guo, 2009; Jacob, 2012), we have

proposed in our previous published work, new models to

protect encryption keys according to encryption

Karim El Bouchti et al. / Journal of Computer Science 2019, 15 (6): 844.854

DOI: 10.3844/jcssp.2019.844.854

845

granularity level (El Bouchti et al., 2018). In another

work, we have proposed another model to protect keys

against internal attacks when the encryption is performed

at the application level (El Bouchti et al., 2019).

Despite the efforts made by researchers to improve DB

encryption models, these latters still need to be developed to

provide more security. Developing a model meeting the

three criteria that were raised at the beginning of this

introduction is not enough. It must be accompanied by other

mechanisms and features which strengthens more data

security, such as the use of multiple algorithms to encrypt

data, create a method to encrypt data with multiple key

values according to a level of encryption granularity (cell,

column,) or according to data sensitivity level (public,

secret, top secret,). In addition, it must include an

approach of keys protection within DB server to avoid costs

and risks associated with managing this protection outside

the server (Itamar et al., 2018; El Bouchti et al., 2018).

Unfortunately, the combination of all these elements in a

single encryption model was not addressed inside works

that we presented previously as well as in other works not

mentioned in this article.

In this context, our work aims to propose a new DB

encryption model called "Full Encryption Model". Our

model offers a complete set of security mechanisms to data

compared to models proposed in the literature. It is based

on the use of a novel concept called "Encryption Classes".

The "Full Encryption Model" is composed of four models:

The data encryption model, the DB structure encryption

model, the encryption keys generation model and the

Master Key generation model. Our model encrypts data

according to a classification of the sensitive columns. This

latter allows the encryption/decryption only of these

columns when queries execution. This concept will

improve extremely the queries performance as well as

offers perfect optimization of the DB size. Comparing to

other existing models, the "Full Encryption Model" allows

encrypting data with multiple algorithms and encryption

keys according to data sensitivity. In addition, the protection

of encryption keys is performed by their encryption using

multiple other keys called "Master Keys".

Our work will be organized as follows: section 2

consists of giving a general overview of DB attacks

models. We will also demonstrate the utility to encrypt

DB structure. Section 3 describes the «Full Encryption

Model» and explains the role of each model that composes

it. In section 4, we present and discuss the results of tests

made on all models described in previous sections.

Database Encryption Preliminaries

Database Models Attacks

We can classify attacks compromising a DB in three

types (El Bouchti et al., 2018; Shmueli et al., 2010):

 Internal attack: This attack is made by a person

who belongs to the group of trusted users of the

DB. He may try to obtain information beyond his

access rights (El Bouchti et al., 2019)

 External attack: This attack is done by a person

outside the DB's users group. In this case, this

person has access to a computer system and

attempt to extract sensitive information

(Zabihimayvan and Doran, 2019)

 Administrator attack: This attack is performed

by the DB administrator. He has specific rights

and super privileges on it. This allows him to

extract or alter sensitive and valuable information

(Priebe et al., 2018)

The strategies and means deployed by attackers are

multiple because they can be located at any level of the

three typologies level already discussed. In many cases,

the attacker's strategies may exceed the forecasts of the

DB security administrators. Thus, we can also

distinguish between:

 Direct Attacks: If the attacker has physical access

to the data, then the mechanisms of access controls

are useless and he can attack stored data. The theft

or removal of DB support is just an example of this

attack type

 Indirect attack: The attacker can access to the DB

data dictionary and retrieve some information

relating to columns, tables and DB structure scheme,

in order to deduct statistics to estimate data

distributions (Liu and Gai, 2008)

 Memory attack: It is the most sophisticated DB

attack. The attacker can directly access the DB

server memory via advanced tools and steal some

data or encryption keys

The Database Protection using Encryption

It is possible to implement four levels of security to

ensure the DB security (El Bouchti et al., 2018; Elovici

et al., 2019):

 Physical security level

 Operating system security level

 Database Management System security level

 Data encryption level

The interest of the first three security levels is

evident. The description of their utilities is not the

subject of this work. The implementation of the fourth

level (data encryption) offered by the DBMS is essential,

especially in the case of internal or administrator attacks.

Currently, the commercial DBMSs offer efficient

solutions for sensitive data encryption at rest, using

symmetric encryption algorithms such as AES, DES,

Karim El Bouchti et al. / Journal of Computer Science 2019, 15 (6): 844.854

DOI: 10.3844/jcssp.2019.844.854

846

3DES ... These algorithms differ in their complexity

levels and the size of the encryption key they use (Dixit

et al., 2018). The DB encryption can be consolidated by

the implementation of a new layer of security that can

play an exciting role which is the protection of DB

structure confidentiality.

Database Structure Protection

Protecting the DB structure (table and column names)
using encryption is a way to secure the DB in addition to
the data values stored inside columns. An attacker could
use information from the DB structure to conduct attacks
that aim to guess the data distributions.

