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Abstract: To realise the utmost idea of global collaborative resource 
sharing with Grid computing, the fundamental scheduling process is 
playing a critical role. However, scheduling in Grid computing environment 
is a well-known NP-complete problem. In this study, we propose a new 
extension of Great Deluge algorithm with an effective diversification 
strategy for the Grid scheduling problem. The proposed approach, namely 
BiGD, exploits two different decay rates (a linear and a non-linear decay 
rate of water level) to provide a better diversification strategy for exploring 
the solution space. The performance of the proposed algorithm has been 
evaluated and compared with the standard Great Deluge and Extended 
Great Deluge algorithm, through the GridSim simulation toolkit. Four 
different scheduling scenarios or cases which comprise different 
combination of task heterogeneity and resource heterogeneity are 
considered for the performance evaluation. Moreover, we have adapted all 
the algorithms to have same total number of evaluation for solution 
searching in order to ensure a fair comparison is established in the 
performance evaluation. The experimental simulation results show that the 
proposed algorithm is superior and able to produce good quality solutions 
compared to the other algorithms in all the problem instances. 
 

Keywords: Heuristic, Great Deluge, Extended Great Deluge, 

Diversification, Grid Scheduling Problem 

 

Introduction 

As new generation of information technologies and 

applications demand more and more computing power, 

Grid computing has become one of the most popular 

computing infrastructures to satisfy this ever-increasing 

demand of computing power. Grid computing is a form 

of computing infrastructure that allow users from 

anywhere to work together for obtaining the capability of 

executing computational intensive and data-intensive 

applications with the ideas of resource sharing and 

virtual organisation. The key concept of Grid computing 

is the ability to negotiate resource-sharing arrangements 

among the participating parties and then to use the 

resulting resource pool in a flexible, secure and 

coordinated fashion for some purpose (Lindner, 2002).  
To fully realise the utmost concept of global 

collaborative resource sharing of Grid computing, the 
underlying resource management system which consists 
of techniques and mechanisms for resource discovery, 
negotiation, allocation, scheduling and monitoring is 

significant and critical. One of the most impactful 
functions in Grid resource management system is the 
scheduling process, which involves the assignment of 
application tasks to resources.  

Scheduling in Grid computing which consists of 

various phases and steps is viewed as a whole family of 

problems (Xhafa and Abraham, 2008). The detailed 

description of the phases and steps of scheduling process 

that commonly defined by Grid researchers can be found 

in (Dong and Akl, 2006; Schopf, 2004; Yanmin and Ni, 

2003). Among all the phases, the most important phase 

which has significant impact on the overall efficiency of 

Grid scheduling process is mapping. Basically, mapping 

can be considered as a function that produces a schedule 

from a given set of tasks and a set of appropriate 

resources. There are two types of mapping modes 

(Maheswaran et al., 1999), which are on-line mode 

(dynamic) and batch-mode (static). In the dynamic mode 

of mapping, a task is mapped onto a resource as soon as 

it arrives at the scheduler. In this mode of mapping, 
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upcoming tasks or future tasks are not considered in the 

mapping decision. Whereas in the static mode of 

mapping, tasks are grouped in batches first and each task 

is considered at each mapping decision. In this study, the 

proposed scheduling algorithm is designed for global 

and static scheduling in Grid computing environment.  

Although scheduling is a problem that has previously 

been studied in traditional distributed computing 

environments, scheduling in Grid computing 

environment is significantly challenging and demands a 

re-examination due to the unique characteristics of Grid 

which induce additional challenges in each phase and 

step of scheduling. Moreover, the task of mapping in 

Grid Computing environment is very large-scale due to 

the enormous amount of tasks and resources that need to 

be considered in each mapping decision. To solve such 

large-scale NP-Complete problem, exact optimisation 

method or exhaustive search is not viable. Therefore, 

many studies have been focused on developing a 

powerful heuristic algorithm that can solve this problem 

effectively and efficiently. However, developing a search 

algorithm to find an optimal or near-optimal solution 

effectively and efficiently for Grid scheduling problem is 

still a challenge. One of main challenges is to effectively 

prevent the search process from being trapped in local 

optima of search space. Therefore, diversification 

strategy is playing a significant role in the design of an 

efficient and effective heuristic search algorithm. In this 

study, the Great Deluge algorithm is extended with two 

different decay rates to provide a better diversification 

strategy for escaping from local optima and allowing the 

search process to examine wider regions of solution space. 

