

 © 2019 Yannick Florian Yankam, Jean Frédéric Myoupo and Vianney Kengne Tchendji. This open access article is

distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

A Conflict-Free Routing Tables Update Method for Persistent

Multilink and Node Failures in SDN Architectures

1
Yannick Florian Yankam,

2
Jean Frédéric Myoupo and

1
Vianney Kengne Tchendji

1Department of Mathematics and Computer Science, University of Dschang, Dschang, Cameroon
2Computer Science Lab-MIS, University of Picardie Jules Verne, Amiens, France

Article history

Received: 21-12-2018

Revised: 31-12-2018

Accepted: 11-03-2019

Corresponding Author:

Jean Frédéric Myoupo

Computer Science Lab-MIS,

University of Picardie Jules

Verne, Amiens, France
Email: jeanfrederic.myoupo@u-picardie.fr

Abstract: The large-scale network management abilities of centralized
architectures, such as Software-Defined Networking (SDN), are attracting
increasing interest from major computer networking companies. In this
architecture type, the nodes follow the rerouting rules predefined by the
control plane in the controller. However, when a link or node failure becomes
persistent over the time, the controller must recompute the routing and
rerouting rules and update the relevant nodes to maintain an acceptable
quality of service (QoS). In this study, we propose a conflict-free mechanism
for updates of routing and rerouting tables of nodes by the controller. This
mechanism works without disrupting the current traffic if both persistent
multilink and node failures occur. We describe an efficient strategy for
choosing the nodes to update and define an update scheme for these nodes.
We show through the simulations of our updating scheme on various
networks that our strategy improves QoS by reducing packet routing delays
and the data loss rate in case of persistent multilink and node failures in the
network. We also compare our results to those of several existing studies.

Keywords: Network Virtualization, Software-Defined Networking (SDN),
Centralized Architecture, QoS, Network Recovery

Introduction

For a long time, the difficulty of managing largescale
network infrastructure (addressing, bandwidth,
throughput, etc.) has been increasing in computer
networks. The adoption of network virtualization
technology has made this problem increasingly urgent
and timely. The reason is that network virtualization
allows easy creation of virtual networks using the virtual
components built from an already existing physical IP
network. However, in recent years, the Software-Defined
Networking (SDN) approach has been presented as the
most suitable solution for such a problem (Farhady et al.,
2015; Hu et al., 2014). In this technology, the control
plane (Hu et al., 2014) is decoupled from the data plane.
The control plane is the part of the network that defines
the network management policies, while the data plane
merely forwards data according to the rules defined by
the control plane. The latter is centralized within the
main equipment called the controller and the data plane
(Hu et al., 2014) is kept on network devices (e.g.,
switches and routers). Such decoupling of planes provide
flexibility and programmability, satisfying the cloud
automation needs and making it easier to add new services

in communication networks (Azodolmolky et al., 2013).
The controller that hosts the control plane defines network
management policies, e.g., the routing rules and integrates
them inside network devices. When a failure occurs in the
network, the devices forward the packets according to the
rules defined in their flow tables (Rothenberg et al., 2012;
Pham, 2014; Papan et al., 2017) in advance by the
controller. This is the IPFRR (IP Fast ReRoute) scheme
known for its fast rerouting capabilities.

However, when a failure has been deemed persistent,
these rules become obsolete and no longer allow for a
good QoS in the network. The network QoS mostly
suffers in case of multilink and node failures. A failure is
determined to be persistent if its duration is more than
ten minutes (Pham, 2014). In this case, the preceding
routing rules are no longer optimal and become obsolete.
Then, it is necessary to recalculate the routing paths and
update the routing tables of the devices. The most
important challenges to be overcome by the controller in
this failure scenario are the following:

• Construct new routing and rerouting rules based on

the existing rules, to handle the failures
• Select the nodes to update

Yannick Florian Yankam et al. / Journal of Computer Science 2019, 15 (3): 332.345
DOI: 10.3844/jcssp.2019.332.345

333

• Choose the efficient update order that will be
applied to the nodes; in particular, it needs to be
decided whether all the involved nodes are to be
updated simultaneously or sequentially

• Decide whether to send all the computed rules at the
same time; this challenge concerns the packet size
and the maximum transmission unit (MTU) value of
the network’s interfaces; in large-scale networks, the
packet size of the updates can increase easily with
the number of nodes

Related Studies

A review of the routing tables update problem in the
literature yields few relevant ideas that have already
been stated in basic routing protocols, such as Open
Shortest Path First (OSPF) (Moy, 1998), Routing
Information Protocol (RIP) (Perkins et al., 2003;
Hedrick, 1988) and Enhanced Interior Gateway Routing
Protocol (EIGRP). Perhaps this is why, to the best of our
knowledge, many of the centralized (Muruganathan et al.,
2005), distributed (Moy, 1998; Perkins et al., 2003) and
even hybrid (Rothenberg et al., 2012; Lim et al., 2008)
rerouting schemes provided in computer networks
simply define the rerouting paths calculation and do not
specifically address the routing tables update challenge.
Nevertheless, the above distributed protocols are not
individually efficient in centralized architectures, such as
SDN using the OpenFlow protocol (Pham, 2014).

Lim et al. (2008) proposed a rerouting scheme based
on a tree topology computation in Wireless Mesh
Networks (WMN). In that tree-based routing scheme,
numerous messages are exchanged between the root
node and its child nodes when a routing table update is
needed in case of a link or a node failure.