DB structure encryption might add further security to a
DB and increase the complexity of an attacker to decrypt its
data. In some attacks like SQL injection (El Bouchti et al.,
2018; Lee et al., 2012), an attacker may be interested in
attacking only specific data of some tables or columns such
as customers table or column of the payment cards
numbers, for example. Adopting a DB structure in clear and
whatever its size, small or large in number of tables or
columns and even though the encryption concerns only the
data, an attacker can easily focus on one or more columns to
decrypt them. On the other hand, if the structure is
encrypted too (case of a DB containing 1000 tables for
example), the complexity of the attack is multiplied by
1000. In a DB with encrypted structure, as the number of
tables and columns increases, the longer the complexity to
attack it, becomes enormously high.

In addition, companies that produce business software
face significant challenges to establish and implement
specific DB designs adapted for complex business areas.
After a major modeling and design efforts, the resulted DB
structure is considered an original work and a company
secret which must be protected and not disclosed, hence the
possibility to protect it can be made in two ways: 1/ - legal
protection by copyright (DECJ, 2013), 2/ - structure
encryption and that before it goes reproduced or hacked by
competitors.

Feature of an Effective Database Encryption Model

The big challenge of a DB encryption model is its

ability to take into consideration the elements mentioned

below:

a. Encryption granularity: The granularity level of

encryption is considered a fundamental problem in DB
encryption (Shmueli et al., 2010). The most relevant
levels where encryption must be implemented are cell,
record, table and page. A relevant encryption
granularity level should bring to the DB security the
following advantages:

 It is necessary to encrypt only the sensitive data

and leave the insensitive data in clear. This

implies that the DBMS encrypts and decrypts only

sensitive data when executing a user's query

 An encryption granularity must ensure extreme

security of data; the breaking of the encryption

has to be impossible
 Encrypting sensitive data with a single key doesn't

provide a high security level; it can be
catastrophic, even if it is associated with an access
control mechanism. If an attacker gets encryption
keys, he can decrypt everything without leaving
any traces. A relevant encryption level must
provide the ability to encrypt data inside DB with
multiple key values

 If the granularity level is not properly
implemented, it may cause serious DB security
problems as data leakage or unauthorized
modification

 An encryption granularity must ensure
independence between DB record decryption and
other records

b. Encryption keys management: The management

of encryption keys is a fundamental point in any DB
encryption model. It defines the method whose keys
are generated, stored and protected during their
generations until destructions (Galushka et al., 2018;
Bouganim and Guo, 2009; Mattsson, 2005). An
effective encryption keys management in a DB
encryption model must take into consideration the
following elements:

 It must define a secure method of encryption

keys generation

 It must give the possibility to use several values

of keys to encrypt data according to their

encryption granularity level (cell, column, line

...), or according to the data sensitivity level

(secret data, top-secret data, confidential data....)

 It must define a method to protect DB encryption

keys against attackers

c. Performance: The deployment of encryption inside

DB generates a calculation overhead that influences
the DBMS performance and impacts the user's
queries automatically. The first step that we should
consider when designing an encryption model is to
adopt a selective encryption strategy, i.e., encrypt
sensitive data and leave insensitive data in clear.
Another important factor is to minimize the time of
encryption/decryption by using just a single
operation when encryption/decryption.

d. Database Size: The encrypted DB shouldn't be too

large compared to the original DB.

e. Influence in the DBMS architecture: The model

wouldn't generate any changes in the internal

architecture or DBMS functionalities. A new

implementation must keep the internal DBMS

functionalities intact (example: Index, primary and

foreign key…).

Karim El Bouchti et al. / Journal of Computer Science 2019, 15 (6): 844.854

DOI: 10.3844/jcssp.2019.844.854

847

Description of our "Full Encryption Model"

The "Full Encryption Model" is a new model that we

propose to encrypt DBs; it is composed of the following

4 models:

1. The Data Encryption Model

2. The DB Structure Encryption Model

3. The Encryption Keys Generation Model

4. The Master Key Generation Model

In this part, we will begin by defining the

implementation of our "Full Encryption Model".
Afterwards, we will introduce the notion of "encryption
classes" on which our model is based and finally, we will
describe in details the four models of the "Full
Encryption Model".

The "Full Encryption Model" Implementation

We propose to implement the four models of the "Full

Encryption Model" at the DBMS level, precisely inside the

Database Management System Layer as shown in Fig. 1.

All operations performed via these models are performed in

the following three blocks of Fig. 1.

The "Data Encryption Module" Block: This block
implements the model (1). It performs the data
encryption/decryption. It communicates directly with
the "Keys Generation" block which provides the
encryption keys necessary during each
encryption/decryption operation.

The "Data Base Structure Encryption" Block: This

block implements the model (2). It performs the DB

structure encryption. It communicates with the "Keys

Generation" block which provides the keys needed to

encrypt the DB structure.

The "Keys Generation" Block: This block

implements the model (3) and (4). It is in charge of

generating the keys to encrypt data and DB structure.