This paper is organised as follows. Section 2 gives 

the concept of Great Deluge algorithm metaheuristic and 

provides a brief overview of the existing research on 

Great Deluge and scheduling problem in Grid computing 

environment. Section 3 presents the problem formulation 

and describes the proposed algorithm. Section 4 contains 

the detailed information of experiments setup for 

performance evaluation and results. Finally, Section 5 

offers conclusion and future work.  

Literature Review 

The Great Deluge (GD) is a global search 

metaheuristic, which first proposed by (Dueck, 1993) as 

an alternative to Simulated Annealing (SA) 

metaheuristic. In contrast to SA, GD uses a deterministic 

acceptance function rather than a probability measure to 

accept worse neighboring solutions. GD employs a 

boundary level (water level) as the diversification 

strategy to guide the search. The water level is constantly 

decrease in a linear fashion throughout the search. In 

brief, Great Deluge metaheuristic always accepts a 

solution that is not worse than the current best 

solution and allows worse neighboring solution to be 

accepted only if its value of quality evaluation is same 

as or lower than the water level. This diversification 

strategy of GD algorithm is far less dependent upon 

parameters as compared to Simulated Annealing 

algorithm, because it needs just two parameters: The 

“rain speed” and the initial water level. The “rain 

speed” parameter is used to control the amount of 

computational time of the algorithm while the initial 

water level parameter is an estimate of the quality of 

initial solution. This is an advantage over SA since the 

effectiveness of a metaheuristic technique is often 

dependent upon parameter tuning.  

To improve the standard GD, (McMullan, 2007) has 

proposed an extended version of the GD for the course 

timetabling problem. The standard GD has been 

extended by adding re-heat mechanism to widen the 

boundary condition when a lack of improvement has 

been observed for a specified amount of time. The 

motivation for this extension is to improve the 

convergence speed (obtain solutions in a relatively short 

amount of time) while avoiding the problem of getting 

trapped in local optima.  

Implementation of this extended version of the GD 

algorithm for dynamic job scheduling problem in Grid 

environment has been presented by (McMullan and 

McCollum, 2007). Simple neighborhood structures such 

as adding, removing and swapping the tasks and 

resources, were employed in the algorithm to avoid the 

scheduler repeatedly getting stuck in local optima. 

According to the authors, the proposed extended GD 

algorithm can provide the means of achieving the 

balance between solution quality and speed in searching 

a solution by producing good quality schedules quickly. 

Experiments were carried out and the results showed 

that, given the limited time, the Extended Great Deluge 

generally performs better over Simulated Annealing in 

terms of computation time. 

Landa-Silva and Obit (2008) made another extension 
to the original Great Deluge algorithm by proposing a 
non-linear decay rate for the boundary value (water 
level) in order to find a better quality neighborhood 
solution. The proposed method produced superior results 
in four out of the eleven course timetabling problem 
instances. Moreover, the results shown the proposed 
method is effective on medium problem instances whilst 
is not effective on the small instances. 

A hyper-heuristic based scheduling algorithm which 
adopts Great Deluge as heuristic acceptance and Tabu 
Search as heuristic selection method is proposed by 
(Aron et al., 2013). The proposed algorithm aims to 
minimise the makespan and cost (in Grid dollars) for 
scheduling of jobs in Grid environment. The 
performance of the proposed algorithm is evaluated 
using GridSim toolkit and (Braun et al., 2001) 
simulation model with different test cases which consist 
of different heterogeneity of jobs and resources. From 
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the results obtained, the authors conclude that the 
proposed algorithm is able to outperform Simulated 
Annealing (SA), Genetic Algorithm (GA) and GA-TS 
algorithm in all cases with respect to makespan and cost.  

