

 © 2019 Praseetha, V.M. and S. Vadivel. This open access article is distributed under a Creative Commons Attribution (CC-

BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Enrolment and Matching of Fingerprints using Minutiae Tree

Praseetha, V.M. and S. Vadivel

Department of Computer Science, BITS Pilani, International Academic City, UAE

Article history

Received: 11-02-2019

Revised: 04-03-2019

Accepted: 14-03-2019

Corresponding Author:

Praseetha, V.M.

Department of Computer

Science, BITS Pilani,

International Academic City,

UAE
Email: praseethasunil@gmail.com

Abstract: Automated fingerprint matching is considered as the most

challenging phase of fingerprint recognition since it can be affected by a

variety of factors such as noise, skin condition, rotation, distortions and

displacements. When there is a large database, the search time to get a

matching fingerprint will be relatively high. To reduce the searching time

in the database, we have proposed a minutiae tree based indexing method

in this paper. The database is represented in the form of a minutiae tree

and the fingerprint matching is done by visiting the nodes in the tree

where the local configuration of the minutiae is stored. By using this tree

structure it is found that the search time or matching time can be

considerably reduced and the matching time is independent of the number

of fingerprints enrolled in the database. Our framework is scalable and

the experiments conducted explores its ability to find correct matches

with minimal search time.

Keywords: Minutia, Fingerprint Matching, Minutiae Tree, Binning, Indexing

Introduction

Fingerprint verification and fingerprint identification

are the two different modes of operations of a fingerprint

based biometric system. Fingerprint verification is

considered as a simple process of 1:1 matching whereas

fingerprint identification is a complex process of 1:N

matching (Jain et al., 2010). In both the modes

fingerprint matching is an important step. In verification

the acquired image is matched with the stored image.

The matching algorithm will find the correspondence

between the two images and gives a positive result if

they are significantly similar. In identification the given

probe image is matched with all the images in the dataset

to generate a degree of similarity. The algorithm returns

the name of the person who has a highest degree of

similarity. Fingerprint matching is very challenging since

two images acquired at different time exactly under same

conditions need not be exactly the same. The difficulty in

matching is due to several reasons (Sheng et al., 2007).

The translation and rotation of the fingerprint images,

application of a poor feature extraction algorithm,

displaced, false and missing minutiae and the non linear

deformations of the images are some of the reasons. To

overcome these variations a powerful matching

algorithm is needed. So the matching algorithm should

be invariant to translation and rotation of the images. It

should return the correct result while comparing

fingerprints from the same finger even the feature

extractor has missed some features or even when the

fingerprint images are affected by non linear distortions.

The fingerprint matching algorithm can generally be

classified into three different classes:

• Correlation based matching algorithms (Hatano et al.,

2002; Lindoso et al., 2007) which use superimpose

two fingerprint images to find the correlation among

pixels for different displacement and rotation

• Minutiae based matching algorithms (Jiang and

Yau, 2000; Luo et al., 2000) which use the extracted

minutiae of two fingerprints to find the matching

pairs of minutiae

• Non minutiae based matching algorithms (Yang and

Park, 2008; Nanni and Lumini, 2009) which use the

orientation, shape or frequency of ridges to perform

matching between two fingerprints

Among the three classes minutiae based algorithms

are the most common and minutiae based matching is

considered as a point pattern matching problem.

Our goal is to develop a fingerprint matching

algorithm which can reduce the database search time

during matching. Towards this goal a minutiae tree

based algorithm is proposed in this paper, which enrol

the fingerprints at the leaf node of the tree and the

matching is done by comparing the values related to each

minutia at each node. A minutiae tree based indexing

Praseetha, V.M. and S. Vadivel / Journal of Computer Science 2019, 15 (3): 357.371

DOI: 10.3844/jcssp.2019.357.371

358

technique with fast retrieval rate is our contribution. The

organization of this paper is as follows. After the

introduction the related works are given. The following

sections include the Proposed Method, Performance

Analysis and Conclusion.

Related Works

The uniqueness of fingerprints has made them as the

popularly using modality in automatic person

identification (Sankaran et al., 2014). The features in a

fingerprint are called minutiae which contain most

reliable and discriminating information. Ridge ending

and ridge bifurcation are the two most prominent

minutiae used for automatic fingerprint matching. A set

of minutiae are detected from the fingerprint during

feature extraction and the minutiae set is characterized

by the attributes like minutiae type (ridge end or ridge

bifurcation), position of the minutiae (x and y

coordinates) and the orientation of the minutiae. The

minutiae list is considered as a pattern of points and so

the fingerprint matching problem can be considered as a

point pattern matching problem.

The most popular technique for fingerprint matching

is minutiae based matching (Lahby et al., 2016). Each

minutia is represented by a 3-tuple M = (x, y, θ) where

(x, y) is the location and θ is the orientation of the

minutiae. Let T be the template fingerprint and MT is the

minutiae in template fingerprint. Similarly P is the probe

fingerprint and MP is the minutiae in the probe

fingerprint. A minutiae based matching algorithm goes

through the following steps in general:

• Define a tolerance box for MT in terms of the permitted

maximum spatial distance and direction difference

• MP is considered matched with MT if MP comes

within the tolerance box of MT. This is repeated for

all the minutiae in MP

• A matching score for the two fingerprints is

calculated

Inorder to maximize the matching score an optimal

displacement and rotation alignment should be obtained.

The match or non-match decision is based on the threshold

value which varies depending on the application.

The fingerprint database contain hundreds or thousands

of images and one method applied to reduce the search

space is to classify these images into different classes like

left loop, right loop, arch, whorl etc. This approach will

reduce the search space since the probe is matched only

with the fingerprints which are enrolled in the same class.