As illustrated in Fig. 1, the Discretionary Access

Control (DAC) is the mechanism that allows the creator

of DB objects, to define the access policy on these

objects. The creators may delegate some permission on

these objects to other users.

The "Encryption Classes"

The Encryption Class represents a combination of

parameterable arguments which are used to encrypt (the

data or column name) of a column or several columns in

a DB. It has the form of the following vector:

_ , _ ,

 ,

Id Class i Key Class i
Class i

Algorithm i Sensitivity i

Where:

Id_class(i) = Represents the identification of the

Class(i); it is coded on 4 digits

Key_class(i) = The key used to generate the data

encryption key or for column names

Algorithm(i) = Algorithm used for encryption

Sensitivity(i) = The sensitivity degree of the data or for

column names

Example:

Class(1)('0001','Mycolor012345678has@ml@p',

AES192, 'Confidential').

Class(2)('0002','@mysonmyson@12345678@mydaugthe

r@', 'AES256', 'Secret')

Fig. 1: Implementation of the "Full Encryption Model" inside DBMS

User 1

User User 2

Discretionary access control

Data encryption module

Data base
management

system layer

Data base structure encryption block
Keys

generation

Encrypted

data

Security module

Data
dictionary

Data layer

Karim El Bouchti et al. / Journal of Computer Science 2019, 15 (6): 844.854

DOI: 10.3844/jcssp.2019.844.854

848

Model for Defining an Encryption via a Class

The definition of an encryption on a table in our

model is done on two elements:

 The sensitive columns data

 The sensitive columns names

Assuming a table created in a DB defined as: R1

(COL(i), COL(i+1), COL (i+2),………….,COL(n)) and

let’s take the 2 encryption classes: Class(x) and Class(y)

assuming COL(i) as a sensitive column:

a. Model for defining encryption on column data

The definition of an encryption on the column data

COL(i) follows the model:

 COL i Type encrypt with Class x (A)

b. Model for defining encryption on column name

The definition of an encryption on the column name

COL(i) follows the model:

 1. Struct R COL i encrypt with Class y (B)

Example:

Assuming a table defined in a DB as R1 (COL1,

COL2, COL3).

We suppose that COL(2) and COL(3) as a sensitive

columns.

Let consider also four encryption classes: Class(1),

Class(2), Class(3), Class(4) defined as:

Class(1)('0001','Bigstorm1234567812345678',AES192,

'Confidential').

Class(2)('0002','Myuniquekey@12345678@mysecretkey

', 'AES256', 'Secret').

Class(3)('0003','ilove@DBsecurity','AES128','Confide

ntial').

Class(4)('0004','&@I@encrypt@my@sensitive@data1

@&', 'AES256', 'Secret')

We define the encryption (A), (B), (C) and (D) on the

table R1 as below:

A. COL2 varchar2(100) encrypt with Class(1)

B. Struct (R1.COL2) encrypt with Class(3)

C. COL3 varchar2(100) encrypt with Class(2)

D. Struct (R1.COL3) encrypt with Class(4)

In (A), an encryption has been defined on the

sensitive data of the column COL2 using Class (1).

That's mean that these data have a confidential nature.

Thus, they will be encrypted with the algorithm AES192

with an encryption key that will be generated basing on

the key k = 'Bigstorm1234567812345678'. Similarly, in

(C) an encryption has been defined on the data of

column COL3 which have a secret nature. The data will

be encrypted with the AES256 algorithm with a key that

will be generated on the base of the key k =

'Myuniquekey @ 12345678 @'.

In (B), we have defined an encryption on the column

name of COL2 using the Class(3). It means that this column

name is classified in the "Confidential" sensitivity degree. It

will be encrypted with the algorithm AES128 with a key

that will be generated basing on k = 'ilove @ DBsecurity' '.

Likewise, in (D) we have defined an encryption on the

column name of COL3 using Class(4). This column name

is classified in the "Secret" sensitivity degree". It will be

encrypted with the algorithm AES256 with a key that will

be generated using k = '& @ I @ encrypt @ my @ sensitive

@ data1 @ & '. The result of these operations is shown in

Tables 1 and 2.

The Class management is an operation controlled by

the DB administrator; it is subject to the following rules:

 Each Class(i) has a unique Id_class(i) and a unique

Key_class(i)

 Each Class(i) can be used to encrypt data in one or

more columns. Identically, each Class(i) can be used

to encrypt a column name or multiple columns

names

 Defining an encryption on the data of column

COL(i) using Class(i) can't work if we didn't define

an encryption on the column name of this latter

using either Class(i) or another Class(j) and vice

versa

 The DB administrator manages the creation,

updating, attribution or the revocation of the classes

to columns according to the security requirements.

