

 © 2019 Alka Agrawal, Mamdouh Alenezi, Rajeev Kumar and Raees Ahmad Khan. This open access article is distributed

under a Creative Commons Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Securing Web Applications through a Framework of Source

Code Analysis

1Alka Agrawal, 2Mamdouh Alenezi, 1Rajeev Kumar and 1Raees Ahmad Khan

1Department of Information Technology, BBA University, Lucknow UP, India
2College of Computer and Information Sciences, Prince Sultan University, KSA, Saudi Arabia

Article history

Received: 18-09-2019

Revised: 20-09-2019

Accepted: 24-12-2019

Corresponding Authors:

Rajeev Kumar

Department of Information

Technology, BBA University,

Lucknow UP, India

Email: rs0414@gmail.com

Abstract: Source code analysis is becoming extremely important for the

universal acceptance of web applications because the automated source code

analysis tools play a key role in identifying and fixing security-related

vulnerabilities. This paper proposes a framework for securing web applications

through source code analysis. The framework has three prescriptive phases

including executing and monitoring, classifying and controlling and refining

and managing. The framework helps to examine the web application source

code related to security issues. The executing and monitoring phase employs

five different open source tools for statically analyzing the source code.

According to the literature, there are nine broad categories of vulnerabilities in

web applications. After filtration of these vulnerabilities, classifying and

controlling phase categorize the vulnerabilities according to their severity level

with the help of fuzzy analytical analysis process and suggestive measures. The

refining and managing phase takes these measures and suggests changes to the

source code to make it more secure. This framework was validated through a

web-based hospital management system. The results of the validation showed

that the framework implementation made the source code more robust towards

the upcoming vulnerabilities and bugs.

Keywords: Web Application, Web Security, Security Vulnerability, Source

Code, Static Analysis

Introduction

Web Applications, with the ubiquitous and ever-

increasing usage, have become an inseparable part of our

everyday lives. Consequently, the present context has

witnessed that web applications are becoming more

vulnerable because of the huge number of users associated

with them (VanDen et al., 2018; Chess and McGraw,

2004). Further, hackers want to capture web applications

to steal users’ information. Unfortunately, most web

applications are vulnerable to attackers due to the weakly

designed and written source code. Designers must develop

secure web applications by preventing vulnerabilities.

Hackers can target security weaknesses in source code,

which might be due to the web developers’ lack of

knowledge. In addition, most of the time, the developers

follow bad coding practices to build web applications

quickly. Hence, in the given scenario, web security related

issues are increasing at an alarming pace. Source code

analysis is one of the most significant actions to

determine the vulnerabilities during the Web

Application Development Life Cycle (WADLC) (Chess

and McGraw, 2004). Further Static source code analysis

is one of the most important activities to find bugs in the

early stages of web application development.
There are many automated static source code analysis

tools in the literature that could detect security

vulnerabilities (Chess and McGraw, 2004; Standard, 1997).

Source code analysis tools such as Arachni focus on the

security of web application (Arachni, 2018). These

automated tools were built to help developers remove

security vulnerabilities at the early stages of WADLC.

Before executing the codes, these tools scan the source code

for potential security vulnerabilities in web applications

including cross-site scripting and SQL injection.

Unfortunately, relying only on automated scanning tools

would lead to a large number of false positives. Despite

being able to find bugs these analysis tools can also raise

some false alarms. Some of the vulnerabilities are identified

during the run time analysis including the complexity of the

code, design flaws, etc. At present, the software industries

are using most of the third party codes for agile and rapid

software development. According to Positive Technologies

Report, the medium level severity vulnerabilities have

Alka Agrawal et al. / Journal of Computer Science 2019, 15 (12): 1780.1794

DOI: 10.3844/jcssp.2019.1780.1794

1781

increased from 97% to 100% in 2017 from the last year

(Internet Security Threat Report by Semantics, 2016; Web

Application Vulnerabilities: Statistics for 2017; 2018). This

is happening because there are gaps between code analysis,

updated vulnerability databases and developers

reengineering process.
There is a compelling need for a mechanism for source

code analysis to reduce the security related vulnerabilities
from the beginning. Many practitioners are trying to
develop a mechanism for producing secure source code. In
this work, we are proposing a common framework for
producing secure code through static source code analysis.
The framework poses three phases including Execute and
Monitor, Classify and Control and Refine and Manage.
The source code of a web-based hospital management
system is adopted to empirically validate the proposed
framework. We chose a hospital system since it has very
sensitive as well as classified personal and medical
information such as blood reports, treatment records of the
patients, etc. During the implementation of phase 1,
detection of security vulnerabilities is done in source
codes of web applications through five different open
scanning tools including Arachni (2018), FindBugs

(2015), SonarLint (2017), EasyPMD (2015) and
JArchitect (2018). Phase 2 categorizes the vulnerabilities
and calculates their priorities through fuzzy analytical
hierarchy process because the prioritization of
vulnerabilities is a multi-criteria decision problem. After
that, according to the defined severity of vulnerabilities,
suggestive measures are presented. Phase 3 refines the
process of managing web security for developers.

Literature Review

Source code analysis can be used to guarantee at least
safe and secure delivery of web application to consumers
(Ahmed and Ullah, 2018). Vulnerability and bug discovery
seems to be a serious problem in security assurance policy.
Code analysis is an effective way to secure web
applications through security vulnerabilities and flaws
identification. Further, run time code analysis (dynamic
analysis) is very costly and time-consuming rather than
static code analysis. In previous years, plenty of work has
been done to achieve Web Application Security by different
frameworks, methodologies and tools. Some of the
pertinent initiatives are shown in Table 1.

Table 1: Summery of the pertinent works

Sr. No. Reference Summary of the Contributions

1. Verma and Sharma This work reviews three important and most commonly used static analysis tools CppCheck, FlawFinder and Visual
 (2019) Code Grepper (VCG). The author discusses the features, importance and limitations of each tool. The conceptual
 and empirical comparison has also been done. The authors found VCG to be the best tool amongst all the three.

2. Smith et al. (2018) Authors presented exploratory research on how developers implement static analysis tools. For this work, they took

 ten developers and provided them with FindBugs tool to implement it on the source code. Results were positive as
 they found the static analysis tools helpful for developers. The authors suggested that analysis tools should help

 with preliminary information about the tool as well, rather than only providing a search of relevant vulnerabilities.

3. Nunes et al. (2018) This work provided a benchmark for differently used static analysis tools based on PHP language on four different
 projects scenarios of web applications. The author discussed that different results are gained by analyzing the same

 code snippet with different static analysis tools. Hence, a common benchmark will be able to set standards for the

 developers to enlist.
4. Zampetti et al. Authors studied the use of static analysis tools in 20 Java open source projects acquired from GitHub and using

 (2017) Continuous Integration infrastructure. The paper investigated which are the tools used for Continuous Integration.

