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Abstract: The large-scale network management abilities of centralized 
architectures, such as Software-Defined Networking (SDN), are attracting 
increasing interest from major computer networking companies. In this 
architecture type, the nodes follow the rerouting rules predefined by the 
control plane in the controller. However, when a link or node failure becomes 
persistent over the time, the controller must recompute the routing and 
rerouting rules and update the relevant nodes to maintain an acceptable 
quality of service (QoS). In this study, we propose a conflict-free mechanism 
for updates of routing and rerouting tables of nodes by the controller. This 
mechanism works without disrupting the current traffic if both persistent 
multilink and node failures occur. We describe an efficient strategy for 
choosing the nodes to update and define an update scheme for these nodes. 
We show through the simulations of our updating scheme on various 
networks that our strategy improves QoS by reducing packet routing delays 
and the data loss rate in case of persistent multilink and node failures in the 
network. We also compare our results to those of several existing studies. 

 
Keywords: Network Virtualization, Software-Defined Networking (SDN), 
Centralized Architecture, QoS, Network Recovery 

 
Introduction 

For a long time, the difficulty of managing largescale 
network infrastructure (addressing, bandwidth, 
throughput, etc.) has been increasing in computer 
networks. The adoption of network virtualization 
technology has made this problem increasingly urgent 
and timely. The reason is that network virtualization 
allows easy creation of virtual networks using the virtual 
components built from an already existing physical IP 
network. However, in recent years, the Software-Defined 
Networking (SDN) approach has been presented as the 
most suitable solution for such a problem (Farhady et al., 
2015; Hu et al., 2014). In this technology, the control 
plane (Hu et al., 2014) is decoupled from the data plane. 
The control plane is the part of the network that defines 
the network management policies, while the data plane 
merely forwards data according to the rules defined by 
the control plane. The latter is centralized within the 
main equipment called the controller and the data plane 
(Hu et al., 2014) is kept on network devices (e.g., 
switches and routers). Such decoupling of planes provide 
flexibility and programmability, satisfying the cloud 
automation needs and making it easier to add new services 

in communication networks (Azodolmolky et al., 2013). 
The controller that hosts the control plane defines network 
management policies, e.g., the routing rules and integrates 
them inside network devices. When a failure occurs in the 
network, the devices forward the packets according to the 
rules defined in their flow tables (Rothenberg et al., 2012; 
Pham, 2014; Papan et al., 2017) in advance by the 
controller. This is the IPFRR (IP Fast ReRoute) scheme 
known for its fast rerouting capabilities. 

However, when a failure has been deemed persistent, 
these rules become obsolete and no longer allow for a 
good QoS in the network. The network QoS mostly 
suffers in case of multilink and node failures. A failure is 
determined to be persistent if its duration is more than 
ten minutes (Pham, 2014). In this case, the preceding 
routing rules are no longer optimal and become obsolete. 
Then, it is necessary to recalculate the routing paths and 
update the routing tables of the devices. The most 
important challenges to be overcome by the controller in 
this failure scenario are the following: 
 
• Construct new routing and rerouting rules based on 

the existing rules, to handle the failures 
• Select the nodes to update 
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• Choose the efficient update order that will be 
applied to the nodes; in particular, it needs to be 
decided whether all the involved nodes are to be 
updated simultaneously or sequentially 

• Decide whether to send all the computed rules at the 
same time; this challenge concerns the packet size 
and the maximum transmission unit (MTU) value of 
the network’s interfaces; in large-scale networks, the 
packet size of the updates can increase easily with 
the number of nodes 

 
Related Studies 

A review of the routing tables update problem in the 
literature yields few relevant ideas that have already 
been stated in basic routing protocols, such as Open 
Shortest Path First (OSPF) (Moy, 1998), Routing 
Information Protocol (RIP) (Perkins et al., 2003; 
Hedrick, 1988) and Enhanced Interior Gateway Routing 
Protocol (EIGRP). Perhaps this is why, to the best of our 
knowledge, many of the centralized (Muruganathan et al., 
2005), distributed (Moy, 1998; Perkins et al., 2003) and 
even hybrid (Rothenberg et al., 2012; Lim et al., 2008) 
rerouting schemes provided in computer networks 
simply define the rerouting paths calculation and do not 
specifically address the routing tables update challenge. 
Nevertheless, the above distributed protocols are not 
individually efficient in centralized architectures, such as 
SDN using the OpenFlow protocol (Pham, 2014). 