This management is controlled inside the DBMS by

the Discretionary Control Mechanism (DAC) as

shown in the above Fig. 1

Table 1: Table (R) before encryption

COL1 COL2 COL3

1000 Dupont PW@124

2482 James PW@884

Table 2: Table (R) after encryption

COL1 C7E220367559EE77B5221D27B92AE495 3F99A273812785D025100177BBDFA307

1000 490A39A1BBA9888DCB1DD4158D5975F9 4DDF495C731928AFA79EC598CDB31E2

2482 2091BF0941B816B149654605D33A4685 9A2B6B09120DCB98B56FFF0233C27270

Karim El Bouchti et al. / Journal of Computer Science 2019, 15 (6): 844.854

DOI: 10.3844/jcssp.2019.844.854

849

Encryption/Decryption in the Data Encryption

Model

Inside the DB, our Data Encryption Model

encrypts/decrypts data at the table cell level. In other

words, we adopt an encryption granularity at the cells

level. Each cell value in a column is encrypted

differently from the others.

When inserting in a sensitive column, plaintext

values are encrypted according to the model defined

below:

 ,
 1 (1 || (1

_ _ _ ())

COL i
E Data E K Data P rownum

Column id Table id Id class i

 (3.1)

Let consider X a ciphertext value as defined below:

 1 E Data X

When consulting sensitive columns, ciphertext values

are decrypted according to the model defined below:

()

 _
 , ,

_ _
COL i

D X Rep

rownum Column id
D K X P

Table id Id class i

 (3.2)

In the model (3.1) and (3.2), we have:

 E: A symmetric encryption algorithm which

encrypts a clear value

 D: A symmetric decryption algorithm which

decrypts a ciphertext value

 Data: A plaintext value to be encrypted. It is

located in a sensitive column COL(i)

 X: A ciphertext value to be decrypted. It is

located in a sensitive column COL(i)

 KCOL(i): The encryption key of column COL(i)

 Rownum: It's an integer that represents the last

record in a table

 Column_id: It's a unique integer that represents

the identifier of the column COL(i)

 Table_id: It's a unique integer that represents the

identifier of the table where COL(i) is located

 Id_class(i)): It's the integer that represents the

identifier of the class (Class(i)) assigned to

encrypt the data of the column COL(i)

 Rep(str1, str2): function that cancels the (str2)

string which exists in the string (str1).

P: polynomial function which is defined as:

 : P N N

 0 1 2 3

0 1 2 3 n

nP n a n a n a n a n a n (4)

The coefficients of the polynomial (a0, a1, a2,......, an)

are integers. They are fixed in the encryption/decryption

general algorithm which executes the models (3.1) and

(3.2). Indeed, data encryption/decryption in the Data

Encryption Model can be modified by changing these

coefficients. In the model (3.1), the value delivered by P

((rownum+)+Column_id+Table_id+Id_class(i)) is unique

as (rownum) changes from a cell to another. Therefore, all

equal cells values are encrypted differently from each other.

This technique increases extremely the encryption security

and avoids the probability of frequency analysis attacks

(Elovici et al., 2018).

The Database Structure Encryption Model

The DB structure encryption is a way to protect its

confidentiality by making incomprehensible its real

structure. Our "Full Encryption Model" adopts this

concept in order to exploit it to take benefit from two

major advantages:

 Encrypt the DB structure to take benefit from all the

advantages mentioned above

 Beside data encryption, implement another level of

security or control that must be crossed before

accessing the data (during encryption or decryption).

The following rule is adopted by our "Full Encryption

Model": A user who owns a class that

encrypts/decrypts data in a column can't access to data

without having the class that encrypts/decrypts the

name of that column. The execution of (A) and (B) is

mandatory to define encryption on a sensitive column

/* Definition of an encryption on the data of COL(i)

COL(i) Type encrypt with Class(x); (A)

/* Definition of an encryption on the name of COL(i)*/

Struct (R1.COL(i)) encrypt with Class(y); (B)

Assuming a table in a DB that has the following

structure:

R(i) (COL(i), COL(i+1), COL(i+2), COL(i+3))

Let consider the two encryption classes, Class(i) and

Class(j):

Class(i)(id_class(i), key_class(i), Algorithm(i),

Sensitivity(i))

Class(j)(id_class(j), key_class(j), Algorithm(j),

Sensitivity(j))

Assuming both encryption definitions on the names of

the two sensitive columns COL(i+1) et COL(i+3):

Struct R(i).COL(i+1) encrypt with Class(i);

Struct R(i).COL(i+3) encrypt with Class(j);

Karim El Bouchti et al. / Journal of Computer Science 2019, 15 (6): 844.854

DOI: 10.3844/jcssp.2019.844.854

850

The encrypted structure of R(i) follows the model:

, 1 ,

2 , 3

COL i H E COL i
R i

COL i H E COL i

 (5)

Where:

H = Hash function.

E = A symmetric encryption algorithm

Encryption Keys Generation Model

The "Keys Generation" block generates two key types.