Moreover, each node that needs to update its
routing table must send a Route Request (RREQ)
message to the root first; the root replies with an
update message packet called Route Set (RSET) (its
structure is shown in Fig. 1). In a large-scale network,
this approach could be very harmful.

In a centralized SDN architecture, when a persistent
link failure has been identified, Pham (2014) suggests an
update strategy based on an IPFRR (Papan et al., 2017)
mechanism that avoids looping. In the cited study, the
authors propose updating the nodes from the destination
of a routing tree to the node that detected the failure.
However, this scheme has the following limitations:

• Overloading of the rerouting path, which may affect
the handling of other link failures and load
balancing in the network

• Involving nodes for which an update is not
necessarily needed; this increases the conflict risks
to be managed in the rerouting path

• Only stating the order of updating the routing tables
from one node to another, but not stating how the
topology will be recomputed and how the update’s
information will be sent by the controller

Our Contribution

The main motivation of this paper is to improve the
computer network’s QoS by providing solutions to the
drawbacks cited above for the approaches of (Pham,
2014; Lim et al., 2008). The contribution of this paper is
the continuation of our work that previously appeared in
Myoupo et al. (2018). More precisely, our contribution
is a method of updating routing and rerouting tables of
nodes by a controller. In contrast to the approach in
Myoupo et al. (2018) in which only a single link failure
is considered, this new approach also considers multilink
and node failures; we describe it through three aspects:

• Determination of nodes involved in the update

process: We show that by updating certain particular
nodes, we can obtain lower packet routing delays in
case of a persistent link and node failure than in case
of a transient failure

• Construction of an update packet structure: We
present a packet structure in the form of a vector of
lists, inspired by the Link State Update (LSU) and
Link State Advertisement (LSA) packets’ structure of
the Open Shortest Path First (OSPF) protocol (Moy,
1998). The structure of the update packet must be
considered carefully to reduce the size of update
packets which can facilitate easier forwarding of the
updated routing information over the network

• Definition of a nodes’ update scheme: We opt for
both simultaneous and sequential updates of the
involved nodes. Simultaneous update refers to
particular nodes called critical nodes that are not
directly linked by links; sequential update refers to
the nodes on the original rerouting path used by the
IPFRR strategy applied in Pham (2014) to deal with
a transient failure. This approach helps reduce the
rerouting paths’ overloading

Fig. 1: Sample line graph using colours that contrast well both on screen and on a black-and-white hardcopy

Type = REST Lenght Flag Lifetime Source sequence

number
Node address#1

(source)

Node address #n

(destination)

1 1 1 4 4 4 4

n denotes number of notifying nodes

Yannick Florian Yankam et al. / Journal of Computer Science 2019, 15 (3): 332.345
DOI: 10.3844/jcssp.2019.332.345

334

The remainder of this paper is organized as follows.
In section 2, we propose several hypotheses related to
this study. Section 3 presents our update strategy for a
single persistent link failure. Section 4 presents our
update strategy for a persistent and non-simultaneous
multilink failure. Section 5 presents our approach to the
case of a virtual node failure. Our solution for the case of
a physical node failure is presented in section 6. Section
7 describes numerical results of simulations. Finally,
section 8 concludes the paper.

Hypotheses

In this work, we assume that the network is
represented by a graph with bidirectional links. Each
edge is associated with a weight that represents the
bandwidth or the flow on that edge. The weight of nodes
is not considered and it is assumed that for any pair of
nodes, there are at least two disjoint paths, making it
possible to connect them.

We assume that there is already a rerouting scheme
used for handle link and node failures. This scheme is
based on Pham (2014), which exploits a shortest path
tree called the nominal routing tree (Fig. 2a). It assumes
that in case of a link failure, only one node detects the
failure (node S in Fig. 2b) and reroutes packets
according to the rules described in its routing table, as
shown in Fig. 2b (black path). The node that detects
failure is located in the red nominal routing tree that
hosts the failure and the destination node (node D in Fig.
2b) of the original nominal routing tree is located in the
blue nominal routing tree.

In case of node failure, all the links connected to
that node fail. Then, multiple nodes detect the failure
and each reroutes packets according to the rules

provided for a single link failure. We consider a link to
fail when flows can no longer use that link. A switch
detects a link failure as unavailability of the port
connected to that link.

Our Loop-Free Routing Tables Update

Method using a Vector of Lists of Triplets in

Case of a Single Link Failure

Here, we recall the results of Myoupo et al. (2018)
that will be useful in the following.

Let us consider a network represented by graph G (N,
L), where N represents the set of nodes and L is the set
of links. Let us consider the following definitions before
they are used later:

• Gr: The red part of the network that hosts a failure
• Gb: The blue part of the network that hosts the

destination node of a nominal routing tree
• Nf: The node that detects a link failure when it occurs
• border node: A node of the red part connected

directly to a node of the blue part
• critical node: A border node nearest to the node that

detects a transient failure

Our Critical Nodes’ Detection Mechanism

We consider a persistent link failure (p, q) (Fig. 3). Let
|N| = Cardinal (N) be the number of nodes and |L| =
Cardinal (L) be the number of links. We also assume that
node D is the destination of the flows of G (N, L). The link
failure (p, q) generates the subgraph Gr, which is a routing
tree with node p as the root (Fig. 3). For each node of Gr,
there is a path linking it to p because of the tree topology.