Lim et al. (2008) proposed a rerouting scheme based 
on a tree topology computation in Wireless Mesh 
Networks (WMN). In that tree-based routing scheme, 
numerous messages are exchanged between the root 
node and its child nodes when a routing table update is 
needed in case of a link or a node failure. 

Moreover, each node that needs to update its 
routing table must send a Route Request (RREQ) 
message to the root first; the root replies with an 
update message packet called Route Set (RSET) (its 
structure is shown in Fig. 1). In a large-scale network, 
this approach could be very harmful. 

In a centralized SDN architecture, when a persistent 
link failure has been identified, Pham (2014) suggests an 
update strategy based on an IPFRR (Papan et al., 2017) 
mechanism that avoids looping. In the cited study, the 
authors propose updating the nodes from the destination 
of a routing tree to the node that detected the failure. 
However, this scheme has the following limitations: 

• Overloading of the rerouting path, which may affect 
the handling of other link failures and load 
balancing in the network 

• Involving nodes for which an update is not 
necessarily needed; this increases the conflict risks 
to be managed in the rerouting path 

• Only stating the order of updating the routing tables 
from one node to another, but not stating how the 
topology will be recomputed and how the update’s 
information will be sent by the controller 

 
Our Contribution 

The main motivation of this paper is to improve the 
computer network’s QoS by providing solutions to the 
drawbacks cited above for the approaches of (Pham, 
2014; Lim et al., 2008). The contribution of this paper is 
the continuation of our work that previously appeared in 
Myoupo et al. (2018). More precisely, our contribution 
is a method of updating routing and rerouting tables of 
nodes by a controller. In contrast to the approach in 
Myoupo et al. (2018) in which only a single link failure 
is considered, this new approach also considers multilink 
and node failures; we describe it through three aspects: 
 
• Determination of nodes involved in the update 

process: We show that by updating certain particular 
nodes, we can obtain lower packet routing delays in 
case of a persistent link and node failure than in case 
of a transient failure 

• Construction of an update packet structure: We 
present a packet structure in the form of a vector of 
lists, inspired by the Link State Update (LSU) and 
Link State Advertisement (LSA) packets’ structure of 
the Open Shortest Path First (OSPF) protocol (Moy, 
1998). The structure of the update packet must be 
considered carefully to reduce the size of update 
packets which can facilitate easier forwarding of the 
updated routing information over the network 

• Definition of a nodes’ update scheme: We opt for 
both simultaneous and sequential updates of the 
involved nodes. Simultaneous update refers to 
particular nodes called critical nodes that are not 
directly linked by links; sequential update refers to 
the nodes on the original rerouting path used by the 
IPFRR strategy applied in Pham (2014) to deal with 
a transient failure. This approach helps reduce the 
rerouting paths’ overloading 

 

 
 

Fig. 1: Sample line graph using colours that contrast well both on screen and on a black-and-white hardcopy 

Type = REST Lenght Flag Lifetime Source sequence 

number 
Node address#1 

(source) 

Node address #n 

(destination) 

1 1 1 4 4 4 4 

n denotes number of notifying nodes 



Yannick Florian Yankam et al. / Journal of Computer Science 2019, 15 (3): 332.345 
DOI: 10.3844/jcssp.2019.332.345 

 

334 

The remainder of this paper is organized as follows. 
In section 2, we propose several hypotheses related to 
this study. Section 3 presents our update strategy for a 
single persistent link failure. Section 4 presents our 
update strategy for a persistent and non-simultaneous 
multilink failure. Section 5 presents our approach to the 
case of a virtual node failure. Our solution for the case of 
a physical node failure is presented in section 6. Section 
7 describes numerical results of simulations. Finally, 
section 8 concludes the paper.  

Hypotheses 

In this work, we assume that the network is 
represented by a graph with bidirectional links. Each 
edge is associated with a weight that represents the 
bandwidth or the flow on that edge. The weight of nodes 
is not considered and it is assumed that for any pair of 
nodes, there are at least two disjoint paths, making it 
possible to connect them. 