Noticeably, there has been a growing interest in 
attempting to improve the efficiency of search process 
by enhancing the diversification strategy in 
metaheuristic algorithms. The aim of this study is to 
develop a global search algorithm that offers a better 
strategy for diversification in such a manner that a good 
quality of solution can be obtained while avoiding from 
being trapped in the local optimum. Therefore, a novel 
heuristic based algorithm, namely BiGD, which 
extends from Great Deluge metaheuristic, is proposed 
with the hope to improve the ability of escaping from 
local optima by exploiting two different decay rates as 
the diversification strategy.  

Problem Formulation  

In this study, the Grid system considered is consists 

of a set of heterogeneous resources, which located at 

different sites and they are coordinated by a Grid 

scheduler. Given n independent tasks T1, T2, T3,…,Tn, 

which are submitted by users to Grid scheduler in a 

particular interval of time for scheduling and m 

heterogeneous resources R1, R2, R3,…,Rm, which located 

by GIS, the problem is to generate an optimal mapping or 

schedule that can optimise the objective function. In this 

study, this problem is formulated based on the Expected 

Time to Compute (ETC) Matrix Model (Ali et al., 2000) 

and the following constraints are considered:  
 
1. The computing load or length (in millions of 

instructions, MI) of each task is known 

2. A task can only be executed in one Grid resource in 

each interval 

3. Task migration and pre-emptive process are not 

allowed 

4. Tasks which submitted to Grid scheduler are 

scheduled in batch mode 

5. A Grid resource may consist of multiple machines 

that may have one or more than one processor  

6. The processing power of each resource (in millions 

of instructions per second, MIPS) is known 

7. A Grid resource cannot remain idle when it has 

tasks in queue and free processors 

8. A processor can only process one task at a time 
 

Solution Representation 

In this study, direct-based representation is used to 
encode the schedules or solutions. The size of the vector 
is equal to the number of tasks and the index number of 
the element in the vector denotes the ID of task. The 
element in the vector indicates the resource that assigned 
for the corresponding task. All the elements are integers, 
which in the range of [1, m], where m is the total number 

of resources. These values in the vector can be repetitive, 
which means that different tasks can be scheduled to a 
same resource. For example, given six tasks and three 
resources (with ID: 1, 2, 3), let assume that the first task 
and the last task are assigned to Resource 3, the second 
task to Resource 1, the third and fifth task to Resource 2 
and the fourth task to Resource 3. With the direct 
representation, let schedule be the vector denoting a 
solution, the solution can be represented as schedule = 
[3, 1, 2, 3, 2, 3].  

Solution Evaluation 

In order to describe the quality of each solution and 

guide the search process over the solution space, an 

evaluation function is used to associates a real value to 

every solution. As makespan is one of the most popular 

metric used for representing the quality of a schedule for 

Grid scheduling problem, the evaluation function in this 

study is defined as a function that gives a makespan 

value from any given candidate schedule. Under the ETC 

matrix model, the evaluation function can be expressed as: 

 

[ ]{ }max |makespan completionTime r r Resources= ∈  (1) 

 

where, completionTime[r] is the time when resource r 

has finished executing all the tasks that assigned to it. 

Meanwhile, the completion time of resource r can be 

expressed as: 

 

[ ] [ ] [ ][ ]
[ ]{ }|

i
t Tasks S t r

completionTime r readyTime r ETC t r
∈ =

= + ∑  (2) 

 
where, readyTime[r] is the time when resource r has 

finished executing all the previously assigned tasks. 

Objective Function 

The objective function is the function that needs to be 

satisfied in order to achieve our goal. In this study, we 

have considered the most well-studied optimisation 

criteria, i.e., the minimisation of the makespan (Rajni 

and Chana, 2013; Xhafa and Abraham, 2010) and it is 

formulated by defining the objective function as the 

evaluation function. 