 The results analyzed that most of the vulnerability issues are license based problems or coding adherence rules.
5. Beller et al. (2016) This work discussed problems that arise in using Automated Static Analysis Tools for both the dynamically typed

 languages and strict languages. Findings of this work specify that open source software developers need to be more

 aware of the static analysis tools usage and its behavior. Practical guidelines for the users are also created in this
 work which is further useful for researchers as well as practitioners.

6. Perl et al. (2015) This work proposed a new analysis tool VCC to find the flaws during static analysis and flag these so that special

 attention is drawn to these flaws. Authors combine code metric analysis method and metadata available open source
 to come up with a new method of analysis. This method or tool also assures false alarm rate reduction to 99 percent.

 Further, they validate this tool by comparing it to another tool FlawFinder.

7. Yamaguchi et al. Authors provided a novel data structure to represent source code so that finding and debugging of vulnerabilities
 (2014) might become easier and time efficient. This novel data structure is a code property graph, which is a combination

 of Abstract Syntax Tree, Control Flow Graph and Program dependence graphs. This data structure was able to find

 only some kind of common vulnerabilities that usually occurs in source codes. Also, this study may not be helpful
 with the futuristic web applications, which have thousands of lines of code.

8. Kulenovic and Authors provided a critical review of static code analysis methods and how useful are these methods in finding

 Donko (2014) vulnerabilities in source code. This paper strengthens the fact that static code analysis is the most powerful method
 to find and debug vulnerabilities in source codes. Also, the author believes that algorithms for static analysis are

 improving day by day.

9. Meneely et al. Authors found 68 vulnerabilities in a very well-known Apache HTTP server. 124 vulnerability contributing
 (2013) commits were found when manually scanned by authors. Authors further investigated the vulnerability commits and

 provided guidelines for developers to know the reason behind the generation of vulnerabilities in source codes.

10. Heckman and This project studied nine tools including SATABS and some important commercial tools. Author applied tools
 Williams (2011) against SAMATE referenced datasets. Methodology used is repeatable for all tools. The results obtained empirical

 evidences that support popular propositions. At the end authors provides recommendations for improving the

 reliability and usefulness of static analysis tools.

Alka Agrawal et al. / Journal of Computer Science 2019, 15 (12): 1780.1794

DOI: 10.3844/jcssp.2019.1780.1794

1782

By the relevant work presented in Table 1, we can
conclude that there is plenty of work that has been done for
the security of web applications in the previous years. Some
important and popular tools such as FindBugs and Visual
Code Grepper (Visual Code Grepper- Code Security
Scanning Tool, 2016) have also been proposed which are
working on very critical vulnerabilities such as Cross-Site
Scripting and SQL injection. However, every method and
tool would entail pros and cons (Heckman and Williams,
2011). These tools/methods do not provide a complete
setup for identifying as well as removing and managing the
vulnerabilities. It has been critically observed that none of
these proposed tools or methodology can be presented by
the industry as a complete package for delivering secure
source code. Hence, there is a need for a common
framework, which provides a proper and complete setup
for identification, prioritization and removal of high
priority-based vulnerabilities. The proposed framework
fills the gap between technical and theoretical paths of
vulnerability identification and removal.

Proposed Framework

Web applications development organizations are always
focusing on new ideas to gain the trust of the users. In
addition, organizations wish to secure web applications,
which provide longer services to increase user satisfaction
(Nausheen and Begum, 2018). The source code is very
helpful for an organization to construct a secure web
application. The mistakes that developers make at the code
level and configuration level are mitigated at the time of
static source code analysis. Further, source code analysis
process identifies security vulnerabilities and verifies if the
key security controls are implemented.

Producing a secure source code is a crucial task for
practitioners. To fill the gap between developers and secure
code, there is a need to integrate the whole process for
scanning, detecting, mitigating the security vulnerabilities
and flaws during source code analysis. Moreover, the
integration process will also reduce the cost and rework
involved otherwise. Finding ways to produce secure source
code is still a challenging task (Heckman and Williams,
2011). Keeping the need and significance in mind, authors
have structured a hierarchical description of proposed
framework including premises, generic guidelines and
framework development process to be followed. Premises
and generic guidelines talk about the planning or training to
be done to develop framework for any specific case.
Framework development is further divided into three
major parts: Execute and Monitor the Source Code
Analysis, Classify and Control the Security Vulnerabilities
and Refine and Manage the Procedure. The description of
the proposed framework with premises and guidelines are
in order as enunciated below:

Framework Development

The motive of the secure source code analysis
process is that the software behaviour would be fully

operative under hostile conditions. Analysis of source
code infers analysis to find out and list the number of
vulnerabilities and bugs to develop a more secure web
application from the initial phase of code review. There
are different source codes for different languages.
Software developers mostly use the already written source
codes which are also more vulnerable. The ultimate
objectives of source code analysis are to identify and
mitigate the security vulnerabilities and flaws before
executing and dynamically analyzing the code.

At present, developers are trying to focus on security
during source code analysis through the automated tools
(Larrucea et al., 2019). Unfortunately, these automated
tools are available only for limited languages and the
reliability of these tools account for only 40% (Arachni,
2018). An effective source code analysis process should
check the entire steps, rather than just doing the analysis.
A process of source code analysis is needed to ensure
that the source code can protect its assets from attacks.
An appropriate and accurate secure source code analysis
activity if implemented would make the software more
profitable (FindBugs, 2015; Sonarlint, 2017). In addition
to this, an effective and prescriptive process of secure
source code analysis, specifying very clear prioritized
activities, may be advantageous in different perspectives.

In order to gain insight into the quality of web
application, a unified process for secure source code
analysis is developed to spot the security vulnerabilities
and flaws during the analysis process and to mitigate the
same. After the coding premises and the guidelines
development, a combination of source code analysis
during web application development will reduce the cost
of damages and risks associated (EasyPMD, 2015). Step
by step, a three level strategy for secure source code
analysis is been established as a framework which has
been defined hierarchically in coming phases:

Execute and Monitor the Source Code Analysis

In this phase, source code should be executed through
a common analyzer in a reasonable order including data
flow analysis, semantic analysis, control flow analysis
and configuration analysis. Further, during data flow
analysis, the analyzer detects the flow of malicious data
(Huang et al., 2004). During semantic analysis, analyzer
searches for vulnerable functions used in the code
(Detection of Vulnerabilities in Programs with the Help of
Code Analyzers, 2008). During control flow analysis, the
analyzer tracks the sequence of operations to detect
improper coding constructs (Code Optimization Control
Flow Graph, 2018). During configuration analysis, analyzer
parses and analyzes the application deployment/
environment settings in configuration files (Paladion,
Source Code Analysis Suite, 2018). The analyzer scans the
source code and identifies the vulnerability and flaws. The
process should be monitored and identified vulnerabilities
and flaws should be verified through the practitioners.
Identified blacklist code and whitelist code should be
documented. Found vulnerabilities and flaws code is sent to

Alka Agrawal et al. / Journal of Computer Science 2019, 15 (12): 1780.1794

DOI: 10.3844/jcssp.2019.1780.1794

1783

repository 1 and if not it is sent to repository 2. From
repository 1 code is sent for the step 2 of framework. A

prescriptive step in executing and monitoring the secure
source code analysis is shown in Fig. 1.