We assume that there is already a rerouting scheme 
used for handle link and node failures. This scheme is 
based on Pham (2014), which exploits a shortest path 
tree called the nominal routing tree (Fig. 2a). It assumes 
that in case of a link failure, only one node detects the 
failure (node S in Fig. 2b) and reroutes packets 
according to the rules described in its routing table, as 
shown in Fig. 2b (black path). The node that detects 
failure is located in the red nominal routing tree that 
hosts the failure and the destination node (node D in Fig. 
2b) of the original nominal routing tree is located in the 
blue nominal routing tree. 

In case of node failure, all the links connected to 
that node fail. Then, multiple nodes detect the failure 
and each reroutes packets according to the rules 

provided for a single link failure. We consider a link to 
fail when flows can no longer use that link. A switch 
detects a link failure as unavailability of the port 
connected to that link.  

Our Loop-Free Routing Tables Update 

Method using a Vector of Lists of Triplets in 

Case of a Single Link Failure 

Here, we recall the results of Myoupo et al. (2018) 
that will be useful in the following. 

Let us consider a network represented by graph G (N, 
L), where N represents the set of nodes and L is the set 
of links. Let us consider the following definitions before 
they are used later: 
 
• Gr: The red part of the network that hosts a failure 
• Gb: The blue part of the network that hosts the 

destination node of a nominal routing tree 
• Nf: The node that detects a link failure when it occurs 
• border node: A node of the red part connected 

directly to a node of the blue part 
• critical node: A border node nearest to the node that 

detects a transient failure 
 
Our Critical Nodes’ Detection Mechanism 

We consider a persistent link failure (p, q) (Fig. 3). Let 
|N| = Cardinal (N) be the number of nodes and |L| = 
Cardinal (L) be the number of links. We also assume that 
node D is the destination of the flows of G (N, L). The link 
failure (p, q) generates the subgraph Gr, which is a routing 
tree with node p as the root (Fig. 3). For each node of Gr, 
there is a path linking it to p because of the tree topology. 

 

 
 (a) (b) 

 
Fig. 2: Rerouting scheme used for link failure. D indicates the destination (a) Nominal routing tree (b) Rerouting path 
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Fig. 3: Our mechanism for detecting the nodes to be updated 

 

 
 

Fig. 4: Our mechanism of detecting the nodes to be updated 

 
The dotted links indicate the possible presence of a 

topology. According to Pham (2014), there is at least 
one subgraph rooted in node r, which contains a set of 
nodes ri and connects an extremity i of Gr to node s of 
Gb; this is the bridge (i, s). Similarly, according to the 
configurations, there are subtrees Nc of G rooted in 
nodes ki (i = 1,2,…) and composed of nodes kj ≠ i that 
directly connect Gr to Gb. 

Our detection strategy uses only one bridge (instead 
of several) from each branch of the nominal tree Gr to 
retain the network structure. The search process starts 

from node p = Nf. We look for the first node of each 
routing tree’s branch that offers a bridge to reach Gb. 
That node k is a critical node. To reduce the loop risk in 
the routing, only these critical nodes among the border 
nodes will be updated. The exploration of a tree branch 
stops when a critical node has been found. For instance, 
in the case of Fig. 4, the critical nodes are 8 and 18.  

General Update Principle from one Node to Another 

While the critical nodes are located in different tree 
branches, they are all independent from each other; then, 
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the controller can update those critical nodes 
simultaneously through packet-out messages, without 
the loop risk. In addition to these critical nodes, the 
nodes of the rerouting path used to handle the 
preceding transient failure also need to be updated 
because of rerouting. As to the nodes of the rerouting 
path, the update will be performed gradually, starting 
from the extremity node i of the bridge located in Gr 
towards node p that detected the link failure. 

As the routing tables of the nodes in the rerouting 
path are used for transferring the rerouted flows, the 
update for these nodes will consist of applying these 
rerouting configurations in their routing tables as the 
new routing rules. The critical nodes’ routing tables will 
be updated to allow for these critical nodes to use a 
secondary bridge; the rerouting paths of these nodes 
must also be rebuilt by considering these new routing 
tables’ configurations. Consequently, the rerouting 
strategies previously developed by the controller will be 
recomputed by this method and reinstated in the various 
nodes of Gr. Otherwise, the routing tree would neither 
remain nominal nor be optimal, which would increase 
the packet routing delays. 