Another technique to speed up the identification

process is indexing. Fingerprint indexing is applied to

reduce the search space and thus to reduce the search

time in a large database. Lot of fingerprint indexing

techniques have been proposed and applied by researchers

to reduce the response time for improving the

effectiveness of the identification system (Li et al., 2014;

Iloanusi et al., 2011; Zhou et al., 2014; Mngenge et al.,

2015). Another indexing method known as Minutiae

Cylinder Code (MCC) uses a 3D data structure known as

cylinder to speed up the fingerprint identification

(Cappelli et al., 2010). The invariant distances and

angles in the neighbourhood of each minutiae are used to

develop the cylinder. This approach is a fixed radius

approach and so the problem with spurious minutiae are

efficiently handled. In this approach, a fixed length bit

vector has been used for encoding the neighbour of each

minutiae. Locality-Sensitive Hashing is used to index

these bit vectors. The similarity between two fingerprints

are found by considering the number of collisions of

binary vectors. Experimental results have shown that

MCC is more accurate than well known minutiae-only

local matching techniques.

Multiple features can be used for fingerprint indexing

as explained in (de Boer et al., 2001). In this approach

the authors have made use of the registered directional

field estimate, Finger Code and minutiae triplets for

indexing. They have found that the database search is

more effective by this method when searching in a large

fingerprint database. An approach based on minutia

neighbourhood structure for indexing is explained in

(Liang et al., 2007). This is a more stable triangulation

algorithm which is insensitive to fingerprint distortion.

The minutia details and attributes of low-order

Delaunay triangle are used for indexing. Experiments

show that the proposed algorithm considerably narrows

down the search space in fingerprint databases and is

stable for various fingerprints.

A graph based fingerprint matching algorithm has

been proposed in (Chikkerur et al., 2006). This approach

is named as k-plet approach and in this approach a graph

has been generated by considering multiple minutiae and

their local patterns. For matching two fingerprints, the k-

plets are matched by local matching and the local matches

are combined by a global coupled breadth first search

(Chikkerur et al., 2006). The same idea has been used for

indexing in (Mansukhani et al., 2010). In this approach,

the fingerprints are enrolled as a global tree and for

matching, the probe is matched against the tree. If the

local match is a success, the match will be expanded to the

nearest neighbourhood. Here, instead of k-plets a single

minutiae is considered to reduce the complexity.

Proposed Method

Our algorithm is the modified version of the

algorithm proposed in (Mansukhani et al., 2010) which

uses a tree structure in which the fingerprint templates

are enrolled at the leaf nodes. Mansukhani et al. (2010)

an arbitrary minutiae is selected as the root of the tree

Praseetha, V.M. and S. Vadivel / Journal of Computer Science 2019, 15 (3): 357.371

DOI: 10.3844/jcssp.2019.357.371

359

and the features of the nearest minutiae relative to the

root are calculated and the particular fingerprint is

enrolled at the leaf node. The size of the tree will be very

higher since one fingerprint is enrolled in many leaves.

Instead of starting with an arbitrary minutiae as root,

the proposed algorithm starts with the core point in the

fingerprint. If the fingerprint contains a core point we are

making the core point as the root. The minutiae points in

the fingerprint are considered in the increasing order of

their Euclidian distance from the root (core). Then the

required features of the minutiae points are considered

and based on these features nodes are created for each

minutiae in the fingerprint. For a fingerprint having n

minutiae, our tree structure does not contain n

enrolments. So the space required for the tree con be

reduced considerably.

The proposed method has the following objectives:

• Enrol the fingerprints on the minutiae tree using the

local configuration of the minutiae

• Perform the fingerprint matching efficiently by

doing a search operation on the minutiae tree

All the steps carried out in the proposed method are

explained in detail in the following subsections.

Preprocessing

To improve the quality of the image by improving the

clarity between the ridges and valleys, the following

steps are applied to each fingerprint image. These steps

are the preprocessing steps and will help the feature

extraction process. The pre-processing steps applied are:

• Normalization

• Segmentation

• Binarization

• Thinning

• Alignment

• Ridge Orientation

Normalization

The variation in the gray level values of ridges and

valleys can be reduced by the process of normalization.

Normalization is done on the image so as to get a pre

specified mean and variance for the image. The

normalized gray level N(I, j) of the pixel at (i, j) is

calculated as:

()

()
()

()

2

0

0

2

0

0

,

, ,

,

,

,

I

I

I

I

I

V I i j M
M if I i j M

V
N i j

V I i j M
M otherwise

V

 × − + <

=
 × − −

 (1)

where, M0 and V0 denote the desired mean and variance,

MI and VI denote the estimated mean and variance and

I(i, j) is the gray level of the image I.

Segmentation

Segmentation is an important and unavoidable pre

processing step in which the foreground and background

of the fingerprint image is differentiated. Lot of

segmentation algorithms have been proposed by

researchers (Mehtre et al., 1987; Mehtre and Chatterjee,

1989; Bazen and Gerez, 2001). We have used the

algorithm proposed in (Ratha et al., 1995) for

segmentation. The input image is divided into non

overlapping blocks of size w × w. Then the mean M(I) and

standard deviation std(I) of each block are computed as:

() ()
2 2

2

2 2

1
,

w w

w w
i j

M I I i j
w

=− =−

= ∑ ∑ (2)

() () ()()
2 2

2

2

2 2

1
,

w w

w w
i j

std I I i j M I
w

=− =−

= ∑ ∑ (3)

If the standard deviation of the block is greater than

an empirically selected threshold, then the corresponding

block is considered as the foreground region otherwise

background.

Binarization

Binarization of the grey-scale image: the ridges and

valleys of the fingerprint image are highlighted with

black and white colors respectively. The intensity of

each pixel in the grey-scale image is transformed to 0 or

1 which represent black or white in binary intensity. It

can be done by using the equation:

()
()1 ,

,
0

if I x y t
I x y

otherwise

 ≥
=

 (4)

where, t is the global threshold.

Thinning

In this process the foreground pixels are successively

eroded until the ridge width is reduced to one pixel size.

An iterative algorithm explained in (Guo and Hall, 1989)

is used for thinning.