 (a) (b)

Fig. 2: Rerouting scheme used for link failure. D indicates the destination (a) Nominal routing tree (b) Rerouting path

V

Arc of a nominal routing path

Non nominal routing path arc

Failed link

Rerouting path

K

S

T

1

K

V

U

T

S
D

Arc of a nominal routing path

Non nominal routing path arc

D

Yannick Florian Yankam et al. / Journal of Computer Science 2019, 15 (3): 332.345
DOI: 10.3844/jcssp.2019.332.345

335

Fig. 3: Our mechanism for detecting the nodes to be updated

Fig. 4: Our mechanism of detecting the nodes to be updated

The dotted links indicate the possible presence of a

topology. According to Pham (2014), there is at least
one subgraph rooted in node r, which contains a set of
nodes ri and connects an extremity i of Gr to node s of
Gb; this is the bridge (i, s). Similarly, according to the
configurations, there are subtrees Nc of G rooted in
nodes ki (i = 1,2,…) and composed of nodes kj ≠ i that
directly connect Gr to Gb.

Our detection strategy uses only one bridge (instead
of several) from each branch of the nominal tree Gr to
retain the network structure. The search process starts

from node p = Nf. We look for the first node of each
routing tree’s branch that offers a bridge to reach Gb.
That node k is a critical node. To reduce the loop risk in
the routing, only these critical nodes among the border
nodes will be updated. The exploration of a tree branch
stops when a critical node has been found. For instance,
in the case of Fig. 4, the critical nodes are 8 and 18.

General Update Principle from one Node to Another

While the critical nodes are located in different tree
branches, they are all independent from each other; then,

Main bridge

G
r

N
c

p

r
k

j

i

q

d

s

Secondary bridge
Undefined link or topology

Nominal routing path arc in Gr

Nominal routing path arc in Gb

21
17

14
15

12

10

20

7

5

19
2

18

8

Bridge

16

13

9

11

6

4

1

3

Nominal routing path arc in Gr

Nominal routing path arc in Gb

Rerouting path

Link failure (2-1)

A Critical node 18

Yannick Florian Yankam et al. / Journal of Computer Science 2019, 15 (3): 332.345
DOI: 10.3844/jcssp.2019.332.345

336

the controller can update those critical nodes
simultaneously through packet-out messages, without
the loop risk. In addition to these critical nodes, the
nodes of the rerouting path used to handle the
preceding transient failure also need to be updated
because of rerouting. As to the nodes of the rerouting
path, the update will be performed gradually, starting
from the extremity node i of the bridge located in Gr
towards node p that detected the link failure.

As the routing tables of the nodes in the rerouting
path are used for transferring the rerouted flows, the
update for these nodes will consist of applying these
rerouting configurations in their routing tables as the
new routing rules. The critical nodes’ routing tables will
be updated to allow for these critical nodes to use a
secondary bridge; the rerouting paths of these nodes
must also be rebuilt by considering these new routing
tables’ configurations. Consequently, the rerouting
strategies previously developed by the controller will be
recomputed by this method and reinstated in the various
nodes of Gr. Otherwise, the routing tree would neither
remain nominal nor be optimal, which would increase
the packet routing delays.

Internal Updates of Nodes in the Rerouting Path

The internal updates of nodes are performed using a
message containing a vector of lists of triplets that
contains the updated data provided by the controller.
This message’s structure is similar to that of LSU
messages of the OSPF protocol (Fig. 5). Each entry in
the update vector is a list of triplets (a, b, c), where a
represents the entry gate of the flow to be modified, b is
the new exit gate of this flow and c is the exit gate that

will be used for forwarding the remainder of the message
to the next node in the vector. In case of a switch, c will
be a MAC address and in the case of a router, it will be
the next hop’s IP address. For the nodes that need to
update many entries in their routing table, only the last
triplets in their update lists will have the value c ≠ 0.
While the update message can easily expand with the
number of nodes to be updated, considering the MTU
value, the update packet of the nodes will be fragmented
into smaller packets by the controller before being
transmitted. Each fragment will be assigned to its
appropriate group of nodes, as shown in Fig. 6. Each
group of nodes of the rerouting path that receive an
update message use it only when it receives a permission
message from the controller or from the preceding node
in the rerouting path; to achieve this latency, the SDN
switches or routers are made of agents, as it is the case in
Pham (2014) with filters. Flow management, analysis of
the ports’ status and initiating the appropriate actions as
specified by the controller are some features of these
agents. When a node wants to use the update message, it
reads the field k’s value, recovers its list of triplets,
performs its updates, increments the value of k and returns
the update message to the next node in the vector. The last
triplet list has the value of c equal to 0; this signifies the
end of update message transmission between the nodes of
the rerouting path. When each node in a group receives its
update triplets list, it checks if c = 0 in the last triplet and
in such a case, updates its routing table and destroys the
update message; otherwise, it forwards this update
message to the next node.