Internal Updates of Nodes in the Rerouting Path 

The internal updates of nodes are performed using a 
message containing a vector of lists of triplets that 
contains the updated data provided by the controller. 
This message’s structure is similar to that of LSU 
messages of the OSPF protocol (Fig. 5). Each entry in 
the update vector is a list of triplets (a, b, c), where a 
represents the entry gate of the flow to be modified, b is 
the new exit gate of this flow and c is the exit gate that 

will be used for forwarding the remainder of the message 
to the next node in the vector. In case of a switch, c will 
be a MAC address and in the case of a router, it will be 
the next hop’s IP address. For the nodes that need to 
update many entries in their routing table, only the last 
triplets in their update lists will have the value c ≠ 0. 
While the update message can easily expand with the 
number of nodes to be updated, considering the MTU 
value, the update packet of the nodes will be fragmented 
into smaller packets by the controller before being 
transmitted. Each fragment will be assigned to its 
appropriate group of nodes, as shown in Fig. 6. Each 
group of nodes of the rerouting path that receive an 
update message use it only when it receives a permission 
message from the controller or from the preceding node 
in the rerouting path; to achieve this latency, the SDN 
switches or routers are made of agents, as it is the case in 
Pham (2014) with filters. Flow management, analysis of 
the ports’ status and initiating the appropriate actions as 
specified by the controller are some features of these 
agents. When a node wants to use the update message, it 
reads the field k’s value, recovers its list of triplets, 
performs its updates, increments the value of k and returns 
the update message to the next node in the vector. The last 
triplet list has the value of c equal to 0; this signifies the 
end of update message transmission between the nodes of 
the rerouting path. When each node in a group receives its 
update triplets list, it checks if c = 0 in the last triplet and 
in such a case, updates its routing table and destroys the 
update message; otherwise, it forwards this update 
message to the next node.  

 

 
 

Fig. 5: Update structure of a vector of lists of triplets 
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Fig. 6: Fragmentation of the update message 

 

 
 

Fig. 7: Internal updates of nodes using a vector of lists of triplets 
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successive updates of a group of nodes 17, 15, 10 and 5 
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min in Pham (2014)); then, they are deemed persistent 
failures. Persistence of each failure will be detected by the 
controller consecutively. In this section, we propose several 
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resolution approaches that could be considered for updating 
the routing tables and explain our strategy. 

First Solution: Consecutive Update of Nodes as 

Link Failures are Deemed Persistent 

This solution suggests solving persistent link failure 
cases as they are detected by the controller. Each 
detected case is solved by applying the proposed 
approach to the persistent single link failure case. This 
solution is inspired by Pham (2014), which is related to 
the rerouting rules’ computation for cases of 
simultaneous and transient multilink failures. 

Figure 8 illustrates this solution for persistent and 
nonsimultaneous failures of two links. In this figure, let 
us assume that the link failure (3, 1) is deemed persistent 
before (8, 2) is by the controller. 

Then, the controller immediately recalculates the 
rerouting path to use the path 3-9-4 to reroute the flow 
and launches the update of nodes 3 and 9; this update 
introduces the new configuration presented in Fig. 8c. 
The controller starts the rerouting path computation 
(path 8-14-13) directly for link failure (8, 2) by 
considering this new configuration and sends the update 
message once the computation is complete.  

 

      
 (a) (b) 

 

 
(c) 

 
Fig. 8: Updates’ structure of a vector of lists of triplets (a) Original nominal routing tree with node 1 as the destination (b) Persistent 

non-simultaneous multilink failure (c) New configuration after persistent failure management 
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Second Solution: Synchronized Update of a Node’s 

Routing Tables as Persistent Link Failures are 

Gradually Detected 

Consider a network subject to a set of 
nonsimultaneous link failures. The main drawback of the 
first solution is the difficulty of managing multiple 
update messages for different link failures when they 
arrive simultaneously at the same node. To solve this 
question, we prove the following theorem: 

Theorem 1 

For any pair of non-simultaneous link failures, there 
exists at least one common node in subgraphs Gr and Gb 
corresponding to these two failures.  