Fig. 1: Prescriptive steps for executing and monitoring the secure source code analysis

Fig. 2: Prescriptive steps for classifying and controlling the secure source code analysis

Vulnerability and flaws identification

Scan the source code through a

common analyzer

Dataflow analysis Semantic analysis Control flow analysis Configuration analysis

Verification of

warning

Call vulnerability and flaws

classification process
Data Repository

(DR1)

Yes No
If

vulnerability

and flaws

found?

Data Repository

(DR2)

Vulnerability and flaws classification

Data Repository

(DR11)

Data Repository

(DR12)

Data Repository

(DR1n)

Type of

vulnerability 1

Type of

vulnerability 2

Type of

vulnerability n

(Prioritizing)
V111
V112

.

.

(Prioritizing)
V121
V122

.

.

(Prioritizing)

V1n
V1n

.

.

Mitigate security

vulnerability through repair

the code/block the code

If

high

If

high

If

medium

If

high

If

medium If

medium

Mitigate security

vulnerability through repair

the code/block the code

Mitigate security

vulnerability through repair

the code/block the code

Yes Yes
Yes

Yes
Yes Yes

Yes

Yes Yes

No No
No

No No
No

If low If low
If low

Problem fixing through

suggestive measures

Problem fixing through

suggestive measures Problem fixing through

suggestive measures

No
No No

Data Repository

(DR3)

Call vulnerability and flaws

identification process

Alka Agrawal et al. / Journal of Computer Science 2019, 15 (12): 1780.1794

DOI: 10.3844/jcssp.2019.1780.1794

1784

Classify and Control the Security Vulnerabilities

After successfully implementing phase 1, the

identified security vulnerabilities and flaws should be

classified into different categories including SQL injection

and Cross-site scripting, etc. In addition, prioritize the

vulnerabilities and flaws according to their severity levels

to reduce the cost and time during the mitigation plan.

Also, the severity levels should be classified into three

levels including high, medium and low. Repair the code

or block the code to mitigate the high level and medium

level of security vulnerabilities. Problem shall be fixed

through suggestive measures to mitigate the low level of

security vulnerabilities. A summary report of the analysis

should be prepared to finally summarize the actions

associated with the source code. A prescriptive step in

classifying and controlling the secure source code

analysis process is shown in Fig. 2.

Refine and Manage the Procedure

After successfully implementing phase 2 of the

analysis process, all the repositories of source code

should be merged into a single repository. Again,

source code analysis should be analyzed by manual

analysis. Identified logical errors and flaws should be

mitigated through suggestive measures. Further,

coding guidelines should be refined and prioritized

and finally facilitating the codes into software

development life cycle. A prescriptive step in refining

and managing the secure source code analysis process

is shown in Fig. 3.

In the present scenario, dependency on the web

application is so high that life cannot be imagined

without them. With the overall advantages of web

application and the security design on them, there is also

a quantum of fear as well. Fear of being insecure and the

looming threat of being hacked is always there besides

the other apprehensions that come with the dependency

on web application (Hussain et al., 2018). Thus, the

consideration for web security during source code

analysis emerges as a helpful solution for the developers

as well as the users. The framework aims at preventing

security problems by building a web application without

security holes (Beller et al., 2016 and Yamaguchi et al.,

2014). Phase wise implantation of the framework is done

in the next section of this study.

Fig. 3: Prescriptive steps for refining and managing the secure source code analysis

Data Repository

(DR2)

Data Repository

(DR4)

Data Repository

(DR3)

Review and revision

Call vulnerability and flaws

classification process

If
vulnerability

and flaws

found?

Yes

No
Reduce rule violations

Refine coding guidelines

Finalization and packaging

Facilitate

Software development life cycle

Alka Agrawal et al. / Journal of Computer Science 2019, 15 (12): 1780.1794

DOI: 10.3844/jcssp.2019.1780.1794

1785

Implementation of the Framework

Due to the wide applicability of information systems,

web security has become a crucial component during

web application development. Indeed, web application

faces threats from various potential malicious

adversaries that are rising every day (Huang et al.,

2004). These threats can impose a vast challenge to

developers in planning measures as a portion of their risk

management activities as well as in designing the

appropriate security requirements and policies. This is

due to the degree of subjectivity in how security is being

perceived and subject to different levels of concerns.

Moreover, numerous web applications are developed

without paying due attention to security issues including

the SQL injection, cross-site scripting and bad practices

of codes (Ayeni et al., 2018). Further, source code

analysis is one of the most significant features for

securing the web application that calls for high attention

amongst the engineers. To identify and mitigate security

vulnerabilities during source code analysis, this paper

has taken the open source code of hospital management

system (Hospital Management System in Java Using

NetBeans with Source Code, 2018). Due to very

sensitive information of the patients, effective source

code analysis is essential for securing the web

application. In the project, 23 main classes have 7046

lines of codes. For identifying the vulnerable codes,

phase 1 of the framework is implemented as follows:

For creating the challenges in the security of web

application, vulnerable codes are responsible (Gürses

and Santen, 2006). To prevent flaws and reducing the

testing efforts, producing effective source code is an

important but crucial task. During the implantation of

phase 1, this paper uses the five open source code

analysis tools including Arachni, FindBugs, SonarLint,

EasyPMD and JArchitect. The results are obtained by

powerful web application scanner tool designed for web

languages such as Java, Javascript, AJAX, HTML5, etc.

Arachni is smart to train itself by monitoring and learning

from the web application’s behavior. This framework

provides great coverage to modern web applications due

to its integrated browser environment (Arachni, 2018).

The source code was analyzed online through Arachni and

135 vulnerabilities were found. According to the results,

121 vulnerabilities were detected in the low level, 8

vulnerabilities were found in the medium level and 6

informational vulnerabilities were traced.

FindBugs is an open source static code analyzer for

JAVA, which was released in the year 2006. It is available

both in the command line cloud and GUI (FindBugs,

2015). It is used as a plugin in Netbeans IDE 8.2. The

source code is analyzed on FindBugs and 99

vulnerabilities are found and categorized into categories

including bad practice, correctness, experimental,

internationalization, malicious code vulnerability,

multithreaded correctness, performance, security and dodgy

code. After scanning the code, FindBugs ranks the bugs in

four severity levels which are: Scariest, scary, troubling and

of concern. SonarLint scanner scans the code that gives

instant feedback as the code is written by the coder. It

supports C#, VB.NET and Java languages in different IDEs

such as Eclipse, Visual Studio and Atom. SonarLint is

more of a spellchecker kind of tool that can store some

quality rules. It alerts the developer while writing the code

in case of any rule violation that might occur. The source

code was analyzed through SonarLint and 100

vulnerabilities were found.