Accordingly, let f(S) denotes the evaluation 

function or objective function and Schedules denotes 

the set of all possible schedules, the Grid Scheduling 

problem is formulated as:  
 

{ }min ( ) max [ ] | Re
i

S Schedule

f S completionTime r r sources
∈

= ∈  (3) 

 

Proposed Algorithm 

It has been observed that in the standard Great 

Deluge algorithm (Dueck, 1993; McMullan and 

McCollum, 2007), the decay rate at which the boundary 
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value B decreases, is determined by a linear function (B 

= B − ∆B, where ∆B is a constant). On the other hand, 

(Landa-Silva and Obit, 2008) proposed a non-linear 

decay rate for the water level in order to find a better 

quality of solution. In this study, we propose a new 

extension of Great Deluge algorithm with bi-decay rate, 

which uses a linear and a non-linear decay rate of water 

level to efficiently guide the search in finding a better 

quality of solution meanwhile preventing it from getting 

stuck in the local optima. 

In the first half of iterations, our proposed algorithm 

will exploit the strength of non-linear decay rate of water 

level (Landa-Silva and Obit, 2008) (shown in Equation 

4) to guide the diversification of search. Furthermore, we 

allow the water level to decrease immediately to the 

same level of current best makespan when a significant 

improvement is found. Alternatively, we decelerate the 
decay rate of water level when the water level has dropped 

too much below the current best makespan. Two 

parameters, Fbottom and Ftop are used to control this 

floating strategy (in line 12 of Algorithm 1). This floating 
water level strategy, together with the exponential 

function of decay rate are aim to further improve the 

diversification of search by allowing wider search of 

solution in hoping to get a new better quality of solution. 

 
[ ]( )( )min,max

exp
rnd

B B
δ

β
−

= × +  (4) 

 
In the second half of iterations, we however, use a 

linear (steeper) decay rate to help algorithm to speed up 
the search of optimal solution. The initial decay rate of 
boundary in the second phase is reset using reheat 
mechanism (McMullan, 2007) at the quarter of the initial 
solution penalty cost. The boundary value of this phase 
is constantly decreased in a linear fashion based on the 
remaining iteration. To avoid wasting much computation 
time in generating neighboring solutions, two simple 
neighborhood structures which based on swap move and 
insertion move (Xhafa, 2007; Xhafa and Abraham, 
2010) have been implemented in this study. Pseudo-code 
of the BiGD algorithm is given in Algorithm 1. 

 

Algorithm 1: BiGD algorithm for minimization  

Input: x, rainSpeed, totalIter, min, max, δ, β  

Output: x  

1: waterLevel ← f (x)  

2: decayRate ← f (x) × rainSpeed ÷ totalIter  

3: halfIter ← (totalIter ÷ 2)  

4: reheated ← false  

5: for iter = 1 to totalIter do  

6:  x' ← generateNeighbor(x)  

7:  if (f (x') ≤ f (x) or f (x') ≤ waterLevel) then  

8: x ← x'  

9:  endif  

10:  if iter ≤ halfIter then  

11:  diff ← waterLevel − f (x)  

12.  if diff < Fbottom or diff >Ftop then  

13:  waterLevel ← f(x)  

14:  else  

15:  waterLevel ← waterLevel ×  

 (exp
−δ(rnd[min, max])

)+β 

16:  endif  

17:  else  

18:  if reheated then  

19:  waterLevel ← waterLevel − decayRate  

20:  else  

21:  waterLevel ← f(x)  

22:  reheated ← true  

23:  endif  

24:  endif  

25: endfor 

 

Illustration of Algorithm 

A small-scale task scheduling problem, which 

involves 5 tasks and 3 resources, is used to illustrate 

mathematical calculation related to the algorithm 

process. Let us consider the task lengths of 5 tasks are 3, 

1, 2, 6 and 5 MI, respectively, whereas the processing 

power of 3 resources are 1, 2 and 3 MIPS, respectively. 