Proof 

Let VN be a virtual network represented by a graph G 
(|N|, |L|) where |N| is the number of nodes and |L| the 
number of links. Let d be the destination of the flows of 
a Nominal routing tree of G. Let (l1, l2) be a pair of link 
failures. Let n1 be the node that has detected l1 and n2 the 
one that has detected l2. l1 subdivides G into two 
subgraphs G’1 and G’2, with n1∈G’1 and d ∈ G’2 such 
that ∪i∈(1,2) G’1 = G. Similarly, l2 divides G into G’’1 and 
G’’2 such that n2 ∈ G’’1 and d ∈ G’’2. 

Let us consider G’1 ∩ G’’1 = φ and G’2 ∩ G’’2 = φ. We 
have d ∈ G’2 and d ∈G’’2 ⇒ d ∈G’2∩G’’2; but G’2∩G’’2 = 
φ. So d ∈ φ, which is absurd. Hence G’2∩G’’2 ≠ φ. 
G’1∩G’’1 = φ ⇒ n1 ∉ G’’1 and n2 ∉ G’1. But, the failure l1 
creates the subdivision S1|G with G’1⊂S1|G and G’2⊂ S1|G. 
Similarly, l2 creates the subdivision S2|G such that 
G’’1⊂S2|G and G’’2⊂S2|G. Since each failure induces a 
subdivision of the graph G into two subgraphs, we have: 
S1|G⊂S2|G or S2|G⊂S1|G. Thus, n1 ∈S2|G ⇒ n1∈S2|G ⇒ n1 ∈ 
G’1∩G’’1 which is absurd because G’1∩G’’1 = φ. 

Theorem 1 states the existence of common nodes in 
different subtrees generated by n non-simultaneous and 
consecutively persistent link failures. These common 
nodes are the most likely nodes to cause conflicts in the 
routing tables update’ process between multiple 
messages. This theorem allows us to consider two 
approaches of solutions to this synchronization problem:  

Approach 1 

Wait for a packet-in message from the network 
before sending any update message for another link 
failure. When the updates’ data for a given failure is 
being applied in the network, the controller waits to 
receive a packet-in message from the last node group to 
be updated, before sending the update packets for 
another failure. Considering Fig. 6 related to the updates’ 
message fragmentation, the last group of packets is that 
of group 3, i.e., the packet-in message sent to the 
controller at the end of the update process for the 

handled failure will come from this group. In this group, 
it is the last node to be updated that will send this 
message, e.g., node 5 of Fig. 7 in section 3. This node 
will know that it is the last one by examining the value 
of c that is zero in the last update triplet. This approach 
has the advantage of avoiding the cases of conflicts and 
loss of update data for different failures; however, it has 
the major drawback of increasing latency. 

Approach 2 

Assign a label referencing the priority level of update 
messages for each failure.  

The controller adds into the update message for a 
given failure a priority order in the set of update 
messages related to other persistent detected link 
failures. This priority order is a field that is a date or an 
integer, the value of which is incremented each time a 
new persistent failure is detected. Hence, there is no need 
to know in advance the existence of any potentially 
persistent failures in the network to use this field. To 
avoid information loss, the controller must keep up to 
date internally the current value of this field. This 
approach helps avoid the assignment of the same label to 
two update messages concerning different failures. 

When multiple update messages are encountered 
within the same node, the value of the priority field is 
used to respect the precedence order; this is done 
especially when it is necessary to simultaneously apply 
many conflicting update data to a common entry of the 
relevant node’s routing table. Then, the message with the 
smallest priority value is used before other messages with 
larger values. Non-conflicting update data related to the 
same entries are applied simultaneously. This approach 
reduces latency by allowing multiple update messages of 
different failures to be forwarded simultaneously; the 
preceding solution does not allow this. 

Approach 2 is what we propose for a node’s update and 
synchronization problems in cases of non-simultaneous and 
persistent multiple link failures. This approach enhances 
that used for the case of a single persistent link failure 
proposed in section 3, with several adjustments: 
 
• A field is added to the update message structure to 

manage update synchronization in the common 
network parts delimited by several failures 

• We assume at least two persistent link failures in the 
network 

 
Our approach provides the following advantages: 

 
• Preserving the consistency of paths in the network 
• Maximizing handling of non-simultaneous link 

failures through the update synchronization method 
• Allowing us to treat the cases of simultaneous 

failures of two non-adjacent links to the same node 
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Fig. 9: Failure of node 14 

 
The Persistent Virtual Node Failure Case 

A node (router or switch) failure, whether physical or 
virtual, implies the impossibility of transferring data 
from any incoming port to an outgoing port of that node. 
This failure scenario directly leads to a simultaneous 
failure of several links. Figure 9 shows the failure of 
node 14 that induces failures of links (14, 17), (14, 13), 
(14, 9) and (14, 8). 