Fig. 5: Update structure of a vector of lists of triplets

Vector of n nodes to update

(al1, bl1, cl1)

(a00, b00, c00) (a01, b01, c01) (a02, b02, c02) (a0n−1, b0n−1, c0n−1)

(a10, b10, c10)

(ak0, bk0, ck0)

(al2, bl2, cl2)

(aj2, bj2, cj2) (amn−1, bmn−1, cmn−1)

n−1
2 1 0

0

1

k

Triplets’ lists

Yannick Florian Yankam et al. / Journal of Computer Science 2019, 15 (3): 332.345
DOI: 10.3844/jcssp.2019.332.345

337

Fig. 6: Fragmentation of the update message

Fig. 7: Internal updates of nodes using a vector of lists of triplets

The use of this message structure is illustrated for the

successive updates of a group of nodes 17, 15, 10 and 5
in Fig. 7. In that figure, node 5 is the last one to be
updated in the group.

Reconstruction of Rerouting Tables’ Rules using

the New Routing Configurations

While rerouting rules are computed based on the new
routing table’s configurations, rerouting rules of each
updated node must also be updated. Using the approach of
Pham (2014) on a virtual nominal routing tree built by the
controller, the controller computes the new rerouting
rules; during this step, the network uses the prior rerouting
rules as in the Cisco routers, resulting in poor QoS. To
minimize the latencies during computations, the
operations for determining the critical nodes and

computations of the new routing and rerouting rules must
all be done in advance in the controller before initiating
any tables’ update process. For the same reasons, the
updates to the routing tables and rerouting tables in each
node can be performed at the same time assuming that the
controller has already provided the rules.

Our Routing Tables Update Approach for

non-Simultaneous and Persistent

Multilink Failures Multiple link failures are called non-
simultaneous when they occur sequentially. Each of these
failures can persist over time (for instance, more than 10
min in Pham (2014)); then, they are deemed persistent
failures. Persistence of each failure will be detected by the
controller consecutively. In this section, we propose several

Original message

SDN

controller

Fragment 3

Fragment 2

Fragment 1

Triplets’ lists vector

consumption
begin end

Paquet-out-messages

Third group of

nodes
First group of

nodes

Second group of

nodes
Acquitment

message
Acquitment

message

k

17 15 10 5

k+1 k=1 k=2 k=3
k+1 k k+1 k

Message

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

(1,4,0)

(6,2,0)

(2,3,0)

(4,1,3)

(1,4,0)

(6,2,0)

(2,3,0)

(4,1,2)

(1,4,0)

(6,2,0)

(2,3,0)

(4,1,3)

(1,4,0)

(6,2,0)

(2,3,0)

(4,1,0)

Yannick Florian Yankam et al. / Journal of Computer Science 2019, 15 (3): 332.345
DOI: 10.3844/jcssp.2019.332.345

338

resolution approaches that could be considered for updating
the routing tables and explain our strategy.

First Solution: Consecutive Update of Nodes as

Link Failures are Deemed Persistent

This solution suggests solving persistent link failure
cases as they are detected by the controller. Each
detected case is solved by applying the proposed
approach to the persistent single link failure case. This
solution is inspired by Pham (2014), which is related to
the rerouting rules’ computation for cases of
simultaneous and transient multilink failures.

Figure 8 illustrates this solution for persistent and
nonsimultaneous failures of two links. In this figure, let
us assume that the link failure (3, 1) is deemed persistent
before (8, 2) is by the controller.

Then, the controller immediately recalculates the
rerouting path to use the path 3-9-4 to reroute the flow
and launches the update of nodes 3 and 9; this update
introduces the new configuration presented in Fig. 8c.
The controller starts the rerouting path computation
(path 8-14-13) directly for link failure (8, 2) by
considering this new configuration and sends the update
message once the computation is complete.

 (a) (b)

(c)

Fig. 8: Updates’ structure of a vector of lists of triplets (a) Original nominal routing tree with node 1 as the destination (b) Persistent

non-simultaneous multilink failure (c) New configuration after persistent failure management

15

17

14
16

13

11

6

4

1

3

9 8

12

7

10

5

2

15

17

14
16

13

11

4

1

3

9 8

12

7

10

5

2

6

15

17

14
16

13

11

4

1

3

9 8

12

7

10

5

2

6

Yannick Florian Yankam et al. / Journal of Computer Science 2019, 15 (3): 332.345
DOI: 10.3844/jcssp.2019.332.345

339

Second Solution: Synchronized Update of a Node’s

Routing Tables as Persistent Link Failures are

Gradually Detected

Consider a network subject to a set of
nonsimultaneous link failures. The main drawback of the
first solution is the difficulty of managing multiple
update messages for different link failures when they
arrive simultaneously at the same node. To solve this
question, we prove the following theorem:

Theorem 1

For any pair of non-simultaneous link failures, there
exists at least one common node in subgraphs Gr and Gb
corresponding to these two failures.

Proof

Let VN be a virtual network represented by a graph G
(|N|, |L|) where |N| is the number of nodes and |L| the
number of links. Let d be the destination of the flows of
a Nominal routing tree of G. Let (l1, l2) be a pair of link
failures. Let n1 be the node that has detected l1 and n2 the
one that has detected l2. l1 subdivides G into two
subgraphs G’1 and G’2, with n1∈G’1 and d ∈ G’2 such
that ∪i∈(1,2) G’1 = G. Similarly, l2 divides G into G’’1 and
G’’2 such that n2 ∈ G’’1 and d ∈ G’’2.