EasyPMD scanner scans the code that collates the

results of scanning source code. It is an extension tool of

PMD tool plugin with NetBeans 8.0. Further, PMD is a

Java library tool that scans the Java code for possible

violations of the already written rules along with the

user’s repository of written rules. It is available in the

library of Java application and as a separate application.

The source code was analyzed through EasyPMD and 92

vulnerabilities were detected. JArchitect scanner shows

the results of scanning source code. It is a static analysis

tool for Java source code. It analyses the code for certain

defined quality standards and rules and presents

vulnerabilities or bugs using dependency graph and

dependency matrix. It is often called as a Swiss army

knife for the Java developers. Reputed software

development organizations such as Samsung and IBM

use it for analyzing the source codes. The tool helped to

detect the vulnerable line of code. The source code was

analyzed through JArchitect and 103 vulnerabilities were

found (JArchitect, 2018). These codes were not giving

compilation errors but still vulnerabilities and rules

violation were there. These five tools found a different

number of vulnerabilities and flaws (Pistoia et al., 2007)

that are enumerated in Table 2.

Table 2 enlists the problems in the source code of the

hospital management system that could be found through

a common analyzer doing data flow analysis, control

flow analysis, semantic analysis and configuration

analysis. The analyzer found four types of issues

including: Potential SQL injection, the class contains a

public variable, operation on primitive data type and

public class not declared as final. According to the phase

2 of the framework, authors categorized the security

vulnerabilities and flaws into seven categories for a web

application. The definitions of security vulnerabilities are

shown in Table 3. Table 3 highlights the vulnerabilities

which are related to web security. Every web application

has different usage in business, environment and

purpose. Potential risks and threats should be defined

with regards to the protected values and the weaknesses

arranged accordingly (Abomhara, 2015). After verifying

the alarms, Table 4 enumerates the actually identified

vulnerabilities that may be exploitable.

Alka Agrawal et al. / Journal of Computer Science 2019, 15 (12): 1780.1794

DOI: 10.3844/jcssp.2019.1780.1794

1786

Table 2: Problems found by using different tools

Categories

of analysis Rules Arachni (2018) FindBugs (2015) SonarLint (2017) EasyPMD (2015) JArchitect (2018)

Data flow Privacy violation X X X X

analysis Integer over flow X

 Path manipulation X X X

 System information leak X X X

 Setting manipulation X X X

 String termination error X X

 Resource injection X

 Illegal pointer value X X

 Out-of-bounds X

Control flow Null dereference X X

analysis Missing check against null X X

 Use after free X X

 Redundant null check X X X

 Insecure temporary file X X X

 Uninitialized variable X X X

 Double free memory leak X X X

 Unreleased resource race condition X X

Semantic Insecure randomness X X X

analysis Heap Inspection X X

 Command injection X X X X X

 Process control X X X

 Portability flaw X

 Format string X X X X

 Cryptographic hash X X

 Insecure compiler optimization X X X X

 Unchecked return value X X X

 Often misused X X

 Dangerous function X X X X X

Configuration Dead Code X X X X

analysis Password management X X

 Code correctness X X X X X

 Type mismatch X X

 Poor style X X X X X

Table 3: Classification of security vulnerabilities

S.N. Web security vulnerability Description References

1. Common directory Most of the web applications are built using common files and directories, that’s Common Directories

 why hackers focus on accessing these common directories by sending requests Detection, 2017

 with most known names. This may lead to the sensitive database which the web

 application is using. This problem is known as common directory reference

 vulnerability.

2. Missing For security reasons, web application developers use HTTP Strict Transport Security Missing 'Strict-Transport-

 ‘StrictTransportSecurity’ (HSTS) to follow encryption standards. Cybercriminals attempt to get sensitive Security' Header, 2017

 Header information which is passed from client to server by using HTTP instead of HSTS.

 This kind of vulnerability is called Missing Strict Transport Security Header.

3. Unvalidated Redirect An unvalidated direct occurs when web application site redirects to another Unvalidated Redirection,

 malicious site to modify the parameter value. Javascript is mostly used to redirect 2018

 a browser to an arbitrary URL.

4. Common Sensitive File It happens sometimes that some files got unused by time but are not removed by the Arachni Common File,

 administrator or forgotten. These specific files are weak points and vulnerable to 2018

 hackers easily. This vulnerability is called the problem of the common sensitive file.

5. Password field with To improve the usability of web page, developers usually give auto-complete on The Autocomplete

 Autocomplete password as well as on user id. Although it improves usability but it also increases Attribute and Web

 the chances of attacks by hackers who visit that page. Documents using

 XHTML, 2011

6. Missing ‘Xframe-Options’ HTTP response header can be used to indicate whether or not a browser should Strict-Transport-Security'

 Header be allowed to render a page in a <frame>. When X Frame options are missing in Header, 2018

 a web application, it may lead to clickjacking by hackers.

7. Cookie Set for Parent HTTP by itself is a stateless protocol. By the use of HTTP cookies, one can Arachni Insecure Cookies,

 Domain/Insecure differentiate between the authentic and unauthenticated user. This further lessens 2018

 Cookie/HttpOnly Cookie the chances of hacking. Hence, the usage of insecure cookie lets the

 unauthenticated person access the sensitive information from the web application.

Alka Agrawal et al. / Journal of Computer Science 2019, 15 (12): 1780.1794

DOI: 10.3844/jcssp.2019.1780.1794

1787

In Table 4 total vulnerabilities found are 515

(128+95+97+92+103) which are further divided as true

positive, true negative, false positive and false negative. In

this work we are focusing on true positive vulnerabilities

because true positive is a successful identification of the

attack. And Table 4 has 66 vulnerabilities found as true

positive in all which includes the common directory,

missing ‘strict-transport-security’ header, unvalidated

redirect, common sensitive file, password field with auto-

complete, missing ‘x-frame-options’ header, a cookie set

for parent domain/ insecure cookie/ HttpOnly cookie. To

measure the severity of the web security vulnerabilities,

this paper uses the fuzzy Analytical Analysis Process

(AHP) because prioritization of vulnerabilities is a multi-

criteria decision-making problem. To evaluate the severity

of security vulnerabilities of web applications, AHP is one

of the most important methods (Lokhande and Meshram,

2016). Also, it facilitates apt decisions among the

multiple conflicting criteria and decisions (Mu and

Pereyra-Rojas, 2017). In daily life, multiple criteria

problems can be solved using AHP such as a selection of

one criterion from different criteria (Mardani et al.,

2015). The stepwise process to measure the severity of

security vulnerabilities has been given in Fig. 4.

During the assessment of number of vulnerabilities in

the web application, source code is identified. In the next

step, information about the identified vulnerabilities is

gathered and a questionnaire to collect the priorities from

the security experts of web application security is

prepared. Next, a hierarchy of these issues/vulnerabilities

is created. This is followed by the step to prepare a pair-

wise comparison matrix that helps a person in making

the decision easier. The input proposes pair-wise

comparisons to produce the judgment matrix. Saaty

(1985) proposed pair-wise comparisons to create the

judgment matrix that is used in the AHP technique.