We consider for the moment a single node failure in a 
virtual plane. Then, a node failure can be considered as: 
 
• Simultaneous multiple link failures adjacent to the 

same node, as shown in Fig. 9 
• Internal damage of the node 
 

In both situations, it is impossible to transit flows 
from one input port of the equipment to another. The 
node failure’s persistence is detected based on that of 
failures of links adjacent to it. For various reasons, the 
persistence of these failures can be detected and 
addressed by the controller in several ways: 

Solution 1: Successive Detection of Persistent 

Adjacent Links’ Failures 

Persistence detection of multiple failed links is 
performed successively. In this case, the new rerouting 
paths are computed using the method of Pham (2014). 
The update mechanism used is approach 2 presented for 
the case of non-simultaneous multilink failures. 

Solution 2: Simultaneous Detection of Persistent 

Link Failures Adjacent to the Same Node 

In this case, the link failures that caused the node 
failure are all deemed persistent at the same time. 
According to the IPFRR strategy (Pham, 2014;    
Papan et al., 2017), the nodes that will detect the failure 
of node 14 are 17, 8, 9 and 13 (Fig. 9). These detector 
nodes will be the first to be updated to avoid the cycles 
in the rerouting; the next nodes are those of the rerouting 
path found by using the strategy of Pham (2014). The 
updates of the detector nodes will be primarily to divert 
flows for failed links to available links. For the case of 
Fig. 9 where node 1 is the routing tree destination, paths 
17-1611-4-1, 8-2-1, 9-3-1 and 13-9-3-1 can be used to 
treat the link failures (14,17), (14,8), (14,9) and (14,13), 
respectively. The general update principle for this second 
solution is as follows: 
 
1. The controller uses its global network view to detect 

the failed node from the list of failed adjacent links 
2. For each persistent link failure detected, the 

controller builds the updates’ messages based on 
our strategy proposed in section 2 to handle a 
single persistent link failure. A date field is 
included in each update message to manage 
synchronizations problems 

3. THE controller sends the updates’ messages to the 
nodes that detected the given node failure 

 
Our Strategy for a Persistent Physical Node 

Failure 

The network virtualization paradigm allows the 
sharing of a physical infrastructure via the creation of 
virtual networks that are hosted by this infrastructure 
(Mosharaf Kabir Chowdhury and Boutaba, 2010). Then, 
a physical node damage involves the failure of multiple 
virtual nodes belonging to the same plane or to different 
planes according to the mapping model that exists 
between the substrate network and the virtual networks 
being hosted (Nashid et al., 2016). Figure 10 shows a 
network virtualization environment including two virtual 
networks VN1 and VN2. 

Nodes 3 and 4 of VN1 and node 5 of VN2 are all 
hosted within node 2 of the substrate network. When 
substrate node 2 fails, it directly induces the failure of 
nodes 3 and 4 of VN1 and node 5 of VN2; the physical 
and virtual links also fail at the same time. 

In this type of configuration, the solutions proposed 
in Nashid et al. (2016) or Pham (2014) can be used for 
rerouting. In addition, various approaches to multilayer 
rerouting proposed in the framework of multilayer 
optical networks (Doumith, 2007) allow us to consider 
several routing tables update approaches: 
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Fig. 10: Physical node failure 

 
Solution 1: Uncoordinated Update 

This solution uses our previously proposed strategy 
for virtual node failure in each virtual network. As a 
result, the controller triggers the update for each virtual 
plane affected by the failure of the physical node. 

This approach suffers from an excessive protection 
bandwidth reservation that could decrease the network 
performance, especially in case of residual bandwidth 
deficiency in the network. 

Solution 2: Coordinated Update 

The aim is to define a sequential update process for 
the set of virtual networks affected by the substrate node 
failure. However, we first update the necessary nodes in 
the physical network (location of the physical node 
failure) before examining the hosted virtual planes: This 
strategy ensures the integrity of the substrate network, 
which affects the QoS in the network through its shared 
resources (bandwidth, throughput, etc). In the physical 
network, we can use our routing tables update scheme 
proposed for a virtual node failure. 