Assume that all the resources are available and ready 

time for each resource is 0: 

Initialisation 

Given that initial solution, x = [1, 1, 1, 1, 1], 

rainSpeed = 0.3, totalIter = 6, min = 1000, max = 1500, 

δ = 0.00005, β = 0, Ftop = 10 and Fbottom = −5: 
 
f(x) = max(17, 0, 0) = 17 

waterLevel = 17 

decayRate = 17 × 0.3 ÷ 6 = 0.85 

halfIter = 3 

reheated = false 

 

First Iteration 

Assume that a neighboring solution of x, which denoted 

as x’, is generated by inserting 4th task into Resource 2 and 

a random number, 1022 is generated from: 
 
rnd[1000, 1500] 

x’ = [1, 1, 1, 2, 1] 

f(x’) = max(11, 3, 0) = 11 

x = x’ 

diff = 17 − 11 = 6 

waterLevel = 17 × (exp
−0.00005(1022)

) + 0 = 16.153122 

 

Second Iteration 

Assume that a neighboring solution of x, which 

denoted as x’, is generated by inserting 3rd task into 
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Resource 2 and a random number, 1373 is generated 

from rnd[1000, 1500]: 
 
x’ = [1, 1, 2, 2, 1]  

f(x’) = max(9, 4, 0) = 9  

x = x’  

diff =16.153122 − 9 = 7.153122  

waterLevel = 16.153122 × (exp
−0.00005(1373)

) + 0 = 15.081417 
 

Third Iteration 

Assume that a neighboring solution of x, which 

denoted as x’, is generated by inserting 1st task into 

Resource 3 and a random number, 1279 is generated 

from rnd[1000, 1500]: 
 
x’ = [3, 1, 2, 2, 1]  

f(x’) = max(6, 4, 1) = 6  

x = x’  

diff = 15.081417 − 6 = 9.081417  

waterLevel = 15.081417 × (exp
−0.00005(1279)

) + 0 = 14.147152 
 

Fourth Iteration 

Assume that a neighboring solution of x, which 

denoted as x’, is generated by swapping 1st task which 

assigned to Resource 3 with 4th task which assigned to 

Resource 2 and a random number, 1154 is generated 

from rnd[1000, 1500]: 
 
x’ = [2, 1, 2, 3, 1]  

f(x’) = max(6, 2.5, 2) = 6  

x = x’  

waterLevel = 6  

reheated = true 
 

Fifth Iteration 

 Assume that a neighboring solution of x, which 
denoted as x’, is generated by swapping 5th task which 
assigned to Resource 1 with 3rd task which assigned to 
Resource 2 and a random number, 1304 is generated 
from rnd[1000, 1500]: 
 
x’ = [2, 1, 1, 3, 2]  

f(x’) = max(3, 4, 2) = 4  

x = x’  

waterLevel = 6 – 0.85 = 5.15 
 

Sixth Iteration  

Assume that a neighboring solution of x, which 
denoted as x’, is generated by inserting 3rd task into 
Resource 2 and a random number, 1379 is generated 
from rnd[1000, 1500]: 
 
x’ = [2, 1, 2, 3, 2]  

f(x’) = max(1, 4.5, 2) = 4.5  

x = x’  

waterLevel = 5.15 – 0.85 = 4.3 

Performance Evaluation 

Simulation experiments have been carried out by 

using the GridSim simulator (Buyya and Murshed, 2002) 

to test and evaluate the proposed algorithm. GridSim is a 

very popular simulator which has been widely used by 

Grid researchers to evaluate the performance of their 

proposed algorithms (Anderson et al., 2012; Aron et al., 

2013; Naik and Satyanarayana, 2013; Rajni and Chana, 

2013; Maipan-Uku et al., 2016). The simulation was 

coded using JAVA programming language and 

implemented on Eclipse IDE. All the experiments were 

performed in the environment of Window 10 Pro with 

64-bit and run on a PC with Intel Core i5-3470 CPU 3.20 

GHz and 8 GB RAM. The proposed algorithm, BiGD 

was evaluated and compared with the standard GD and 

EGD in order to investigate the performance of search by 

introducing the bi-decay rate diversification strategy into 

GD algorithm. Four different scheduling scenarios or 

cases which comprise different combination of task 

heterogeneity and resource heterogeneity are considered 

for the performance evaluation. Every algorithm was 

repeated run for 30 times to obtain the average and best 

results of makespan. We have adapted all the algorithms 

to have same total number of evaluation. The settings of 

the parameters of GridSim environment for all the 

experiments are shown in Table 1 while the parameter 

settings of the algorithms are shown in Table 2. 