Let us consider G’1 ∩ G’’1 = φ and G’2 ∩ G’’2 = φ. We
have d ∈ G’2 and d ∈G’’2 ⇒ d ∈G’2∩G’’2; but G’2∩G’’2 =
φ. So d ∈ φ, which is absurd. Hence G’2∩G’’2 ≠ φ.
G’1∩G’’1 = φ ⇒ n1 ∉ G’’1 and n2 ∉ G’1. But, the failure l1
creates the subdivision S1|G with G’1⊂S1|G and G’2⊂ S1|G.
Similarly, l2 creates the subdivision S2|G such that
G’’1⊂S2|G and G’’2⊂S2|G. Since each failure induces a
subdivision of the graph G into two subgraphs, we have:
S1|G⊂S2|G or S2|G⊂S1|G. Thus, n1 ∈S2|G ⇒ n1∈S2|G ⇒ n1 ∈
G’1∩G’’1 which is absurd because G’1∩G’’1 = φ.

Theorem 1 states the existence of common nodes in
different subtrees generated by n non-simultaneous and
consecutively persistent link failures. These common
nodes are the most likely nodes to cause conflicts in the
routing tables update’ process between multiple
messages. This theorem allows us to consider two
approaches of solutions to this synchronization problem:

Approach 1

Wait for a packet-in message from the network
before sending any update message for another link
failure. When the updates’ data for a given failure is
being applied in the network, the controller waits to
receive a packet-in message from the last node group to
be updated, before sending the update packets for
another failure. Considering Fig. 6 related to the updates’
message fragmentation, the last group of packets is that
of group 3, i.e., the packet-in message sent to the
controller at the end of the update process for the

handled failure will come from this group. In this group,
it is the last node to be updated that will send this
message, e.g., node 5 of Fig. 7 in section 3. This node
will know that it is the last one by examining the value
of c that is zero in the last update triplet. This approach
has the advantage of avoiding the cases of conflicts and
loss of update data for different failures; however, it has
the major drawback of increasing latency.

Approach 2

Assign a label referencing the priority level of update
messages for each failure.

The controller adds into the update message for a
given failure a priority order in the set of update
messages related to other persistent detected link
failures. This priority order is a field that is a date or an
integer, the value of which is incremented each time a
new persistent failure is detected. Hence, there is no need
to know in advance the existence of any potentially
persistent failures in the network to use this field. To
avoid information loss, the controller must keep up to
date internally the current value of this field. This
approach helps avoid the assignment of the same label to
two update messages concerning different failures.

When multiple update messages are encountered
within the same node, the value of the priority field is
used to respect the precedence order; this is done
especially when it is necessary to simultaneously apply
many conflicting update data to a common entry of the
relevant node’s routing table. Then, the message with the
smallest priority value is used before other messages with
larger values. Non-conflicting update data related to the
same entries are applied simultaneously. This approach
reduces latency by allowing multiple update messages of
different failures to be forwarded simultaneously; the
preceding solution does not allow this.

Approach 2 is what we propose for a node’s update and
synchronization problems in cases of non-simultaneous and
persistent multiple link failures. This approach enhances
that used for the case of a single persistent link failure
proposed in section 3, with several adjustments:

• A field is added to the update message structure to

manage update synchronization in the common
network parts delimited by several failures

• We assume at least two persistent link failures in the
network

Our approach provides the following advantages:

• Preserving the consistency of paths in the network
• Maximizing handling of non-simultaneous link

failures through the update synchronization method
• Allowing us to treat the cases of simultaneous

failures of two non-adjacent links to the same node

Yannick Florian Yankam et al. / Journal of Computer Science 2019, 15 (3): 332.345
DOI: 10.3844/jcssp.2019.332.345

340

Fig. 9: Failure of node 14

The Persistent Virtual Node Failure Case

A node (router or switch) failure, whether physical or
virtual, implies the impossibility of transferring data
from any incoming port to an outgoing port of that node.
This failure scenario directly leads to a simultaneous
failure of several links. Figure 9 shows the failure of
node 14 that induces failures of links (14, 17), (14, 13),
(14, 9) and (14, 8).

We consider for the moment a single node failure in a
virtual plane. Then, a node failure can be considered as:

• Simultaneous multiple link failures adjacent to the

same node, as shown in Fig. 9
• Internal damage of the node

In both situations, it is impossible to transit flows
from one input port of the equipment to another. The
node failure’s persistence is detected based on that of
failures of links adjacent to it. For various reasons, the
persistence of these failures can be detected and
addressed by the controller in several ways:

Solution 1: Successive Detection of Persistent

Adjacent Links’ Failures

Persistence detection of multiple failed links is
performed successively. In this case, the new rerouting
paths are computed using the method of Pham (2014).
The update mechanism used is approach 2 presented for
the case of non-simultaneous multilink failures.

Solution 2: Simultaneous Detection of Persistent

Link Failures Adjacent to the Same Node

In this case, the link failures that caused the node
failure are all deemed persistent at the same time.
According to the IPFRR strategy (Pham, 2014;
Papan et al., 2017), the nodes that will detect the failure
of node 14 are 17, 8, 9 and 13 (Fig. 9). These detector
nodes will be the first to be updated to avoid the cycles
in the rerouting; the next nodes are those of the rerouting
path found by using the strategy of Pham (2014). The
updates of the detector nodes will be primarily to divert
flows for failed links to available links. For the case of
Fig. 9 where node 1 is the routing tree destination, paths
17-1611-4-1, 8-2-1, 9-3-1 and 13-9-3-1 can be used to
treat the link failures (14,17), (14,8), (14,9) and (14,13),
respectively. The general update principle for this second
solution is as follows:

1. The controller uses its global network view to detect

the failed node from the list of failed adjacent links
2. For each persistent link failure detected, the

controller builds the updates’ messages based on
our strategy proposed in section 2 to handle a
single persistent link failure. A date field is
included in each update message to manage
synchronizations problems

3. THE controller sends the updates’ messages to the
nodes that detected the given node failure

Our Strategy for a Persistent Physical Node

Failure

The network virtualization paradigm allows the
sharing of a physical infrastructure via the creation of
virtual networks that are hosted by this infrastructure
(Mosharaf Kabir Chowdhury and Boutaba, 2010). Then,
a physical node damage involves the failure of multiple
virtual nodes belonging to the same plane or to different
planes according to the mapping model that exists
between the substrate network and the virtual networks
being hosted (Nashid et al., 2016). Figure 10 shows a
network virtualization environment including two virtual
networks VN1 and VN2.

Nodes 3 and 4 of VN1 and node 5 of VN2 are all
hosted within node 2 of the substrate network. When
substrate node 2 fails, it directly induces the failure of
nodes 3 and 4 of VN1 and node 5 of VN2; the physical
and virtual links also fail at the same time.

In this type of configuration, the solutions proposed
in Nashid et al. (2016) or Pham (2014) can be used for
rerouting. In addition, various approaches to multilayer
rerouting proposed in the framework of multilayer
optical networks (Doumith, 2007) allow us to consider
several routing tables update approaches:

17

15 16

12

10

7

5

2 3

1

4

6

11
13

9 8

14

Nominal routing path arc in Gb

Non nominal routing path arc

Rerouting path
A node which detect a node failure

A node failure

9

14

Yannick Florian Yankam et al. / Journal of Computer Science 2019, 15 (3): 332.345
DOI: 10.3844/jcssp.2019.332.345

341

Fig. 10: Physical node failure

Solution 1: Uncoordinated Update

This solution uses our previously proposed strategy
for virtual node failure in each virtual network. As a
result, the controller triggers the update for each virtual
plane affected by the failure of the physical node.

This approach suffers from an excessive protection
bandwidth reservation that could decrease the network
performance, especially in case of residual bandwidth
deficiency in the network.

Solution 2: Coordinated Update

The aim is to define a sequential update process for
the set of virtual networks affected by the substrate node
failure. However, we first update the necessary nodes in
the physical network (location of the physical node
failure) before examining the hosted virtual planes: This
strategy ensures the integrity of the substrate network,
which affects the QoS in the network through its shared
resources (bandwidth, throughput, etc). In the physical
network, we can use our routing tables update scheme
proposed for a virtual node failure.

Considering the dimensioning network problem and
the virtual network mapping on the physical network, a
physical node failure can lead to a simultaneous failure
of multiple virtual nodes; e.g., this is the case for virtual
nodes 3 and 4 of virtual network VN1 in Fig. 10. This
failure’s heterogeneity in the virtual networks makes
the coordinated update process very difficult. Then,
some update priority criteria for the affected virtual
planes are needed to efficiently manage conflicts in the
presence of multiple simultaneous persistent failures.
These criteria are defined by the infrastructure provider

according to the intended objectives. In this paper, we
define two priority criteria: The number of failed
virtual nodes and the traffic weight. Hence, depending
on the infrastructure provider’s objectives, we can
propose the following solutions for managing update
for a set of affected virtual planes:

• Prioritize the virtual nodes of the network with the

fewest failed virtual nodes. This approach has the
advantage of minimizing the routing conflicts. In the
case of Fig. 10, the nodes of virtual network VN2
present only one node failure, while VN1 is affected
by two node failures. Then, the nodes of virtual
network VN2 will be updated before those of VN1

• Focus on the virtual network with the highest traffic
weight: The advantage of this approach is the
customers’ loyalty through a traffic-oriented QoS

Implementation and Simulation Results

The OMNet++ network simulator environment has
been used to implement and evaluate our routing
table’s update scheme. This network simulator
provides an extensive graphical user interface (GUI),
intelligent support, short computation times and an
effective implementation of large-scale networks
(Bilalb and Othmana, 2012). Moreover, the flexible
NED language offered by OMNet++ allows full
network topology customization even when the
simulation is running, which meets the needs of our
study. In the simulations, we consider the different
networks in Table 1. These networks satisfy our
hypotheses and have been randomly generated to

1

2

3

6

8

7

4

5

6

Virtual

Network

(VN2)

Virtual

Network

(VN1)

Physical

Network

4

6

3

1

2

6

5

7

8

1

3

5

4

6

7

9

8

Yannick Florian Yankam et al. / Journal of Computer Science 2019, 15 (3): 332.345
DOI: 10.3844/jcssp.2019.332.345

342

better assess the ability of our update strategies to
apply to any network that satisfies our hypotheses.

The simulations have been performed on a computer
with the following configuration: Core i5 2.40 GHz
CPU, 4.00 GB of RAM and 12 MB of cache.