Alignment

Alignment is a very important process to be done

before fingerprint matching since the misalignment may

lead to false results. Here we have applied a PCA based

alignment algorithm (Kour et al., 2012). PCA can find the

Praseetha, V.M. and S. Vadivel / Journal of Computer Science 2019, 15 (3): 357.371

DOI: 10.3844/jcssp.2019.357.371

360

direction in which the data is spread more. The amount of

spread is given by eigen values and the direction of spread

is given by eigen vectors. The fingerprint alignment is

done by using the following steps:

• Find the mean of the coordinates of all points in the

thinned image and find the covariance matrix

• Find the eigen value and eigen vectors based on the

covariance matrix

• Compute the angle of rotation by finding the eigen

vector corresponding to the maximum eigen value

• Since it is assumed that fingerprints will not have

rotation more than 60, if the obtained angle of

rotation is more than 60, then use another eigen

vector to find the angle of rotation

• The fingerprint is rotated according to the angle of

rotation

Ridge Orientation

We have used a gradient based algorithm (Hong et al.,

1998) to find the orientation of ridges on the fingerprint.

Using this algorithm, the local ridge orientation at each

pixel (i, j) is computed as:

()
()

()
1

,1
, tan

2 ,

x

y

i j
i j

i j

φ
θ

φ

−

 ′
= ′

 (5)

where:

() () ()
2 2

2 2

, , ,

l l

x x
l l

u v

i j w u v i uw j vwφ φ

=− =−

′ = − −∑ ∑ (6)

() () ()
2 2

2 2

, , ,

l l

y y
l l

u v

i j w u v i uw j vwφ φ

=− =−

′ = − −∑ ∑ (7)

()()cos 2 , ,
x

i jφ θ= (8)

and:

()()sin 2 ,
y

i jφ θ= (9)

φx and φy are the x and y components of the image vector

field and w is a low pass filter of size l × l.

Minutiae Extraction

After preprocessing the minutiae are extracted from

the image. The two types of minutiae that are extracted

for the experiment are ridge ending and ridge

bifurcation. The location of the minutiae are calculated

by analysing each pixel in the thinned image. The

crossing number method (Tamura, 1978) is applied to

extract the minutiae as shown in Fig. 1. In this method a

3×3 window centred at pixel p is traversed circularly:

() 1 9 1

1...8

1
| |,

2
i i

cn p P P P P
+

= − =∑ (10)

where, Pi is the neighbouring pixel of P. The neighbouring

pixels of P are scanned in the anti-clockwise direction as

shown below. Ridge endings will have a value 1 for cn

and bifurcations will have a value 3.

A set of minutiae are extracted and from the extracted

minutiae the spurious minutiae are eliminated. The core

points and the delta points are also extracted from the

fingerprint images as core point is used as the root of the

minutiae tree.

Core Point Detection

The detection of core point is very important since

the minutiae tree is constructed by keeping the core point

as the root of the tree. Poincare index method is a widely

accepted method for finding the singular points in a

fingerprint (Jirachaweng et al., 2011; Joshi et al., 2009;

Kawagoe and Tojo, 1984; Karu and Jain, 1996). The

Poincare index of a element θij in the orientation image

at position (i, j) is calculated as:

() ()
0

,

N

k

P i j k
=

= ∆∑ (11)

where,

()

() ()

() ()

()

, | | 90

180 | | 90

180,

k if k

k k if k

k otherwise

δ δ

δ δ

δ

 < °

∆ = + ≤ − °

−

Here δ(k) is the ordered difference between

neighbouring elements of θij and is calculated as:

() () ()() ()1 mod 1 mod
, ,

k kk N k N
k i j i jδ θ θ

+ +
= −

Under closed curves the Poincare index assumes one

of the three values for singular points (Kumar et al.,

2016). Then:

()

()

()

()

()

0 , ,

360 , ,
,

180 ,

180 ,

if pixel i j does not belong to singular region

if pixel i j belong towhorl
P i j

if pixel i j belong tocore

if pixel i j belong todelta

 °

°
=

°
− °

Figure 2 shows a fingerprint image and its core point

and minutiae.

Praseetha, V.M. and S. Vadivel / Journal of Computer Science 2019, 15 (3): 357.371

DOI: 10.3844/jcssp.2019.357.371

361

 (a) (b)

Fig. 1: Crossing number values for ridge ending and bifurcation (a) cn = 1 for ridge ending (b) cn = 3 for bifurcation

Fig. 2: Original fingerprint image and its core point and minutiae

Pre-Enrolment Steps

After the preprocessing steps on each image, the

required features are extracted from the images in the

database. Our method extracts two kinds of features from

each fingerprint: ridge ending and ridge bifurcation.

Before enrolling the fingerprints, we need to carry out

some steps which makes the enrolment easy and thus

gives an efficient tree structure. The following are the

steps carried out before enrolling each fingerprint:

1. Get the extracted core point and let the co-ordinates

be (x, y)

2. Find the Euclidean distance between the core point

and each minutia and arrange the points in the

increasing order of their distance

3. Prepare the list of minutiae in the increasing order of

their distance from the core point

4. For each minutia mi calculate two angles. (1) the angle

between mi and mi+1 (2) the angle between mi and mi+2

5. Create a list of minutiae with required information

(i.e., x, y, Euclidean distance, angle1 and angle2)

We are not considering the fingerprints from which

a core point cannot be detected. The minutiae points

for enrolment are selected according to the Euclidean

distance from the core point and we can select as

many number of points as required. Since the

searching time on a tree depends on the height/depth

of the tree, this organization will give an improved

search time with an average number of minutiae.

The fingerprints in the database are arranged in the

form of a tree. A single tree is built to represent all the

fingerprints and the fingerprints are enrolled at the leaf

nodes. The root of the tree is the core point of the

fingerprint. The minutiae points are arranged in the

internal nodes and they are arranged based on the

orientation and distance. The depth of each path in the

tree depends on the number of minutiae points

considered while enrolling the fingerprint. This

arrangement provides an index structure for the

database. For matching a fingerprint we traverse the

tree from root and when we reaches a correct leaf we

will obtain a perfect match.