Performance Metrics 

In this study, two performance metrics, namely 

makespan and computation time, are selected to evaluate 

the performance of our proposed algorithm. Makespan is 

one of the most popular performance measures for 

evaluating scheduling algorithm in heterogeneous 

computing environment (Xhafa and Abraham, 2010). 

Makespan can be an indicator of the productivity of a 

Grid scheduler. A small value of makespan indicates the 

scheduling algorithm which adopted by the Grid 

scheduler is effective as it is able to produce a good 

quality of solution. In GridSim simulation, the makespan 

of a schedule can be defined as the time when the last 

task is finished and can be expressed as: 

 

max{ [ ] | }makespan finishTime i i Tasks= ∈  (5) 

 

Second performance metric is computation time. 

Computation time is the time taken for the scheduling 

algorithm in Grid Scheduler to produce a solution. It 

can be used to determine the efficiency of a 

scheduling algorithm in finding a good quality of 

schedule. Small values of computation time indicate 

that the scheduling algorithm is efficient as it does not 

required to spend huge amount of search time in 

obtaining a good quality of solution. 
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Table 1: Simulation parameters of GridSim 

Parameters  Values  

Number of tasks  512  

Input file size of task  100+(10%-40%)B  

Output file size of task  100+(10%-40%)B  

Task length for LoLo  10-1000 MI  

Task length for LoHi  1000-100000 MI  

Task length for HiLo  10-30000 MI  

Task length for HiHi  1000-3000000 MI  

Number of resources  16  

Allocation policy  Space-Shared  

of resources 

Number of machines 1-16 

per resource 

Number of PE per machine  1-4  

PE rating for low 1-10 MIPS 

resource heterogeneity 

PE rating for high 1-1000 MIPS 

resource heterogeneity 

Baudrate of resources 10,000,000,000.0 

and  scheduler 

Propagation delay  0.0005 sec  

 
Table 2: Parameters of algorithms  

Algorithms  Parameters  Values  

GD  rainSpeed  0.5  

 totalIter  50000  

EGD  rainSpeed1  0.5  

 rainSpeed2  0.75  

 wait  15  

 totalIter  50000  

BiGD  rainSpeed  0.3  

 min  1000  

 max  1500  

 δ  0.000000005  

 β  0  

 Ftop  100  

 Fbottom  -50  

 totalIter  50000  

 

Results and Discussion  

In this section, the results of best makespan and best 

average makespan among all the algorithms are 

presented. In addition, the values of computation time 

and number of evaluation for each algorithm are also 

reported. It should be mentioned again that in the 

experiments for evaluating the performance of BiGD 

algorithm, all the algorithms were configured to have 

same total number of evaluation in order to have a fair 

comparison among them. 

The resulting makespan values of the schedule 

produced by the algorithms for low task and low 

resource heterogeneity (LoLo) scheduling case are 

illustrated in Table 3. In terms of the best makespan 

obtained, both EGD and BiGD algorithms are able to 

obtain the best schedule with makespan value of 219.45 

sec, whereas in terms of average makespan of 30 runs of 

experiments, BiGD algorithm is performing better than 

GD and EGD algorithms, with the lowest makespan 

value of 222.55 sec been generated.  

The comparison results for low task and high 

resource heterogeneity (LoHi) scheduling case are 

presented in Table 4. In this case, BiGD is again able to 

produce the most optimal schedule with makespan value 

of 258.32 sec. In terms of average makespan, BiGD is 

also able to achieve the lowest among all the algorithms 

with makespan value of 273.33 sec.  