Considering the dimensioning network problem and 
the virtual network mapping on the physical network, a 
physical node failure can lead to a simultaneous failure 
of multiple virtual nodes; e.g., this is the case for virtual 
nodes 3 and 4 of virtual network VN1 in Fig. 10. This 
failure’s heterogeneity in the virtual networks makes 
the coordinated update process very difficult. Then, 
some update priority criteria for the affected virtual 
planes are needed to efficiently manage conflicts in the 
presence of multiple simultaneous persistent failures. 
These criteria are defined by the infrastructure provider 

according to the intended objectives. In this paper, we 
define two priority criteria: The number of failed 
virtual nodes and the traffic weight. Hence, depending 
on the infrastructure provider’s objectives, we can 
propose the following solutions for managing update 
for a set of affected virtual planes: 
 
• Prioritize the virtual nodes of the network with the 

fewest failed virtual nodes. This approach has the 
advantage of minimizing the routing conflicts. In the 
case of Fig. 10, the nodes of virtual network VN2 
present only one node failure, while VN1 is affected 
by two node failures. Then, the nodes of virtual 
network VN2 will be updated before those of VN1 

• Focus on the virtual network with the highest traffic 
weight: The advantage of this approach is the 
customers’ loyalty through a traffic-oriented QoS 

 
Implementation and Simulation Results 

The OMNet++ network simulator environment has 
been used to implement and evaluate our routing 
table’s update scheme. This network simulator 
provides an extensive graphical user interface (GUI), 
intelligent support, short computation times and an 
effective implementation of large-scale networks 
(Bilalb and Othmana, 2012). Moreover, the flexible 
NED language offered by OMNet++ allows full 
network topology customization even when the 
simulation is running, which meets the needs of our 
study. In the simulations, we consider the different 
networks in Table 1. These networks satisfy our 
hypotheses and have been randomly generated to 

1 

 
2 

 

3 

 
6 

 

8 

 

7 

 
4 

 
5

6 

Virtual 

Network  

(VN2) 

Virtual 

Network  

(VN1) 

Physical 

Network 

4

6 

3 

 

1 

 

2 

 

6 

 

5 

 
7 

 

8 

 

1 

 

3 

 

5 

 

4 

 
6 

 

7 

 
9 

 
8 

 



Yannick Florian Yankam et al. / Journal of Computer Science 2019, 15 (3): 332.345 
DOI: 10.3844/jcssp.2019.332.345 

 

342 

better assess the ability of our update strategies to 
apply to any network that satisfies our hypotheses.  

The simulations have been performed on a computer 
with the following configuration: Core i5 2.40 GHz 
CPU, 4.00 GB of RAM and 12 MB of cache. 

The objective of our simulations is to compare QoS of 
the network in the absence of persistent link failures and in 
the presence of such failures to show the efficiency of our 
routing tables update strategy for the QoS improvement in 
the presence of failures. To this end, we performed 
simulations on high data rate networks (1.2 Mbits/sec to 
512 Mbits/sec) of various scales and focused on packet 
routing delays and the data loss rate. We also compare our 
results to several existing studies. For both link and node 
failures, the data were obtained by performing several tests 
on the networks in the following order: 
 
• In the absence of failures 
• In the presence of a transient link failure 
• In the scenario where the above link or node failure 

was deemed persistent 
 

The analysis of packets’ routing delays in various 
nodes and various network instability scenarios allowed 
us to appreciate the QoS variability. Consequently, in the 
case of a single persistent link failure, the average of 
packet routing delays in network 3 is presented in Fig. 11. 
We note that the average packet routing time in the 
presence of a persistent link failure is lower than those 
observed in the presence of a transient failure; this occurs 

because some packets are forwarded through the critical 
nodes. In addition, there is a high gap between the TBR 
(Tree-Based Routing) approach and the packet routing 
delay in the network without a failure. This significant 
difference could be explained by the TBR approach 
relying on the data of neighbours to construct its updating 
information; since data of certain neighbours might not 
reach the destination node, the update data can be wrong. 
Our approach actually uses all the information from 
neighbouring nodes to build its update data, allowing 
optimal paths that reduce the packet transit time. 