Original image Minutiae

100

200

300

100

200

300

100 200 300 100 200 300

Praseetha, V.M. and S. Vadivel / Journal of Computer Science 2019, 15 (3): 357.371

DOI: 10.3844/jcssp.2019.357.371

362

Fig. 3: Basic bin arrangement of 24 bins

How to Create the Minutiae Tree?

Binning

The minutiae points are selected based on the

Euclidean distance from the core point. The minutia

which is very near to the core point is selected first and

binned into one of the bins in the first level of the tree.

For our experiment we have constructed 24 different

bins based on the orientation and distance from the core

point (6 for orientation and 4 for distance). The basic bin

arrangement is shown in Fig. 3. The number of bins can

be varied according to the maximum Euclidean distance

allowed for enrolling. Here we have selected 60 pixels as

the maximum distance and so the minutiae which are up

to 60 pixels away from the core point are considered for

enrolment. At each level of the tree, maximum n number

of minutiae are binned where n is the number of

fingerprint images in the dataset.

Table 1 shows the range of values for orientation

and distance that come under various bins. Figure 4

shows the structure of bins associated with each

branch of the tree and Fig. 5 shows the dynamic list

associated with each bin.

If more than one minutia is binned into a particular

bin, then these minutiae can be maintained by using a

dynamic list. The list keep the minutiae in the increasing

order of their distance from the core point. Each

minutiae in the list hold the x and y coordinates, the

euclidean distance, the angles calculated.

Creating Minutiae Tree by Enrolling the Fingerprints

Let T is the template fingerprint which we want to

insert in the tree which contain n minutiae points. Then T

can be defined as a set of n minutiae which are arranged

in the increasing order of the Euclidean distance from the

core point. T can be represented as:

1 2 3
, , ,...,

T T T T

n
T m m m m=

where, each minutiae T

i
m is defined as:

(), ,

T

i i i i i
m x y tθ=

where, xi and yi are the x coordinate and y coordinates of

the i
th
 minutiae, θi is the orientation of the minutia and ti

B20

B14

B8
B21

B19

B13

B7

B15

B9
B2

B3 B1

B6

B5

B4

B10

B16

B12

B18

B11

B22
B24

B17

B23

Praseetha, V.M. and S. Vadivel / Journal of Computer Science 2019, 15 (3): 357.371

DOI: 10.3844/jcssp.2019.357.371

363

is the type of the minutia of the fingerprint template T.

The tree is constructed by creating nodes for each

minutiae and thus for a fingerprint with n minutiae the

corresponding branch of the tree grows up to a depth n,

with the fingerprint enrolled at the leaf node.

Our method applies the concept of bins for

categorizing the minutiae. Each minutia is put in a

particular bin by considering some of the features of

minutia itself and also by considering some features

relative to the root (core point). The branch selection is

done by comparing the type of the minutia. Since we are

considering only two types of minutiae, our minutiae

tree is having only two branches in a high level view.

The high level structure of the minutiae tree is shown in

Fig. 6. Each node in the tree is having a number of bins

to accommodate the minutiae based on their relative

feature values. After selecting the appropriate branch,

our algorithm selects a suitable bin for the minutiae. The

binning is done based on the orientation of the current

minutia and the distance between the root and the current

minutia. We have divided the orientation into 6 bins and

distance into 4 bins. So in effect a minutia could enter in

any one of the available 24 bins. Each bin in turn

contains a dynamic list which can grow up to n. The list

stores the required information about the minutia which

falls in a particular bin.

Fig. 4: Bins associated with the branches of the minutiae tree

Fig. 5: Dynamic list for the Bin x

Fig. 6: The high level structure of the minutiae tree

Root

Bin 1 Bin 2 Bin 24 Bin 1 Bin 2 Bin 24

Value 1 Value 2 Value n

Core

end bifur

Minutiae1 Minutiae1

Level 0

Level 1

Level 2

Level n

end

end

bifur

bifur

end

Minutiae2

end bifur

bifur

Minutiae2

Minutiae n Minutiae n

Praseetha, V.M. and S. Vadivel / Journal of Computer Science 2019, 15 (3): 357.371

DOI: 10.3844/jcssp.2019.357.371

364

Fig. 7: Structure of a node in the minutiae tree

Table 1: Range of values of angle and distance for various bins

 ≤ 60 > 60 and ≤ 120 > 120 and ≤ 180 > 180 and ≤ 240 > 240 and ≤ 300 > 300 and ≤ 360

<= 15 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6

> 15 and ≤ 30 Bin 7 Bin 8 Bin 9 Bin 10 Bin 11 Bin 12

> 30 and ≤ 45 Bin 13 Bin 14 Bin 15 Bin 16 Bin 17 Bin 18

> 45 and ≤ 60 Bin 19 Bin 20 Bin 21 Bin 22 Bin 23 Bin 24

For enrolling the fingerprints the minutiae list

which is ordered based on the Euclidean distance is

considered. The first minutia in the list is considered

and the type of the minutia is checked. If the minutia

is of type ridge ending; it will be stored as the left

child of the root and if the minutia is of type

bifurcation; it will be stored as the right child of the

root. Then the orientation and the Euclidean distance

of the minutia are compared with the range of values

associated with the bins. A suitable bin is found out

and the minutia is put in the dynamic list of that bin.

The list is maintained with each bin to accommodate

all the minutia falling in the bin. The structure of a

node is shown in Fig. 7.

We have used the following algorithm for enrolling

the fingerprints in the tree. The output of the pre-

enrolment stage is used as input for the enrolment.