Table 5 presents the results of all the algorithms 

for high task and low resource heterogeneity (HiLo) 

scheduling case. From the makespan results, although 

it is showed that the best schedule obtained by BiGD 

(5936.34 sec) is slightly worse than EGD (5936.34 

sec), but BiGD is able to outperform EGD and also 

GD in terms of average makespan. In average, BiGD 

achieved the lowest makespan (6162.03 sec) among 

all the algorithms. 

As shown in Table 6, it is observed that BiGD is 

still able to provide excellent performance in high task 

and high resource heterogeneity (HiHi) scheduling 

case. BiGD obtained the most optimal schedule with 

makespan value of 7357.29 sec. In addition, BiGD 

obtained the best average makespan result with 

7665.77 sec. 

Overall, from the results of all the scheduling cases, it 

reveals that the linear decay rate diversification strategy 

of the GD algorithm is not effective in helping the search 

to jump out from local optima as the GD algorithm 

performed worst among all the algorithms. On the other 

hand, the reheat mechanism of EGD algorithm appeared 

to be a good diversification strategy as the EGD 

algorithm is able to obtain the best results of best 

makespan in two out of four scheduling cases (LoLo and 

HiLo), whereas the proposed BiGD algorithm obtained 

the best results in most of the scheduling cases except 

HiLo. These findings indicate that the bi-decay rate 

diversification strategy is able to help the GD algorithm 

to jump out from local optima effectively and at the 

same time widen the search in order to obtain new 

solution with better makespan. The average makespan 

results showed that the BiGD is able to consistently 

perform better than the GD and EGD algorithms in 

guiding the search to obtain a better solution while 

escaping from local optima. 



KaiLun Eng et al. / Journal of Computer Science 2019, 15 (3): 313.320  

DOI: 10.3844/jcssp.2019.313.320 

 

319 

Table 3: Comparison results for the LoLo scheduling case 

 Makespan (s)   Computation time (s) 
 -------------------------------------------- --------------------------------------------  Number of 
Algorithm Best  Average  Min  Average evaluation 

GD  225.39  228.01  13.62  15.71  50000  
EGD  219.45  222.98  14.55  15.68  50000  
BiGD  219.45  222.55  14.39  15.16  50000  

 
Table 4: Comparison results for the LoHi scheduling case 

 Makespan (s)   Computation time (s) 
 -------------------------------------------- ------------------------------------------- Number of  
Algorithm Best  Average  Min  Average evaluation 

GD  289.46   292.12  13.09  15.00  50000  
EGD  261.52  275.56  13.04  13.79  50000  
BiGD  258.32   273.33   13.93  13.93  50000  

 
Table 5: Comparison results for the HiLo scheduling case 

 Makespan (s)   Computation n time (s) 
 ------------------------------------------- -------------------------------------------- Number of 
Algorithm Best  Average  Min  Average evaluation 

GD  6319.29   6386.94  13.36  16.36  50000  
EGD  5902.54  6166.56  13.07  14.51  50000  
BiGD  5936.34   6162.03   13.16  13.26  50000  

 
Table 6: Comparison results for the HiHi scheduling case.  

 Makespan (s)   Computation n time (s) 
 ------------------------------------------ ------------------------------------------- Number of 
Algorithm Best  Average  Min  Average  evaluation 

GD  8214.33   8287.38  12.19  15.08  50000  
EGD  7364.45  7867.04  13.85  14.50  50000  
BiGD  7357.29   7665.77   13.08  13.33  50000  

 

Conclusion  

In this study, a new extension of Great Deluge 

algorithm with two different decay rates (a linear and a 

non-linear decay rate of water level) is proposed to 

provide a better diversification strategy for exploring the 

solution space of Grid scheduling problem. Simulation 

experiments have been carried out to test and evaluate 

the performance of the proposed algorithm. Computation 

time and number of evaluation are also reported to show 

that a fair comparison of performance evaluation is 

established in this study. Four different scheduling 

scenarios or cases which comprise different combination 

of task heterogeneity and resource heterogeneity are 

considered for the performance evaluation. From the 

experimental results, it is concluded that the novel bi-

decay rate diversification strategy is effective in 

preventing premature convergence to local optima and 

hence beneficial to improve the performance of search.  
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