The objective of our simulations is to compare QoS of
the network in the absence of persistent link failures and in
the presence of such failures to show the efficiency of our
routing tables update strategy for the QoS improvement in
the presence of failures. To this end, we performed
simulations on high data rate networks (1.2 Mbits/sec to
512 Mbits/sec) of various scales and focused on packet
routing delays and the data loss rate. We also compare our
results to several existing studies. For both link and node
failures, the data were obtained by performing several tests
on the networks in the following order:

• In the absence of failures
• In the presence of a transient link failure
• In the scenario where the above link or node failure

was deemed persistent

The analysis of packets’ routing delays in various
nodes and various network instability scenarios allowed
us to appreciate the QoS variability. Consequently, in the
case of a single persistent link failure, the average of
packet routing delays in network 3 is presented in Fig. 11.
We note that the average packet routing time in the
presence of a persistent link failure is lower than those
observed in the presence of a transient failure; this occurs

because some packets are forwarded through the critical
nodes. In addition, there is a high gap between the TBR
(Tree-Based Routing) approach and the packet routing
delay in the network without a failure. This significant
difference could be explained by the TBR approach
relying on the data of neighbours to construct its updating
information; since data of certain neighbours might not
reach the destination node, the update data can be wrong.
Our approach actually uses all the information from
neighbouring nodes to build its update data, allowing
optimal paths that reduce the packet transit time.

Figure 11 reveals the results for a large-scale network
(60 nodes); however, this result is similar to those for
other tested networks (network1 and network 2) that are
small. Network 3 is interesting to us because its size is
more compatible with the SDN scale.

Considering the node failure problem, Fig. 12
presents the packet transit delays in the network. We
note that the previous observations made for a persistent
single link failure also apply here. The packet transit
delays with our routing tables update method are lower
than those in the literature. Then, in case of a persistent
node or multilink failure, our method improves the
packet transit delays.

Table 1: Simulation networks

Network Number of nodes Number of links

Network1 10 18

Network2 20 31

Network3 60 90

Fig. 11: Packets routing delays’ variations for a persistent single link failure in network3

Packets transit delays in the network without failure

Packets transit delays for transient link failure with IPFRR method

Packets transit delays for persistent link failure with TBR method

Packets transit delays for persistent link failure with our method

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

E
n
d
-t

o
-e

n
d
 t

ra
n
sm

is
si

o
n
 d

el
ay

s
(s

ec
)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Simulation time (sec)

Yannick Florian Yankam et al. / Journal of Computer Science 2019, 15 (3): 332.345
DOI: 10.3844/jcssp.2019.332.345

343

Fig. 12: Packets routing delays’ variations for a persistent single node failure in network3

Fig. 13: Comparison of the data loss rate of our update strategy

Considering the data loss rate, we obtain the results
displayed in Fig. 13 for a single link failure and Fig. 14
for a single node and multilink failures. Both figures
show that a link or node failure highly increase the data
loss rate in the network. This data loss rate is more
important for the case of a persistent single node failure
than the persistent single link failure. We note a strong
increase by approximately 60% of this data loss rate

(Fig. 14) compared to those observed in the absence of
failures. This phenomenon could be explained by the
lack of resources needed to reroute the traffic.
Nevertheless, our approach helps decrease this data loss
rate to 24% (compared to the IPFRR method) and 43%
(compared to the TBR method). This improvement
means that our approach is better than TBR and IPFRR
in terms of the data loss rate.

Packets transit delays in the network without failure

Packets transit delays for transient single node failure with IPFRR method

Packets transit delays for a persistent single node failure with TBR method

Packets transit delays for a persistent single node failure with our method

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Simulation time (sec)

E
n
d
-t

o
-e

n
d
 t

ra
n
sm

is
si

o
n
 d

el
ay

s
(s

ec
)

195

180

165

150

135

120

105

90

75

60

45

30

15

0

L
o
st

 p
ac

k
et

s

Nodes of network 3

Data lost rate without failure

Data lost rate using the IPFRR approach

Data lost rate using out update approach

Data lost rate using the TBR approach

Yannick Florian Yankam et al. / Journal of Computer Science 2019, 15 (3): 332.345
DOI: 10.3844/jcssp.2019.332.345

344

Fig. 14: Comparison of the data loss rate of our update strategy to those of Pham (2014) and TBR for network3 in case of node failure

Conclusion

In this paper, our aim was to propose a routing and
rerouting tables’ update mechanism to overcome nodes’
reconfiguration challenges in case of persistent single
link, multilink and node failures in a virtual network.
Hence, we proposed an update strategy that efficiently
identified the nodes to be updated and defined an update
scheme for those nodes. This scheme, originally built on
a vector of lists of triplets inspired by OSPF’s LSU
packet structure has been adapted to treating the cases of
persistent multilink and node failures. The simulations
we performed show that our routing tables update
method helps reduce packet routing delays and the data
loss rate, which are two important metrics in computer
networks. Consequently, this study provides solutions to
the routing tables’ update challenge in the SDN
architectures, to offer a good QoS at all times to the
endusers and avoid losing customers to infrastructure
providers (InP). In addition, the ideas presented in this
paper and related to the management of multiple virtual
planes in case of a node failure can help the InP better
allocate resources for network recovery.

To improve this work, further research could
specifically address the flow congestion problem in the
network when there are numerous active users’ requests.
Even though our update approach is effective, update
messages can be stopped by certain network congestion
cases. In these cases, our method will not be very useful.

Acknowledgement

We thank the anonymous reviewers whose valuable
comments and suggestions have significantly improved
the presentation and the readability of this work.

Author’s Contributions

Yannick Florian Yankam: The author contributed
to the review the various published articles in the field,
contributed to the hypothesis the date analysis, writing of
the manuscript and final approval.