Algorithm:

Input: Core point and the list from the pre- enrolment

stage

Output: A minutiae tree with fingerprints enrolled as

Leaves

Steps:

1. Core point is made as the root of the tree

2. For each minutia in the list

(a) if the type of minutia is end branch to left else

branch to right

(b) find a suitable bin according to the orientation
and Euclidean distance

(c) store the details of the minutia in the dynamic

list of that bin

3. Enrol the corresponding fingerprint in the leaf node

A general tree structure is implemented for enrolling

the fingerprint. The core point in the fingerprint is made

as the root of the tree. The minutiae points in the

fingerprint are considered in the increasing order of their

Euclidian distance from the root (core point). Then the

required features of the minutiae points are considered

and based on these features nodes are created for each

minutiae in the fingerprint. Our algorithm enrols the

fingerprint at the leaf nodes. At each level of the tree the

values associated with each minutia are stored with a

Orientation

<= 60 > 60 and

<= 120

> 120 and

<= 180

> 180 and

<= 240

> 240 and

<= 300

> 300 and

<= 360

<= 15

>15 and

<= 30

>30 and

<= 45

>45 and

<= 60

<= 15

>15 and

<= 30

>30 and

<= 45

>45 and

<= 60

<= 15

>15 and

<= 30

>30 and

<= 45

>45 and

<= 60

<= 15

>15 and

<= 30

>30 and

<= 45

>45 and

<= 60

<= 15

>15 and

<= 30

>30 and

<= 45

>45 and

<= 60

<= 15

>15 and

<= 30

>30 and

<= 45

>45 and

<= 60

E
u
c
li

d
e
a
n
 d

is
ta

n
c
e

Ed, α1, α2

End

Bifurcation

Praseetha, V.M. and S. Vadivel / Journal of Computer Science 2019, 15 (3): 357.371

DOI: 10.3844/jcssp.2019.357.371

365

pointer to the parent(previous minutia in the list) as well

as a pointer to the child (or the next minutia in the list).

For a fingerprint having n minutiae, our tree structure

allows only one enrolment for the fingerprint. So the

space required for the tree can be reduced considerably.

Fig. 8 shows a sample tree created while enrolling a

fingerprint with first five minutiae of the fingerprint.

The internal organization of the tree is shown in Fig.

9. The root of the tree is having pointers to the left node

and right node. Each node of the tree has 24 bins and

each bin has a dynamic list associated with it to manage

the entries. So each minutiae from N fingerprints is

binned into any one of the 24 bins associated with a node

at each level. The minutiae are stored in the dynamic list

with parent address, child address and with the values

related to the minutiae. The parent address and child

address are stored to get the exact position of the

minutiae in the bin. In each bin the values associated

with the minutiae are stored along with the parent node

address and the child node address which makes

searching easier. Figures 10 and 11 shows the structure

of the tree after enrolling two fingerprints. In this way all

the fingerprints in the database are enrolled in the

minutiae tree. The depth of the tree depends on the

maximum allowed euclidean distance and the number of

minutiae selected for enrolling. We can make the height

of each path identical by selecting equal number of

minutiae for enrolment.

Fingerprint Matching

The next important phase is matching a probe image.

The pre-processing steps and the pre-enrolment steps are

applied to the probe image prior to matching. Matching

is done in a similar way enrolment is done. The list of

minutiae of the probe image may contain p number of

minutiae which are arranged in the increasing order of

their distance from the core point. The first minutia in

the list will be considered and based on the type of the

minutia the appropriate branch of the tree is selected.

Then based on the feature values of the current minutia

the search is progressed towards a particular bin and

hence to the list in that bin. The feature values of the

current minutia of the probe image are now compared

with the values in the list. A matched value will be found

with the help of a threshold value and now the search or

the matching process progresses with next minutiae by

selecting the suitable branch from the previous minutia.

This process continues and when the matching reaches

the leaf node, that means a matched fingerprint is found.

For the minutiae values which are on the boundaries

of the bins, the search will progress through multiple

paths. This approach is helpful to increase the chances of

finding the correct minutiae paths. Also in situations

where the search process is unable to move further,

backtracking is applied to find a correct path.

How to Handle Missing Minutiae

An important issue that can occur and which will lead
to a wrong search path is the problem of missing
minutiae. If the features extracted from the probe
fingerprint miss some minutiae compared with the
enrolled fingerprints, the matching process will not give
a correct result. To overcome this situation we have
applied a prediction logic in our method. By applying
this prediction logic it is found that our algorithm
progresses through the correct path even if some
minutiae are missing and gives the correct result. Thus
we are able to reduce the error rate up to an extent.

If m1, m2, …, mn is the minutiae set of the query

fingerprint in the increasing order of the Euclidean

distance from the root, at each node or with each

minutiae we are recording the angle that mi and mi+1

makes with the root. When the query fingerprint comes,

at each node this angle will be checked and if it is

greater than a particular threshold it is assumed that the

minutia mi+1 is missing in the query fingerprint and the

search will be continued with the next node in the

search path if the angle between mi and mi+2 in the

enrolled fingerprint satisfies with that of the query

fingerprint. By using this simple method it is found that

the mismatch due to a missing minutia in the query

fingerprint could be controlled.

Fig. 8: Sample tree created when enrolling one fingerprint

End

R

A

End

B

End

Bifurcation

C

D

End

E

Praseetha, V.M. and S. Vadivel / Journal of Computer Science 2019, 15 (3): 357.371

DOI: 10.3844/jcssp.2019.357.371

366

Fig. 9: Internal structure of the sample tree created when enrolling one fingerprint

Fig. 10: Sample tree Created when enrolling two fingerprints

Index Node Parent

0

1

2

3

4

5

R

A

B

C

D

E

0

1

2

3

4

1

b1

b6

b9

b11

b20

0 2 val

1 3 val

2 4 val

3 5 val

4 f1 val

R

End

A
F

B

End

End

Bifurcation

End

Bifurcation G

C

End
H

Bifurcation
D

I

End

E I

Praseetha, V.M. and S. Vadivel / Journal of Computer Science 2019, 15 (3): 357.371

DOI: 10.3844/jcssp.2019.357.371

367

Fig. 11: Internal structure of the sample tree created when enrolling two fingerprints

Suppose mT1, mT2, mT3, mT4 are the minutiae of the

template fingerprint and mP1, —-, mP3, mP4 are the

minutiae of the probe fingerprint. The —- indicates a

missing minutia. Let CT and CP be the core points of the

template and probe fingerprints. When the first minutia is

considered in the pre-enrolment stage the angles < mT1 CT

mT2 and < mT1 CT mT3 are calculated and stored in the

corresponding bin of the minutia. When the first minutiae

of the probe fingerprint is considered the angle < mP1 CP

mP3 is calculated. The angles < mT1 CT mT2 and < mP1 CP

mP3 are compared and since the second minutia is missing

in the probe fingerprint these two will not match. So our

algorithm will compare < mT1 CT mT3 and < mP1 CP mP3

which gives a positive result. So it is understood that the

second minutia is missing in the probe fingerprint and the

search is continued with the third minutia of the template

omitting the second minutia.