Corresponding linguistic scale for membership functions

lies between 1 and 9. After constructing a pair-wise

matrix of expert input, Consistency Ratio (CR) is

calculated to control the results of the AHP method

(Mu and Pereyra-Rojas, 2017). If the CR is less than 0.1,

then the weight of each input is calculated. If the CR is

greater than or equal to 0 then the refined pair-wise

matrices are prepared and the process is repeated again.

Further, after aggregating the pair-wise comparison

matrix, CR is calculated and verified again. Table 5

shows the aggregated pair-wise comparison matrix for

the issues of web security.

For defuzzification, an alpha cut method is used

(Dymova et al., 2015). The next step is to determine

the eigenvalue and eigenvector of the pairwise

comparison matrix. The purpose of calculating the

eigenvector is to determine the aggregated weight of a

particular criterion. The aggregated results in terms of

weights are shown in Table 6.

Fig. 4: Stepwise process for prioritizing the security

vulnerabilities

Table 4: Identification and verifying the security vulnerabilities

 Web Security related True
S.N. Issues/Tools Symbol Arachni FindBugs SonarLint EasyPMD JArchitect positive

1 Common Directory CD 119 87 82 80 95 Verify the 57
2 Missing ‘StrictTransport-Security’ Header STS 1 1 2 2 1 Warnings 1

3 Unvalidated Redirect UR 1 2 1 1 2 (False 1
4 Common Sensitive File CSF 2 1 3 2 1 Positive) 2

5 Password field with Auto-complete PFA 1 1 2 2 1 1

6 Missing ‘X-frame-Options’ Header XOH 1 1 3 2 1 1
7 Cookie Set for Parent Domain/ CDH 3 3 4 3 3 3

 Insecure Cookie/HttpOnly Cookie

Total Issues Found 128 95 97 92 103 66

Identify web security vulnerability

Establish decision hierarchy

Contract pairwise comparison matrices

Calculate Consistency Ratio (CR)

Is SR <0.1?
No

Yes

Aggregate pairwise

comparison matrices

No

Yes

Is overall

CR <0.1?

Calculate weight of each criteria

Alka Agrawal et al. / Journal of Computer Science 2019, 15 (12): 1780.1794

DOI: 10.3844/jcssp.2019.1780.1794

1788

Table 5: Aggregated fuzzify pair-wise comparison matrix

 CD STS UR CSF PFA XOH CDH

CD 1,1,1 1.0000, 0.4896, 0.4152, 0.2215, 0.3146, 0.6575,

 1.5157, 0.6372, 0.5743, 0.2871, 0.4610, 1.1653,

 1.9331 1 1 0.4152 0.8705 1.6883

STS - 1,1,1 0.5743, 0.3039, 0.2679, 0.1663, 0.3930,

 0.6657, 0.3936, 0.3521, 0.1969, 0.5743,

 0.8022 0.5661 0.5176 0.2531 1.0564

UR - - 1,1,1 1.0000, 0.3009, 0.8027, 1.2619,

 1.3195, 0.4352, 0.8705, 1.8250,

 1.5518 0.8027 1 2.4334

CSF - - - 1,1,1 0.5386, 0.6083, 0.7503,

 0.9143, 1.0592, 1.3465,

 1.5836 1.6829 1.9611

PFA - - - - 1,1,1 0.4152, 0.9465,

 0.6372, 1.1095,

 1.1791 1.2457

XOH - - - - - 1,1,1 1.8881,

 2.5508,

 3.1697

CDH - - - - - - 1,1,1

Table 6: Weights and ranks of vulnerabilities

 CD STS UR CSF PFA XOH CDH Weights Priority Severity

CD 1 1.4912 0.6910 0.6410 0.3027 0.5268 1.1691 0.1821 1 High

STS 0.6706 1 0.6770 0.4143 0.3724 0.2033 0.6495 0.1681 2 High

UR 1.4470 1.4771 1 1.2977 0.4935 0.8520 1.8364 0.1571 3 Medium

CSF 1.5600 2.4137 0.7706 1 0.9636 1.1024 1.3511 0.1484 5 Medium

PFA 3.3036 2.6853 2.0263 1.0378 1 0.7172 1.1028 0.1689 4 Medium

XOH 1.8982 4.9188 1.1737 0.9071 1.3943 1 2.3852 0.0789 7 Low

CDH 0.8554 1.5397 0.5445 0.7401 0.9068 0.4193 1 0.0965 6 Low

The weights obtained determine the priorities and

severity. Priority with numbers 1 and 2 is considered as
high severity problems. These vulnerabilities should be
solved immediately. Priority with 3, 4 and 5 should be
solved after solving the high-level severity
vulnerabilities. Low-level severity has the lowest priority
which is Missing ‘X-frame-Options’ Header and Cookie

Set for Parent Domain/Insecure Cookie/HttpOnly
Cookie. These low-level vulnerabilities should also be
solved but after the higher and medium level
vulnerabilities are solved. The static analysis focuses on
solving as many vulnerable holes as possible before

delivering the web application to the end user.
Web security has multiple issues in form of

vulnerabilities in the source code that should be carefully

assessed to get the secure web application.

Vulnerabilities prioritization seems to have different

types of criteria within it. For instance, to assess

different types of vulnerabilities, one needs to assess its

issues including common directory, SQL injection, etc.

Important tasks for mitigating the issues according to

ranks are discussed. After the identification and

prioritization of vulnerabilities/issues, the next step is to

mitigate the issues according to its priority. Every

automated tool has a vulnerability database and coding

rules. The common directory has found 57

vulnerabilities. Issues are discovered including class

contains a public variable, operation on primitive data

type and public class not declared as final. A number of

vulnerabilities are repetitive in each class and mitigation

of these issues are as follows:

The web application appears to allow SQL injection

via a pre-prepared dynamic SQL statement. No validator

plug-ins was located in the application's XML files. For

mitigating the issues of public class, the class is not

declared as final as per OWASP bunch of best practices.

It has no classes which are inherited from the final class.

The classes which are not declared as final may allow an

attacker to add malicious classes into it. This can be

resolved by manually inspecting the code to determine

whether or not it is practical to make this class final. For

mitigating the issues of operation data type, the code

appears to be carrying out a mathematical operation on a

primitive data type. In some circumstances, this can

result in overflow and unexpected behavior. The solution

is to check only the code snippet manually to determine

the severity of the problem. For mitigating the issues of

the class contains a public variable, the class variable

should not be called or accessed using get or set

methods. It is considered unsafe to have public fields or

methods in a class unless required. This is so because

any method, field, or class that is not private is a

Alka Agrawal et al. / Journal of Computer Science 2019, 15 (12): 1780.1794

DOI: 10.3844/jcssp.2019.1780.1794

1789

potential opportunity of attack. Further, common directory

traversal, also known as path traversal, is ranked number

13 on the CWE/SANS Top 25 Most Dangerous Software

Errors. An example of common directory vulnerabilities is

shown in following code snippet.

 public class About {

 public static void main(String[] args) {

 File file=new File(args[0]);

 }

 }

Further above code is found in About Class of the

open source code of the hospital management system.