Jean Frédéric Myoupo: The author designed the
research proposal, organized the study, designed of the
proposed work plan, contributed to the hypothesis,
writing of the final manuscript and final approval.

Vianney Kengne Tchendji: The author contributed
as the research guide, technical corrections, reviewing it
critically and final approval.

Ethics

This work is original and not published elsewhere. The
authors confirm that they have read and approved the
manuscript and there is no conflict of interest. Also, the
authors confirm that there are no ethical issues involved.

References

Azodolmolky, S., P. Wieder and R. Yahyapour, 2013.
SDN-based cloud computing networking.
Proceedings of the 15th International Conference on
Transparent Optical Networks, Jun. 23-27, IEEE
Xplore Press, Cartagena, Spain, pp: 2181-2206.
DOI: 10.1109/icton.2013.6602678

Bilalb, S.M. and M. Othmana, 2012. A performance
comparison of open source network simulators for
wireless networks. Proceedings of the IEEE
International Conference on Control System,
Computing and Engineering, Nov. 23-25, IEEE
Xplore Press, Penang, Malaysia, pp: 34-38.

 DOI: 10.1109/iccsce.2012.6487111

700

600

500

400

300

200

100

0

L
o
st

 p
ac

k
et

s

Nodes of network 3

Data lost rate without failure

Data lost rate using the IPFRR approach
Data lost rate using out update approach

Data lost rate using the TBR approach

Yannick Florian Yankam et al. / Journal of Computer Science 2019, 15 (3): 332.345
DOI: 10.3844/jcssp.2019.332.345

345

Doumith, E., 2007. Agrégation et routage de trafic dans
les réseaux WDM multicouches. Ph.D Thesis, École
Nationale Supérieure des Télécommuni-cations
(Télécom ParisTech), France.

Farhady, H., H.Y. Lee and A. Nakao, 2015. Software
defined networking: A survey. Comput. Netw., 81:
79-95. DOI: 10.1016/j.comnet.2015.02.014

Hedrick, C.L., 1988. Routing information protocol.
RFC Editor.

Hu, F., Q. Hao and K. Bao, 2014. A survey on software-
defined network and OpenFlow: From concept to
implementation. IEEE Commun. Surveys Tutorials,
16: 2181-2206. DOI: 10.1109/comst.2014.2326417

Lim, A.O., X. Wang, Y. Kado and B. Zhang, 2008. A
hybrid centralized routing protocol for 802.11s
WMNs. Mobile Netw. Applic., 13:117-131.

 DOI: 10.1007/s11036-0080038-4
Mosharaf Kabir Chowdhury, N.M. and R. Boutaba,

2010. A survey of network virtualization. Comput.
Netw., 54: 862-876.

 DOI: 10.1016/j.comnet.2009.10.017
Moy, J.T., 1998. OSPF: Anatomy of an Internet Routing

Protocol. 1st Edn., Addison Wesley Professional,
ISBN-10: 0201634724, pp: 339.

Muruganathan, S.D., D.C.F., Ma, R.I. Bhasin and A.O.
Fapojuwo, 2005. A centralized energy-efficient
routing protocol for wireless sensor networks. IEEE
Commun. Magazine, 43: S8-S13.

 DOI: 10.1109/mcom.2005.1404592
Myoupo, J.F., Y.F. Yankam and V.K. Tchendji, 2018. A

centralized and conflict-free routing table update
method through triplets’ lists vector in SDN
architectures. Proceedings of the IEEE SmartWorld,
Ubiquitous Intelligence and Computing, Advanced
and Trusted Computing, Scalable Computing and
Communications, Cloud and Big Data Computing,
Internet of People and Smart City Innovations, Oct.
8-12, IEEE Xplore Press, Guangzhou, China, pp:
1509-1515. DOI: 10.1109/SmartWorld.2018.00261

Nashid, S., R. Ahmed, A. Khan, S.R. Chowdhury, R.
Boutaba and J. Mitra, 2016. ReNoVatE: Recovery
from node failure in virtual network embedding.
Proceedings of the 12th International Conference on
Network and Service Management, IEEE Xplore
Press, Montreal, QC, Canada, pp: 19-27.

 DOI: 10.1109/cnsm.2016.7818396
Papan, T., P. Segec, M. Moravcik, J. Hrabovsky and L.

Mikus et al., 2017. Existing mechanisms of IP fast
reroute. Proceedings of the 15th International
Conference on Emerging eLearning Technologies
and Applications, Oct. 26-27, IEEE Xplore Press,
Stary Smokovec, Slovakia, pp: 1-7.

 DOI: 10.1109/iceta.2017.8102516.
Pham, T.S., 2014. Autonomous management of quality of

service in virtual networks. Ph.D Thesis, University of
Technology of Compiègne (UTC), France.

Perkins, C., E. Belding-Royer and S. Das, 2003. Ad hoc on
demand distance vector (aodv) routing. RFC Editor.

Rothenberg, C.E., M.R. Nascimento, M.R. Salvador,
C.N. Araujo Corrêa and S. Cunha de Lucena et al.,
2012. Revisiting routing control platforms with the
eyes and muscles of software-defined networking.
Proceedings of the 1st Workshop on Hot Topics in
Software Defined Networks, Aug. 13-13, ACM
Press, Helsinki, Finland, pp: 13-18.
DOI: 10.1145/2342441.2342445