Performance Analysis

The dataset used for this experiment is FVC 2002 in
which the images are of size 300×300. The dataset
contains 8 images each of different users.

The performance of the above described system is

analysed in terms of running time and accuracy. In a

single node of the tree there are 24 static bins and a

dynamic list corresponding to each bin. A minutia based

on its local feature values is added to one of the lists of

these 24 bins. The matching time or searching time of

the above mentioned system is same as the enrolment

time. The maximum possible children for each node is n

where n is the number of enrolled fingerprints. So the

maximum possible size of the tree is O(nd) where d is

the depth of the tree which is equal to the number of

minutiae used to build the tree.

Running Time

The running time of the algorithm is comprised of the

time required to enrol a fingerprint into the tree and the

time required to carry out a search. The running time of

the algorithm is found to be slightly increasing as the

depth of the tree increases. Compared to the single path

search, multiple path search takes more time as it need to

search multiple paths. The running time of the algorithm

is compared with previously proposed algorithm

0 2 val

1 3 val

2 4 val

3 5 val

4 f1 val

0 7 val

6 8 val

7 9 val

8 10 val

9 f2 val

0

1

2

3

4

5

6

7

8

9

10

Index Node Parent

1

b1

b6

b9

b11

b20

b4

b12

b18

b20

b24

R

A

B

C

D

E

F

G

H

I

J

0

1

2

3

4

5

6

7

8

9

6

Praseetha, V.M. and S. Vadivel / Journal of Computer Science 2019, 15 (3): 357.371

DOI: 10.3844/jcssp.2019.357.371

368

(Mansukhani et al., 2010). The comparison of the

average running time for single search path and multiple

path search when the depth of the tree increases is given

in Table 2 and 3.

Figure 12 shows the comparison of running time of the

proposed algorithm during single path search and multiple

path search when the number of minutiae used for

enrolling the fingerprint is increasing. It can be seen from

the graph that the running time of the algorithm is slightly

increasing as the number of minutiae is increasing.

Efficiency

From the database fingerprint images of 10 persons

were selected. 8 images of the same finger per person

are considered for constructing the tree. Then there will

be 7 test cases for one instance of the fingerprint. So

for one person, there will be (8*7)/2 = 28 test cases

since we are avoiding repeated matching. So the total

test cases for 10 persons is 28*10 = 280. The efficiency

of the method is calculated as:

Number of positive matches
Efficiency

Total number of text cases
=

The proposed method is tested by varying the number

of minutiae selected for enrolling the fingerprints. We

conducted various experiments for testing the efficiency

of the proposed method. The experiments took 5, 10, 15,

20 and 25 minutiae which are near to the core point to

create the tree. When the tree is created with 5 minutiae

points for each fingerprint, the efficiency obtained is

258/280 = 91.07%. Hence the Genuine Acceptance Rate

(GAR) is 91.07% and the False Rejection Rate (FRR) is

8.93%. Thu positive matches obtained with 10 minutiae

points is 259. So the efficiency obtained is 92.5%. The

GAR is 92.5% and FRR is 7.5%. The positive matches

obtained when considering 15 minutiae points for

constructing the tree and for matching is 258. Then the

efficiency is 92.14%. The GAR is 92.14% and FRR is

7.86%. We got 260 positive matches when tried with 20

min points and so the efficiency is calculated as 92.85%.

The GAR is 92.85% and the FRR is 7.15%. The positive

matches obtained when considering 25 min points for

constructing the tree and for matching is 260. Then the

efficiency is 92.85%. The GAR is 92.85% and FRR is

7.15%. Table 4 shows the FRR and GAR values

obtained for single path search.

When the minutiae are at the boarders of the bin,

sometimes the search will progress through multiple

paths. Table 5 shows the FRR and GAR values obtained

during multiple path search. The FRR and GAR values

obtained during single path search and multiple path

search when the tree is created with varying number of

minutiae are shown in Fig. 13.

Table 2: Average running time in seconds for the method in

(Mansukhani et al., 2010)

Number of minutiae Single path Multiple path

considered search search

5 0.112 0.060

6 0.032 0.040

7 0.028 0.042

8 0.028 0.042

Table 3: Average running time in seconds for the proposed

method on FVC 2002

Number of minutiae Single path Multiple path

considered search search

5 0.066 0.074

10 0.069 0.082

15 0.073 0.090

20 0.081 0.099

25 0.089 0.109

Table 4: The FRR and GRR values in different cases of single

path search

 Number of Points FRR GAR

Case 1 5 8.93% 91.07%

Case 2 10 7.5% 92.5%

Case 3 15 7.86% 92.14%

Case 4 20 7.15% 92.85%

Case 5 25 7.15% 92.85%

Table 5: The FRR and GRR values in different cases of

multiple path search

 Number of Points FRR GAR

Case 1 5 10.00% 90.00%

Case 2 10 9.64% 90.36%

Case 3 15 9.64% 90.36%

Case 4 20 10.36% 89.64%

Case 5 25 10.00% 90.00%

Table 6: The penetration rate of the proposed method

Hit Rate Penetration rate

60% 1.0

70% 1.4

80% 1.9

85% 2.5

90% 3.1

Table 7: The average penetration rate of the proposed method compared with existing methods