The keys for encrypting the columns data and the ones for

encrypting the columns names. Both of these key types are

generated following the models defined below:

 () _ _ _ COL iK H Table id Column Id key class i

 (()) _ _ _ Struct COL iK H Table id Column Id key class i

Where:

 KCOL(i): The encryption key for data of the column

COL(i)

 KStruct(COL(i)): The encryption key for name of the

column COL(i)

 H: A hash function

 Table_Id: A unique integer that represents the

identifier of the table where COL(i) is located

 Column_id: A unique integer that represents the

dentifier of the column COL(i)

 key_class(i)): The key defines in the class that is

assigned to encrypt the (name or data) of the column

COL(i). This key is unique for each class

The models (6) and (7) dedicated to generate the keys

are identical. Inside a DB table, if COL(i) and

Struct(COL(i)) are encrypted using distinct Classes, we

will have different values of KCOL(i) and KStruct (COL(i)). On

the other hand, if COL(i) and Struct(COL(i)) are

encrypted using the same Class, we will have KCOL(i)= K

Struct(COL(i)). Two sensitive columns COL(i) and COL(ii)

that belong to two different tables will never be

encrypted by the same keys even if they use the same

class. It is the same case if they belong to the same table.

The « Master Key » Generation Model

The security of sensitive data encrypted in a DB

depends on the protection of the encryption keys. It is a

fundamental process for the global DBMS security

(Itamar et al., 2018; El bouchti et al., 2018). We propose

to protect the encryption keys of our "Full Encryption

Model" via their encryptions with a Master Key (Km).

The generation of the Master Key follows the model:

 (()) _ || COL iKm H Table name COL i (8)

Where:

H = Hash function

COL(i) = The name of the sensitive column

Table _name = The name of table which contains the

 column COL(i)

The Km value is unique for each sensitive column

COL(i). Its generation is dedicated to protect only the

encryption keys for data in our "Full Encryption Model".

Results and Discussion

In this part, we will present an analytical comparison

between our "Full Encryption Model" and two other

models. The first one is the model described by Sesay et

al. (2005), whereas the second model has been proposed

by Shmueli et al. (2014). They seem to be the most

relevant models in the literature in terms of providing

maximum security.

The comparative Tables 3 and 4 show the result of

the comparison.

In order to concretize the functioning of the "Full

Encryption Model" and to conduct an objective discussion

of the comparison result analysis, an implementation of a

real case will be jointly as presented below.

Case Study

Let consider the table "employee" in a DB1 which

has the following sensitive columns: First_name,

Last_name, Salary (Table 5). Assuming that all these

columns own the same data sensitivity level and also the

same sensitivity level of the columns names. They will

be all encrypted using Class (1) which is defined as:

Class (1)('0001','ilove@DBsecurity','AES256',

'Confidential')

After defining the encryption on the sensitive

columns using the models (A) and (B), the table

"employee" will own a new structure after encryption

using the models (3.1) and (5) as illustrated by Table 6.

The data encryption keys and their protection keys

are generated by the (6) and (8) models as shown in table

7, whereas the next table 8 shows the encryption keys of

the columns names. These keys have been generated by

the (7) model.

Karim El Bouchti et al. / Journal of Computer Science 2019, 15 (6): 844.854

DOI: 10.3844/jcssp.2019.844.854

851

Table 3: Comparison (1)

 Algorithms uses Keys (Uses/Generation) Data Sensitivity Level

Full Encryption Model The model uses several Algorithms The model generates and uses multiple The model defines multiple

 to encrypt data encryption keys values : the keys for levels of data sensitivity

 The model uses several Algorithms encrypting the columns data and the keys The model allows creating

 to encrypt the DB structure for encrypting the columns names other levels of data sensitivity

 The model allows the possibility to The model allows defining finer

 implement other encryption levels from a single level of data sensitivity

 algorithms besides the usual encryption

 algorithms such as (DES, AES,…..)

(Sesay et al., 2005) The model uses a single algorithm The model uses a single key to encrypt The model defines three level of data

 to encrypt data "Classified" sensitivity data and multiple sensitivity (Unclassified, Classified,

 keys to encrypt "Private" sensitivity data and Private)

 The model doesn’t allow creating other

 level of data sensitivity

(Shmueli et al., 2014) The model uses a single algorithm The data encryption uses a single key value. The model defines one level of data

 to encrypt data sensitivity.

 The model doesn’t allow creating other

 level of data sensitivity

Table 4: Comparison (2)

 Protection of encryption keys Encryption granularity level Protection of Database structure

Full Encryption Model The model protects encryption keys The model encrypts data at cell level The model encrypts DB structure according

 according to ”The Master Key “The Database structure encryption model”

 generation model”

 (Sesay et al., 2005) No model defined to protect The model encrypts private data at cell No model defined to protect DB structure

 encryption keys. level and classified data at column level

 (Shmueli et al., 2014) No model defined to protect The model encrypts data at cell level No model defined to protect DB structure

 encryption keys.

 Proposal of classical approaches

 to protect keys such as: Wallet, HSM.