Further, the common directory vulnerabilities will fortify

and flag the code even if the path/file doesn't come from

user input like a property file. The best way to handle

these is to normalize the path for user data input first and

then validate it against a list of allowed paths. To reduce

the problem, following shows the code snippet.

 public class About {

 public static void main(String[] args) {

 File file=new File(args[0]);

 if (!isInSecureDir(file)) {

 throw new IllegalArgumentException();

 }

 String canonicalPath = file.getCanonicalPath();

 if (!canonicalPath.equals("/img/java/file1.txt") &&

 !canonicalPath.equals("/img/java/file2.txt")) {

 // Invalid file; handle error

 }

 FileInputStream fis = new FileInputStream(f);

 }

Similarly, authors tried to reduce the other issues of

the common directory including modifications in the

codes and fixing the issues. Another high severe

vulnerability is found during scanning of the codes, i.e.,

missing HSTS. When someone doesn’t use HSTS in

accessing the website or uses only HTTP protocol to

access, they are more vulnerable to be attacked by Man

in the Middle Attacks. This type of attack is called the

HTTP Strict Transport Security Vulnerability. Use of

HSTS protocol reduces the possibility of the

occurrence of a Man in the Middle attack. Further,

Unvalidated Redirects occur when the user is directed

to phishing or malicious site by accessing the site due

to which the user’s credential information can be

hacked. Although this vulnerability is unavoidable, still

it can be lessened with no involvement of user

parameters in redirection. An example of unvalidated

redirects is shown in following code.

 if (domain != null && !domain.isEmpty()) {

 response.sendRedirect("https://" + domain +

request.getServletPath() + "?" +

request.getQueryString() + "&markAs=true");

 }

To reduce the problem, shows the solution in

following code snippet.

 response.sendRedirect("https://" + domain +

getUrl(request) + "&abredir=true");

 private String getUrl(HttpServletRequest request) {

 return request.getServletPath() + "?" +

request.getQueryString();

 }

Another high severe vulnerability is found while

scanning the codes, i.e., Password field with Auto-

complete. Today’s browsers such as Mozilla and

Chrome store the credentials entered by the user in

HTML forms. This function can save the information

of the user on the local computer and it can be used

maliciously by another unauthorized person. Further,

an attacker who finds a separate application

vulnerability such as cross-site scripting may be able to

exploit this to retrieve a user's browser-stored

credentials. An example of a Password field with

Autocomplete is shown in following code.

 jLabel2.setText("Password");

 jButton1.setText("OK");

 jButton1.addActionListener(new

java.awt.event.ActionListener() {

 public void

actionPerformed(java.awt.event.ActionEvent

evt) {

 jButton1ActionPerformed(evt);

 }

 });

In order to address the problem identified, the authors

created a temporary text box above the password field

and hide it in the following manner:

 <label>Password:</label>

 <input type="text" style="display:none;">

It will make the username as text field to not show

any previously typed words in a drop down. Since there

is no attribute like name, id for the input field <input

type="text" style="display:none;">, it wouldn't send any

extra parameters also. Further, common sensitive files

cannot be logged as they may contain sensitive

information such as the username and password. Hence,

this problem should be analyzed and solutions should be

provided to confront this situation. To avoid this, file

Alka Agrawal et al. / Journal of Computer Science 2019, 15 (12): 1780.1794

DOI: 10.3844/jcssp.2019.1780.1794

1790

should be restricted for access or should be removed from

the website. If the above-mentioned solution doesn’t

work, then the solution is to check the whole code

manually. This would protect any sensitive information

from being passed on to the other server and user.
Missing ‘X-frame-Options’ Header risks the attack of

ClickJacking. ClickJacking is taking the user to another
malicious website or database by creating different
keystrokes or by trapping it through clicking some
Headers which are made using JavaScript. An example
of missing X Frame Options header is shown in
following code snippet.

 Web.xml

 <filter>

 <filter-name>UrlRewriteFilter</filter-name>

 <filter-

class>org.tuckey.web.filters.urlrewrite.UrlRewrite

Filter</filter-class>

 </filter>

 <filter-mapping>

 <filter-name>UrlRewriteFilter</filter-name>

 <url-pattern>/*</url-pattern>

 <dispatcher>REQUEST</dispatcher>

 <dispatcher>FORWARD</dispatcher>

 </filter-mapping>

 <filter>

 <filter-name>httpHeaderSecurity</filter-name>

 <filter-

class>org.apache.catalina.filters.HttpHeaderSecurit

yFilter</filter-class>

 <init-param>

 <param-name>antiClickJackingOption</param-

name>

 <param-value>SAMEORIGIN</param-value>

 </init-param>

 <init-param>

 <param-name>antiClickJackingEnabled</param-

name>

 <param-value>true</param-value>

 </init-param>

 </filter>

So this turns out not to be a problem with URL

Rewrite but a missing for the httpSecurityHeader filter

that contained the x-frame-options. After adding the

mapping "/*", every file now has the anti ClickJacking

options set. Following code is showing the web.xml

settings that make that happen.

 <filter>

 <filter-name>httpHeaderSecurity</filter-name>

 <filter-

class>org.apache.catalina.filters.HttpHeaderSecurit

yFilter</filter-class>

 <init-param>

 <param-name>antiClickJackingOption</param-

name>

 <param-value>SAMEORIGIN</param-value>

 </init-param>

 <init-param>

 <param-name>antiClickJackingEnabled</param-

name>

 <param-value>true</param-value>

 </init-param>

 </filter>

 <filter-mapping>

 <filter-name>httpHeaderSecurity</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

A cookie's domain attribute determines which

domain can access the cookie. HTTP by itself is a

stateless protocol. By the use of HTTP cookies, one can

differentiate between the authenticated and

unauthenticated user, which further lessens the chances

of hacking. Hence, the usage of insecure cookie lets the

unauthenticated person access the sensitive information

from the web application. The Remediation of this

problem is that: By default, cookies are scoped to the

issuing domain and on IE/Edge to subdomains. If one

removes the explicit domain attribute from one’s Set-

cookie directive, then the cookie will have this default

scope, which is safe and appropriate in most situations

(Cookie Scoped to Parent Domain, 2019).

After reducing the issues, authors scanned the source

code, again. The results of the FindBugs show the

violation of 25 rules that are related to the language rule

violations rather than the security violations. The result

of the EasyPMD shows the 3 rule violations. The result

of the SonarLint shows the run time errors that can be

resolved. After implemented suggestive measurement,

the result of the Arachni didn’t analyze because this tool

takes the open source code through GitHub. The result of

the JArchitect shows the 17 rule violations related to

security. The rule violations may be reduced through

fixing the issues.