Method|Hit Rate 60% 70% 80% 90% 95% 100%

Minutiae Quadruplets (Iloanusi et al., 2011) 6.8 8.68 10.5 15.0 17.6 21.5

Minutiae Neighbourhood (Vij, 2013) 1.0 1.90 3.9 8.6 14.0 57.0

Proposed method 1.0 1.40 1.9 3.1 4.2 8.5

Praseetha, V.M. and S. Vadivel / Journal of Computer Science 2019, 15 (3): 357.371

DOI: 10.3844/jcssp.2019.357.371

369

Fig. 12: Average running time in seconds

Fig. 13: Comparioson of FRR and GAR values in single path searching and multiple path searching

Penetration rate is the average percentage of
database searched over all test fingerprints. The
penetration rate for the proposed method is given in
Table 6 and 7 shows a comparison between the proposed
method and some other indexing methods. The
penetration rate of the proposed method is less compared
to other methods since we have applied binning based on
the relative features of the fingerprint minutiae by which
the percentage of database searched is decreased.

Conclusion

Fingerprints have been used for personal identification
from long back since they are very unique. Fingerprint
matching plays an important role in fingerprint
verification as well as in fingerprint identification. For a

better response time or for getting a real time response we
have to reduce the search space while matching. The
method proposed in this paper considerably reduces the
search space and thus reduces the matching time.

A fingerprint matching system with a tree based
indexing structure has been implemented and tested. Our
system is robust to translation and rotation of
fingerprints. Another important quality of our system is
that it is scalable and the time required for enrolling a
fingerprint remains same irrespective of the size of the
database. The searching or matching time found to be
slightly increasing depending on the number of minutiae
included in the tree. The penetration rate of the proposed
method is found to be very less compared to other
indexing techniques. The accuracy can be increased by
including more relative characteristics of the minutiae.

Chart Title

A
v
er

ag
e

ru
n
n
in

g
 t

im
e

(s
)

0.12

0.1

0.08

0.06

0.04

0.02

0

5

Number of minutiae considered for enrolling the fingerprints

10 15 20 25

Single path search Multiple path search

FRR-single path GAR-single path FRR-multiple path GAR-multiple path

9
1
.0

7

 9
0
 9

2
.5

 9
0
.3

6

 9
2
.1

4
 9

2
.8

5

 8
9
.6

4

 9
2
.8

5

 9
0

8
.9

3

 1
0
 7

.5

 9
.6

4

 7
.8

6

 9
.6

4

 9
.0

3
6

 7
.1

5

 1
0
.3

6

 7
.1

5

 1
0

5 10 15 20 25

Number of minutiae considered

Praseetha, V.M. and S. Vadivel / Journal of Computer Science 2019, 15 (3): 357.371

DOI: 10.3844/jcssp.2019.357.371

370

Author’s Contributions

All authors equally contributed in this work.

Ethics

This article is original and contains unpublished
material. The corresponding author confirms that the
coauthor has read and approved the manuscript and there
are no ethical issues involved.

References

Bazen, A.M. and S.H. Gerez, 2001. Segmentation of
fingerprint images. Proceedings of the Workshop on
Circuits, Systems and Signal Processing, (SSP’ 01),
Veldhoven, The Netherlands, pp: 276-280.

Cappelli, R., M. Ferrara and D. Maltoni, 2010. Minutia

cylinder-code: A new representation and matching

technique for fingerprint recognition. IEEE Trans.

Patt. Anal. Mach. Intell., 32: 2128-2141.

 DOI: 10.1109/TPAMI.2010.52

Chikkerur, S., A.N. Cartwright and V. Govindaraju, 2006.

K-plet and coupled BFS: A graph based fingerprint

representation and matching algorithm. Proceedings

of the International Conference on Advances in

Biometrics, Jan. 05-07, Springer, Hong Kong, China,

pp: 309-315. DOI: 10.1007/11608288_42
de Boer, J., A.M. Bazen and S.H. Gerez, 2001. Indexing

fingerprint databases based on multiple features.
Proceedings of the 12th Annual Workshop on
Circuits, Systems and Signal Processing, Nov. 25-27,
Veldhoven, The Netherlands, pp: 300-306.

Guo, Z. and R.W. Hall, 1989. Parallel thinning with

twosubiteration algorithms. Commun. ACM, 32:

359-373. DOI: 10.1145/62065.62074

Hatano, T., T. Adachi, S. Shigematsu, H. Morimura and

S. Onishi et al., 2002. A fingerprint verification

algorithm using the differential matching rate.

Proceedings of the 16th International Conference on

Pattern Recognition, Aug. 11-15, IEEE Xplore

Press, Quebec City, Quebec, Canada, pp: 799-802.

DOI: 10.1109/ICPR.2002.1048139

Hong, L., Y. Wan and A. Jain, 1998. Fingerprint image

enhancement: Algorithm and performance

evaluation. IEEE Trans. Patt. Anal. Mach. Intell.,

20: 777-789. DOI: 10.1109/34.709565

Iloanusi, O., A. Gyaourova and A. Ross, 2011. Indexing

fingerprints using minutiae quadruplets. Proceedings

of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition

Workshops, Jun. 20-25, IEEE Xplore Press,

Colorado Springs, CO, USA, pp: 127-133.

 DOI: 10.1109/CVPRW.2011.5981825

Jain, A.K., J. Feng and K. Nandakumar, 2010.

Fingerprint matching. Computer, 43: 36-44.

 DOI: 10.1109/MC.2010.38

Jiang, X. and W.Y. Yau, 2000. Fingerprint minutiae

matching based on the local and global structures.

Proceedings of the 15th International Conference on

Pattern Recognition, Sept. 3-7, IEEE Xplore Press,
Barcelona, Spain, pp: 1038-1041.

 DOI: 10.1109/ICPR.2000.906252

Jirachaweng, S., Z. Hou, W.Y. Yau and V. Areekul,

2011. Residual orientation modeling for fingerprint

enhancement and singular point detection. Patt.