Table 5: Table "employee" before encryption

Code First_name Last_name Salary

0001 Paul Williams 2000

0002 Paul Watson 4000

0003 Paul Stevens 3000

0004 Paul Diaz 6000

Table 6: Table "employee" after encryption

Code E7762D87BE5F945200E1D6D6FB4BAE13 6CD6345907C75C6024A9F30EF511412 12D000F12B13967460FD1BDDFDC76A39

0001 9A92AED8F7556155627AB4A3C5F04E23 47CF2D656BF168CA58757A88A78E5AFE 7C83A5BF4DBB903FD707D581E05CA78B

0002 0A9DDD8178B598858BF601AA80285671 B29D5A3EBC24E9C8E60C40927FCE3539 CD1D6512C2AEFB7D48CF343BECE9E3DC

0003 62DE828D74C326B872897703CD29FCAF F7DAF7E6EC8EFB3993ACEAC1617F55AD 4D5E1EF3C302F3E190EC4A93F6C94DAA

0004 5B30556038840D1CE6D4030616B77E0A BE8BBEB4BAFF6C63297619F9B1293B48 36BD51A6E388781DFAF33B7647F66642

Table 7: Encryption keys generated for data and the Master keys

Column name keys generated for encrypting the columns data Master key

First_name 9E9A833CD2243929E932A212610AE8C4 3A58508BE387C9142ED397047EEC5BE1

Last_name 280633F706590011FE8DE6B8C2807B04 51995FCA5D1A5F628BE8029B95E414B5

Salary C3D81B8FEE00F1880BD57EC2031521ED C052C4B7867D8497D1D3F9D4BC366325

Table 8: Encryption keys generated for columns names

Column name keys generated for encrypting the columns names

First_name 9E9A833CD2243929E932A212610AE8C4

Last_name 280633F706590011FE8DE6B8C2807B04

Salary C3D81B8FEE00F1880BD57EC2031521ED

Discussions

According to the comparison represented in Table 3

and Table 4 and taking in consideration the

implementation performed in the case study, we have

chosen to represent our analysis of results based on 6

criteria as shown.

1st Criterion: Algorithms use

The notion of the class with arguments especially the

Algorithm(i) argument provides the uses of several

algorithms to encrypt data in the columns and also the DB

structure. That implies strong security for data in DB. This

feature is unique to our "Full Encryption Model"

Karim El Bouchti et al. / Journal of Computer Science 2019, 15 (6): 844.854

DOI: 10.3844/jcssp.2019.844.854

852

compared to other models in Table 3. Another advantage

provided using the Algorithm(i) argument in the class is

the possibility to create and implement new specific

classes which support other encryption algorithms other

than the usual encryption algorithms (DES, AES, 3DES,

....etc). For example, implementing the algorithm

proposed by Sekhar and Sivaranjani (2018).

2nd Criterion: Keys (Uses/Generation)

The notion of the class with arguments provides to

our "Full Encryption Model" the specificity, compared to

other models in Table 3, to use multiple keys for

encrypting data in columns and also the DB structure.

Therefore, it avoids naive data encryption and respects

the requirements of an efficient DB encryption model

discussed in the DB encryption preliminaries part. As we

can see in the implementation results illustrated in Table

7, each sensitive column (First_name, Last_name,

Salary) of "employee" table possesses its encryption

keys and it will be encrypted using these keys. The

number of generated keys for encrypting the columns

data equals to the number of sensitive columns. The

values of the Key_class(i) arguments participate in the

generation of the real encryption keys (models (6) and

(7)) with a random way and an unknown value for the

administrator. Modifying this argument changes the real

encryption key and thus increases data security.

Another feature of the "Full Encryption Model"

provided using classes, is the creation of derived classes

from one class. For example, we can use several classes

to encrypt DB which have the same encryption

algorithm; i.e., the same values of the arguments

(Algorithm(i)) and different values of the arguments

(Key_class(i)). Of course, these derived classes must

have distinct Id_class(i).

3rd Criterion: Data Sensitivity Level

In the "Full Encryption Model", sensitive data in

columns can belong to one level of data sensitivity or

several levels of data sensitivity. The sensitivity value is

fixed in the argument (Sensitivity(i)) within classes. This

concept allows encrypting data according to their level

of data sensitivity using different values of arguments

(Key_class(i)) and (Algorithm(i)). This feature is special

and unique to our "Full Encryption Model" compared to

other models mentioned in Table 3, or generally in the

models of the literature.

Another function delivered using classes is the

possibility to create other classes with finer granularity

by adjusting the argument (Sensitivity(i)). For example if

the data of two columns COL1 and COL2 have secret

nature and if the level of data sensitivity of COL2 is

more important than COL1, then we can define an

encryption on COL1 using a Class(i) whose the

argument (Sensitivity(i)) is equals to "Secret" and

another encryption on COL2 using Class(j) whose the

argument (Sensitivity(j)) is equals to "Top secret". Both

classes must use different values of arguments

(Key_class(i)) and (Algorithm(i)).