Vulnerabilities were present in code that we have

taken from the hospital management system. We

executed the tools and followed the prescriptive steps of

a framework for this code of Java. The codes were

written in Java; hence, Java-based tools were used for

static analysis (Identifying the Exact Fixing Actions of

Static Rule Violation, 2015). A before and after version

of the code is available to us and new codes static

analysis gives us better results. Some rule violations in

the code do require to remove the software artifact on

which they occur. For example, in context of a rule that

detects that a method has the same implementation in a

Alka Agrawal et al. / Journal of Computer Science 2019, 15 (12): 1780.1794

DOI: 10.3844/jcssp.2019.1780.1794

1791

super-class and a sub-class, we preferred ignoring them

here to provide a clearer understanding of the

properties of our framework.

Discussion

The increasing number of incidents on web security

breach has imposed the need to look upon a direction to

optimize the source code analysis to produce secure

codes (Meghanathan, 2013). This practical approach is

currently adopted by most of the security practitioners.

In essence, the integration of security strategies as a

security framework while writing the source code

would allow any security anomalies to be detected and

fixed well before the software application is released

(El-Hadary and El-Kassas, 2014). The framework will

also allow the code to be audited for conformance which,

as a result, will not only provide greater security but will

also save time, costs and resources which might be

incurred on redevelopment or patching of the software

application once it is released.

In this study, the authors have discussed the reasons

for the vulnerabilities that appeared in the code and how

they could be exploited if left unattended and, thus,

confront with the consequences of an attack. Further,

authors have provided detailed solutions to efficiently

and effectively remove each of the vulnerabilities and

presented the appropriate code snippets and the results of

source code analysis when the vulnerabilities are fixed

one after the other. FindBugs tool found 99

vulnerabilities; Arachni web application scanner found

121 vulnerabilities, SonarLint as Eclipse plugin found

100 bugs, EasyPMD as NetBeans plugin found 92

vulnerabilities. After implementation of the framework,

the codes of the project were corrected following the

suggestive measures and again the static analysis tools

were used to get results of static source code analysis.

On implementing the FindBugs tool, the vulnerability

was reduced to 25. Similarly, the EasyPMD found no

medium level of vulnerability. SonarLint reduces errors

from 100 to 21. Hence, on successfully implementing the

proposed framework, 80% of the vulnerabilities in the

code are mitigated. The remaining 20% of the

vulnerabilities were only compiled time errors or the

vulnerabilities with low severity, whose mitigation may

lead to change in the design of software.

The framework proposed and implemented in this

paper proves to be relentlessly practical with the

following significance:

 The framework divides the severity of the problems

into three levels high, medium and low

 The results achieved by the re-analysis of code after

solving the vulnerabilities issues were found to be

satisfactory and low in numbers

 The framework helps to evaluate the secure source

code and produce guidelines according to the

severity of vulnerabilities found

 It may help to discover vulnerabilities in the

software at the early stage of web application

development life cycle leading to a secured end

product

 It may help to determine the effects of the source

code analysis for web security

 It may assist to develop alternative web security

design of web application under development

 With the help of the results, developers may produce

refined and prioritized coding guidelines.

Limitations of the proposed framework are as follows:

 This work used the fuzzy AHP for prioritizing the

security vulnerabilities. More appropriate techniques

such as fuzzy-neural, classical AHP, etc., may be

used in the future that can reduce the efforts

 Security issues can be classified in more level and

hierarchies to attain more security in web

applications

 This framework can be applied on big projects and

the results should be analyzed to validate it

As part of future work, we plan to extend the

framework application with different web application

based languages such as Python, Ruby and Perl. Also,

the code snippet provided here is written in Java and

HTML but these codes are mostly applicable to other

languages as well with the same logic. Hence, removing

and patching vulnerabilities with the framework is a

success path for developers, which may lead to more

secure web applications.

Conclusion

In this work, we have proposed and implemented a

framework for securing web applications. The

framework is composed of three phases with the

objective of securing the source code through static code

analysis. There are plenty of tools and methods that have

been proposed in recent years. However, a benchmarked

framework, which could combine all the tools and

methods with possibly all language support, is missing.

Hence, this framework combines materials and methods

proposed in previous works and provide a new

benchmark in web application security. To validate the

proposed framework, an open source code Hospital

Management Web Application system was used. The

results achieved by the framework implementation are

highly recognizable and satisfying. In future work, more

methods other than AHP can be applied to evaluate the

priorities of vulnerabilities identified.

Alka Agrawal et al. / Journal of Computer Science 2019, 15 (12): 1780.1794

DOI: 10.3844/jcssp.2019.1780.1794

1792

Acknowledgment

Authors are thankful to College of Computer and

Information Sciences, Prince Sultan University, KSA for

providing the fund to carry out the work.

Author’s Contributions

Alka Agrawal: Conceived and designed experiments,

reviewed drafts of the paper, approved the final draft.

Mamdouh Alenezi: Performed the computation

work, approved the final draft.

Rajeev Kumar: Conceived and designed the

experiments, performed the experiments, contributed

reagents/materials/analysis tools, prepared figures and/or

tables, performed the computation work, approved the

final draft.

Raees Ahmad Khan: Analyzed the data, contributed

reagents/materials/analysis tools, authored or reviewed

drafts of the paper, approved the final draft.

Ethics

The authors declare that they have no competing

interests.

References

Ahmed, M. and A.S.S.M.B. Ullah, 2018. Health Care

Security Analytics. In: Data Analytics, Mohiuddin

Ahmed, Al-Sakib Khan Pathan (Eds.), CRC Press,

ISBN-13: 9780429446177 pp: 427-440.

Ayeni, B.K., J.B. Sahalu, K.R. Adeyanju, 2018.

Detecting cross-site scripting in web applications

using fuzzy inference system. J. Comput. Netw.

Commun. DOI: 10.1155/2018/8159548

Arachni Insecure Cookies, 2018. Available at:

https://github.com/Arachni/arachni/blob/master/com

ponents/checks/passive/grep/insecure_cookies.rb

Abomhara, M., 2015. Cyber security and the internet of

things: Vulnerabilities, threats, intruders and attacks.

J. Cyber Security Mobility, 4: 65-88.

 DOI: 10.13052/jcsm2245-1439.414

Arachni Common File, 2018. Available at:

https://github.com/Arachni/arachni/blob/master/com

ponents/checks/passive/common_files.rb

Arachni, 2018. Available at:

https://github.com/Arachni/arachni

Beller, M., R. Bholanath, S. McIntosh and A. Zaidman,

2016. Analyzing the state of static analysis: A large-

scale evaluation in open source software.