Recogn., 44: 431-442.

 DOI: 10.1016/j.patcog.2010.08.019

Joshi, T., S. Dey and D. Samanta, 2009. A two-stage

algorithm for core point detection in fingerprint

images. Proceedings of the IEEE Region 10

Conference, Jan. 23-26, IEEE Xplore Press,

Singapore, pp: 1-6.

 DOI: 10.1109/TENCON.2009.5396214

Karu, K. and A.K. Jain, 1996. Fingerprint classification.

Patt. Recognit., 29: 389-404.

 DOI: 10.1016/0031-3203(95)00106-9

Kawagoe, M. and A. Tojo, 1984. Fingerprint pattern

classification. Patt. Recognit., 17: 295-303.

 DOI: 10.1016/0031-3203(84)90079-7
Kour, J., M. Hanmandlu and A.Q Ansari, 2012. Fast

fingerprint image alignment. Proceedings of the 2nd
International Conference on Computer Science,
Engineering and Applications, (SEA’ 12), Springer,
At New Delhi, pp: 93-99.

 DOI: 10.1007/978-3-642-30157_10
Kumar, R., P. Chandra and M. Hanmandlu, 2016. A

robust fingerprint matching system using orientation
features. J. Inform. Process. Syst., 121: 83-99.

Lahby, M., Y. Ismaili, A. Attioui and A. Sekkaki, 2016.
Performance analysis of minutia-based fingerprint
matching algorithms. Proceedings of the 11th
International Conference on Intelligent Systems:
Theories and Applications, Oct. 19-20, IEEE Xplore
Press, Mohammedia, Morocco, pp: 1-5.

 DOI: 10.1109/SITA.2016.7772324
Li, G., B. Yang and C. Busch, 2014. A score-level fusion

fingerprint indexing approach based on minutiae

vicinity and minutia cylinder-code. Proceedings of
the 2nd International Workshop on Biometrics and
Forensics, Mar. 27-28, IEEE Xplore Press, Valletta,
Malta, pp: 1-6. DOI: 10.1109/IWBF.2014.6914238

Liang, X., A. Bishnu and T. Asano, 2007. A robust
fingerprint indexing scheme using minutia

neighborhood structure and low-order Delaunay
triangles. IEEE Trans. Inform. Forens. Security, 2:
721-733. DOI: 10.1109/TIFS.2007.910242

Lindoso, A., L. Entrena, J. Liu-Jimenez and E. San
Millan, 2007. Correlation-based fingerprint
matching with orientation field alignment.

Proceedings of the International Conference on
Biometrics, Aug. 27-29, Springer, Seoul, Korea, pp:
713-721. DOI: 10.1007/978-3-540-74549-5_75

Praseetha, V.M. and S. Vadivel / Journal of Computer Science 2019, 15 (3): 357.371

DOI: 10.3844/jcssp.2019.357.371

371

Luo, X., J. Tian and Y. Wu, 2000. A minutiae matching

algorithm in fingerprint verification. Proceedings of

the 15th International Conference on Pattern

Recognition, IEEE Xplore Press, pp: 833-836.

Mansukhani, P., S. Tulyakov and V. Govindaraju, 2010.

A framework for efficient fingerprint identification

using a minutiae tree. IEEE Syst. J., 4: 126-137.

DOI: 10.1109/JSYST.2009.2037286

Mehtre, B.M. and B. Chatterjee, 1989. Segmentation of

fingerprint images-a composite method. Patt.

Recognit., 22: 381-385.

 DOI: 10.1016/0031-3203(89)90047-2

Mehtre, B.M., N.N. Murthy, S. Kapoor and B.

Chatterjee, 1987. Segmentation of fingerprint

images using the directional image. Patt. Recognit.,

20: 429-435. DOI: 10.1016/0031-3203(87)90069-0

Mngenge, N.A., L. Mthembu, F.V. Nelwamondo and

C.H. Ngejane, 2015. An integrated approach to

fingerprint indexing using spectral clustering based

on minutiae points. Proceedings of the Science and

Information Conference, Jul. 28-30, IEEE Xplore
Press, London, UK, pp: 1222-1229.

 DOI: 10.1109/SAI.2015.7237300

Nanni, L. and A. Lumini, 2009. Descriptors for image-

based fingerprint matchers. Expert Syst. Applic., 36:

12414-12422. DOI: 10.1016/j.eswa.2009.04.041

Ratha, N.K., S. Chen and A.K. Jain, 1995. Adaptive flow

orientation-based feature extraction in fingerprint

images. Patt. Recognit., 28: 1657-1672.

 DOI: 10.1016/0031-3203(95)00039-3

Sankaran, A., M. Vatsa and R. Singh, 2014. Latent

fingerprint matching: A survey. IEEE Access, 2:

982-1004. DOI: 10.1109/ACCESS.2014.2349879
Sheng, W., G. Howells, M. Fairhurst and F. Deravi,

2007. A memetic fingerprint matching algorithm.
IEEE Trans. Inform. Forens. Security, 2: 402-412.
DOI: 10.1109/TIFS.2007.902681

Tamura, H., 1978. A comparison of line thinning
algorithms from digital geometry viewpoint.
Proceedings of the 4th International Conference on
Pattern Recognition, (CPR’ 78), pp: 715-719.

Vij, A., 2013. Minutiae local structures for fingerprint
indexing and matching. PhD Thesis, International
Institute of Information Technology Hyderabad.

Yang, J.C. and D.S. Park, 2008. A fingerprint
verification algorithm using tessellated invariant
moment features. Neurocomputing, 71: 1939-1946.
DOI: 10.1016/j.neucom.2007.12.034

Zhou, W., J. Hu, S. Wang, I. Petersen and M.
Bennamoun, 2014. Fingerprint indexing based on
combination of novel minutiae triplet features.
Proceedings of the International Conference on
Network and System Security, (NSS’ 14), Springer,
pp: 377-388.