Encrypting data in columns according to their level

of sensitivity in our "Full Encryption Model" brings two

major advantages. First, it allows the

encryption/decryption only for these columns. This will

improve extremely the performance because only the DB

sensitive parts are encrypted/decrypted while executing

queries. Second, the protection of the only DB sensitive

parts provides a perfect optimization of the DB size.

4th Criterion: Protection of Encryption Keys

Using a specific model dedicated to protect
encryption keys inside the DB server is the particularity
of our "Full Encryption Model". As shown in Table 4,
this concept doesn't exist in the models developed by
Shmueli et al. (2014) and by Sesay et al. (2005). The
"Full Encryption Model" eliminates the implementation
of the approaches based on External Security Module
(ESM) such as (Wallets, HSM, Security Server, etc.), as
implemented in the other models in Table 4. We have
already given in our previous work (El bouchti et al.,
2018) certain limits that may disturb or decrease the
security when adopting these approaches. The "Full
Encryption Model" via the model (8) generates the
Master keys automatically when defining encryption on
columns data and there are no defined storages for them,
so the administrators can't access them.

As we can see in the implementation results

illustrated in Table 7, each sensitive column has its

encryption key (KCOL(i)) and its Master key (Km(COL

(i)). This concept reinforces enormously the DB security

and makes the operation to get encryption keys by

attackers an impossible operation.

5th Criterion: Encryption Granularity Level

The encryption granularity level of our "Full

Encryption Model" is fixed at cell columns. The same

operation is performed in the other models in Table 4,

except the "Classified" data in (Sesay et al., 2005)

model. Encrypting DB at cell level provide strong

security for data as each cell is encrypted independently

and differently. As illustrated in Table 5 and Table 6,

even if the values of the column "First_name" are equal,

their encryption values are different. Using this

technique, we reinforce the DB security against the

probability of frequency analysis attacks.

6th Criterion: Protection of Database structure

This is the specificity and the uniqueness of the "Full

Encryption Model" compared to other models in Table 4.

The DB structure encryption is another line of defense of

DB beside to the data encryption and the access control

Karim El Bouchti et al. / Journal of Computer Science 2019, 15 (6): 844.854

DOI: 10.3844/jcssp.2019.844.854

853

mechanism. The design of our "Full Encryption Model"

based on the encryption classes allows implementing

two security levels on the DB. The first level concerns

the column data, while the second one concerns the

name of this column (see Table 6). A DB user can't

access to data without having the appropriate classes for

both levels.

Conclusion

This article outlines the role that can play encryption

in the protection of the sensitive DB. This aspect

strengthens and multiplies the complexity for the

attackers to access a DB when they bypass other security

barriers such as the access control mechanism and

authentication.
The originality of our work is to propose a novel

database encryption model called the "Full Encryption
Model". It is based on a new concept that we have
developed and named "Encryption Class". Compared to
other relevant models, our model is considered full in terms
of data security mechanisms. It perfectly satisfies the
requirements of an effective DB encryption model. This has
been proven by its implementation and its comparison to
two different models according to several criteria.

In forthcoming works, we aim to improve the
proposed model in order to limit access for the DB's
users belonging to specific categories.

Acknowledgement

I would like to express my appreciation to all my
professors, who they helped and guided me to realize
this work. I would like also to thank the reviewers for
their reviews and comments, which have helped to
improve the quality of this paper.

Author’s Contributions

*Karim El Bouchti: Worked of the most parts,

method idea and implementation of the method:

conception of the models and their implementation,

analysis and discuss of results

Soumia Ziti: Engaged in the literature review,

proposed the related work and participated in the

analysis and discussion of the results

Fouzia Omary: Proposed the research methodology.

Participated in the reviewing of the final version.

Nassim Kharmoum: Participated in the evaluation

of results

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all the

authors have read and approved the manuscript and there

are no ethical issues involved.

References

Bouganim, L. and Y. Guo, 2009. Database encryption.

In: Encyclopedia of Cryptography and Security,

S. Jajodia and H. Van Tilborg, (Eds.), Springer,

pp: 1-9. ISBN-10: 978-1-4419-5905-8

Chen, B.H., P.Y. Cheung, P.Y. Cheung and Y.K. Kwok,

2018. Cypherdb: A novel architecture for

outsourcing secure database processing. IEEE

Trans. Cloud Comput., 6: 372-386.

DOI: 10.1109/TCC.2015.2511730

DECJ, 2013. Directive No. 96/9/EC of the European

Parliament and of the Council of 11 March 1996 on the

Legal Protection of Databases, Art. 7(1) and (5) –

Innoweb BV v. Wegener ICT Media BV and Wegener

Mediaventions BV. IIC - International Review of

Intellectual Property and Competition Law.

Dixit, P., A.K. Gupta, M.C. Trivedi and V.K Yadav,

2018. Traditional and hybrid encryption techniques:

A Survey. In Networking Communication Data

Knowledge Engineering, G.M. Perez, (Ed.),

Springer, pp: 239-248.