Figure 11 reveals the results for a large-scale network 
(60 nodes); however, this result is similar to those for 
other tested networks (network1 and network 2) that are 
small. Network 3 is interesting to us because its size is 
more compatible with the SDN scale. 

Considering the node failure problem, Fig. 12 
presents the packet transit delays in the network. We 
note that the previous observations made for a persistent 
single link failure also apply here. The packet transit 
delays with our routing tables update method are lower 
than those in the literature. Then, in case of a persistent 
node or multilink failure, our method improves the 
packet transit delays. 
 
Table 1: Simulation networks 

Network Number of nodes Number of links 

Network1 10 18 

Network2 20 31 

Network3 60 90   

 

 
 

Fig. 11: Packets routing delays’ variations for a persistent single link failure in network3 
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Fig. 12: Packets routing delays’ variations for a persistent single node failure in network3 
 

 
 

Fig. 13: Comparison of the data loss rate of our update strategy 
 

Considering the data loss rate, we obtain the results 
displayed in Fig. 13 for a single link failure and Fig. 14 
for a single node and multilink failures. Both figures 
show that a link or node failure highly increase the data 
loss rate in the network. This data loss rate is more 
important for the case of a persistent single node failure 
than the persistent single link failure. We note a strong 
increase by approximately 60% of this data loss rate 

(Fig. 14) compared to those observed in the absence of 
failures. This phenomenon could be explained by the 
lack of resources needed to reroute the traffic. 
Nevertheless, our approach helps decrease this data loss 
rate to 24% (compared to the IPFRR method) and 43% 
(compared to the TBR method). This improvement 
means that our approach is better than TBR and IPFRR 
in terms of the data loss rate. 

Packets transit delays in the network without failure 
 

Packets transit delays for transient single node failure with IPFRR method 
 

Packets transit delays for a persistent single node failure with TBR method 
 

Packets transit delays for a persistent single node failure with our method 

0.7 
 

 
0.6 

 

 
0.5 

 

 

0.4 
 

 
0.3 

 
 

0.2 
 

 

0.1 

 
 

0 
0    1   2   3   4    5   6    7   8   9   10 11 12  13 14  15 16  17 18 19  20 21 22  23 24  25 26 27  28 29  30 31 

Simulation time (sec) 

E
n
d
-t

o
-e

n
d
 t

ra
n
sm

is
si

o
n
 d

el
ay

s 
(s

ec
) 

195 
 
 

180 
 

165 
 

150 
 

135 
 

120 
 

105 
 

90 
 

75 
 

60 
 

45 
 

30 
 

15 
 

0 

L
o
st

 p
ac

k
et

s 

Nodes of network 3 

Data lost rate without failure 
 

Data lost rate using the IPFRR approach 
 

Data lost rate using out update approach 
 

Data lost rate using the TBR approach 



Yannick Florian Yankam et al. / Journal of Computer Science 2019, 15 (3): 332.345 
DOI: 10.3844/jcssp.2019.332.345 

 

344 

 
 

Fig. 14: Comparison of the data loss rate of our update strategy to those of Pham (2014) and TBR for network3 in case of node failure 

 
Conclusion 

In this paper, our aim was to propose a routing and 
rerouting tables’ update mechanism to overcome nodes’ 
reconfiguration challenges in case of persistent single 
link, multilink and node failures in a virtual network. 
Hence, we proposed an update strategy that efficiently 
identified the nodes to be updated and defined an update 
scheme for those nodes. This scheme, originally built on 
a vector of lists of triplets inspired by OSPF’s LSU 
packet structure has been adapted to treating the cases of 
persistent multilink and node failures. The simulations 
we performed show that our routing tables update 
method helps reduce packet routing delays and the data 
loss rate, which are two important metrics in computer 
networks. Consequently, this study provides solutions to 
the routing tables’ update challenge in the SDN 
architectures, to offer a good QoS at all times to the 
endusers and avoid losing customers to infrastructure 
providers (InP). In addition, the ideas presented in this 
paper and related to the management of multiple virtual 
planes in case of a node failure can help the InP better 
allocate resources for network recovery. 

To improve this work, further research could 
specifically address the flow congestion problem in the 
network when there are numerous active users’ requests. 
Even though our update approach is effective, update 
messages can be stopped by certain network congestion 
cases. In these cases, our method will not be very useful.  
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