El Bouchti, K., N. Kharmoum, S. Ziti and F. Omary,

2019. A new approach to prevent internal attacks on

Database encryption keys. Proceedings of the

International Conference Scientific Days Applied

Sciences, Feb. 15-16, Morocco.

El Bouchti, K., S. Ziti and F. Omary, 2018. A new approach

to protect encryption keys in database management

system. Proceedings of the International Conference

Modern Intelligent Systems Concepts, Dec. 12-13,

Morocco.

El Bouchti, K., S. Ziti, Y. Ghazali and, N. Kharmoum,

2018. Sécurité des bases de donnees: Menaces

principales et solution de chiffrement existantes.

Proceedings of the JDSIRT Conference Information

Systems, Networks Telecommunications, Nov. 28-

29, Morocco, pp: 13.

Elovici, Y., R. Vaisenberg and E. Shmueli, 2018. U.S.

Patent No. 9,934,388. Washington, DC: U.S. Patent

and Trademark Office.

Galushka, V.V., A.R. Aydinyan, O.L. Tsvetkova, V.A.

Fathi and D.V. Fathi, 2018. System of end-to-end

symmetric database encryption. J. Phys.: Conf.

Series, 1015: 042003.

 DOI: 10.1088/1742-6596/1015/4/042003

Itamar, E. and A. Rotem, 2018. U.S. patent application

no. 15: 570-775.

Jacob, S., 2012. Protection cryptographique des bases de

données: Conception et cryptanalyse. Unpublished

dissertation in partial fulfillment of the requirements

for the degree of Doctor of Philosophy, Pierre et

Marie Curie-Paris VI University, Paris, France.

https://doi.org/10.1109/TCC.2015.2511730

Karim El Bouchti et al. / Journal of Computer Science 2019, 15 (6): 844.854

DOI: 10.3844/jcssp.2019.844.854

854

Lee, I., S. Jeong, S. Yeo and J. Moon, 2012. A novel

method for SQL injection attack detection based on

removing SQL query attribute values. Math.

Comput. Modelling, 55: 58-68.

 DOI: ORG/10.1016/J.MCM.2011.01.050

Liu, L. and J. Gai, 2008. A new lightweight database

encryption scheme transparent to applications.

Proceedings of the International Conference

Industrial Informatics, Jul. 13-16, IEEE Xplore

press, South Korea, pp: 135-140.

Ma, S., Y. Mu and W. Susilo, 2018. A generic scheme of

plaintext-checkable database encryption. Inform.

Sci., 429: 88-101.

 DOI: RG/10.1016/J.INS.2017.11.010

Mattsson, U.T., 2005. A practical implementation of

transparent encryption and separation of duties in

enterprise databases: Protection against external and

internal attacks on databases. Proceedings of the

International Conference E-Commerce Technology,

Jul. 19-22, IEEE Xplore press, Germany, pp: 559-565.

DOI: 10.1109/ICECT.2005.82

Priebe, C., K. Vaswani and M. Costa, 2018. Enclavedb:

A secure database using sgx. Proceedings of the

Symposium Security Privacy, May. 21-23, IEEE,

USA, pp: 264-278.

Sallam, A.I., E.S. El-Rabaie and O.S. Faragallah, 2012.

Encryption-based multilevel model for DBMS.

Comput. Security, 31: 437-446.

 DOI: ORG/10.1016/J.COSE.2012.02.008

Sekhar, J.R. and G. Sivaranjani, 2018, Database

encryption using TSFS algorithm. Int. J. Scientific Res.

Comput. Sci. Eng. Inform. Technol., 4: 494-500.

Sesay, S., Z. Yang. J. Chen and D. Xu, 2005. A secure

database encryption scheme. Proceedings of the

Consumer Communications Networking

Conference, Jan. 3, IEEE Xplore Press, pp: 49-53.

Shmueli, E., R. Vaisenberg, Y. Elovici and C. Glezer,

2010. Database encryption: an overview of

contemporary challenges and design

considerations. ACM SIGMOD, Dec. 15, pp: 29-34.

DOI: 10.1145/1815933.1815940.

Shmueli, E., R. Vaisenberg, E. Gudes and Y. Elovici,

2014. Implementing a database encryption solution,

design and implementation issues. Comput.

security, 44: 33-50.

 DOI: ORG/10.1016/J.COSE.2014.03.011

Zabihimayvan, M. and D. Doran, 2019. Fuzzy rough set

feature selection to enhance phishing attack

detection. Proceedings of the International

Conference Fuzzy Systems, Jun. 23-26, IEEE, USA,

ARXIV preprint ARXIV:1903.05675.

https://doi.org/10.1016/j.mcm.2011.01.050
https://doi.org/10.1016/j.ins.2017.11.010
https://doi.org/10.1109/ICECT.2005.82
https://doi.org/10.1016/j.cose.2012.02.008
https://doi.org/10.1016/j.cose.2014.03.011