Proceedings of the IEEE 23rd International

Conference on Software Analysis, Evolution and

Reengineering, Mar. 14-18, IEEE Xplore Press,

Suita, Japan, pp: 470-481. DOI:

10.1109/SANER.2016.105

Cookie Scoped to Parent Domain, 2019. Available at:

https://portswigger.net/kb/issues/00500300_cookies

coped-to-parent-domain

Common Directories Detection, 2017. Available at:

https://www.tenable.com/plugins/was/98072

Code Optimization Control Flow Graph, 2018.

Available at:

http://www.utdallas.edu/~ilyen/course/compiler/note

s/optimize-cfg-s.pdf

Chess, B. and G. McGraw, 2004. Static analysis for

security. IEEE Security Privacy, 2: 76-79.

 DOI: 10.1109/MSP.2004.111

Detection of Vulnerabilities in Programs with the Help

of Code Analyzers, 2008. Available at:

https://www.viva64.com/en/a/0028/

Dymova, L., P. Sevastjanov and A. Tikhonenko, 2015.

An interval type-2 fuzzy extension of the tops is

method using alpha cuts. Knowledge-Based Syst.,

83: 116-127. DOI: 10.1016/j.knosys.2015.03.014

EasyPMD, 2015. Available at:

http://plugins.netbeans.org/plugin/57270/easypmd

El-Hadary, H. and S. El-Kassas, 2014. Capturing

security requirements for software systems. J. Adv.

Res., 5: 463-472. DOI: 10.1016/j.jare.2014.03.001

FindBugs, 2015. Find Bugs in Java Programs. Available

at: http://findbugs.sourceforge.net/

Gürses, S.F. and T. Santen, 2006. Contextualizing

security goals: A method for multilateral security

requirements elicitation. Sicherheit, 6: 42-53.

Hospital Management System in Java Using NetBeans

with Source Code, 2018. Available at:

https://codeprojects.org/hospital-management-

system-in-java-using-netbeans-with-source-code/

Heckman, S. and L. Williams, 2011. A systematic

literature review of actionable alert identification

techniques for automated static code analysis.

Inform. Software Technol., 53: 363-387.

 DOI: 10.1016/j.infsof.2010.12.007

Huang, Y.W., F. Yu, C. Hang, C.H. Tsai and D.T. Lee

et al., 2004. Securing web application code by static

analysis and runtime protection. Proceedings of the

13th International Conference on World Wide Web,

May 17-20, ACM, New York, pp: 40-52.

 DOI: 10.1145/988672.988679

Hussain, M., A.A. Zaidan, B.B. Zidan, S. Iqbal and

M.M. Ahmed et al., 2018. Conceptual framework

for the security of mobile health applications on

android platform. Telemat. Inform., 35: 1335-1354.

DOI: 10.1016/j.tele.2018.03.005

Internet Security Threat Report by Semantics, 2016.

Available at:

https://www.symantec.com/content/dam/symantec/d

ocs/reports/istr-21-2016-en.pdf

https://github.com/Arachni/arachni/blob/master/components/checks/passive/grep/insecure_cookies.rb
https://github.com/Arachni/arachni/blob/master/components/checks/passive/grep/insecure_cookies.rb
https://github.com/Arachni/arachni/blob/master/components/checks/passive/common_files.rb
https://github.com/Arachni/arachni/blob/master/components/checks/passive/common_files.rb
https://github.com/Arachni/arachni
https://www.tenable.com/plugins/was/98072
http://www.utdallas.edu/~ilyen/course/compiler/notes/optimize-cfg-s.pdf
http://www.utdallas.edu/~ilyen/course/compiler/notes/optimize-cfg-s.pdf
https://www.viva64.com/en/a/0028/Last
http://plugins.netbeans.org/plugin/57270/easypmd
http://findbugs.sourceforge.net/

Alka Agrawal et al. / Journal of Computer Science 2019, 15 (12): 1780.1794

DOI: 10.3844/jcssp.2019.1780.1794

1793

Identifying the Exact Fixing Actions of Static Rule

Violation, 2015. Available at:

https://hal.inria.fr/hal01185795/document

JArchitect, 2018. Available at:

https://www.jarchitect.com/

Kulenovic, M. and D. Donko, 2014. A survey of static

code analysis methods for security vulnerabilities

detection. Proceedings of the 37th International

Convention on Information and Communication

Technology, Electronics and Microelectronics,

May 26-30, IEEE Xplore Press, Opatija, Croatia,

pp: 1381-1386.

 DOI: 10.1109/MIPRO.2014.6859783

Larrucea, X., I. Santamaria and R. Colomo-Palacios,

2019. Assessing source code vulnerabilities in a

cloud-based system for health systems:

OpenNCP. IET Software, 13: 195-202.

 DOI: 10.1049/iet-sen.2018.5294

Lokhande, P.S. and B.B. Meshram, 2016. Analytic

Hierarchy Process (AHP) to find most probable web

attack on an e-commerce site. Proceedings of the

2nd International Conference on Information and

Communication Technology for Competitive

Strategies, Mar. 04-05, ACM, Udaipur, India, pp:

62-62. DOI: 10.1145/2905055.2905120
Meneely, A., H. Srinivasan, A. Musa, A.R. Tejeda and

M. Mokary et al., 2013. When a patch goes bad:
Exploring the properties of vulnerability-
contributing commits. Proceedings of the
ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, Oct. 10-11,
IEEE Xplore Press, Baltimore, MD, USA, pp: 65-74.
DOI: 10.1109/ESEM.2013.19

Missing 'Strict-Transport-Security' Header, 2017.

Available at:

https://www.tenable.com/plugins/was/98056

Mardani, A., A. Jusoh, K. Nor, Z. Khalifah and N.

Zakwan et al., 2015. Multiple criteria decision

making techniques and their applications–a review

of the literature from 2000 to 2014. Economic Res.,

28: 516-571.

 DOI: 10.1080/1331677X.2015.1075139

Mu, E. and M. Pereyra-Rojas, 2017. Understanding the

Analytic Hierarchy Process. In: Practical Decision

Making, Springer, ISBN-13: 978-3-319-33860-6,

pp: 7-22.

Meghanathan, N., 2013. Source code analysis to remove

security vulnerabilities in java socket programs: A

case study. Int. J. Netw. Security Applic., 5: 1-16.

DOI: 10.5121/ijnsa.2013.5101

Nausheen, F. and S.H. Begum, 2018. Healthcare IoT:

Benefits, vulnerabilities and solutions. Proceedings

of the 2nd International Conference on Inventive

Systems and Control, Jan. 19-20, IEEE Xplore

Press, Coimbatore, India, pp: 517-522.

 DOI: 10.1109/ICISC.2018.8399126

Nunes, P., I. Medeiros, J.C. Fonseca, N. Neves and M.

Correia et al., 2018. Benchmarking static analysis

tools for web security. IEEE Trans. Reliability, 67:

1159-1175. DOI: 10.1109/TR.2018.2839339

Perl, H., S. Dechand, M. Smith, D. Arp and F.

Yamaguchi et al., 2015. Vccfinder: Finding

potential vulnerabilities in open-source projects to

assist code audits. Proceedings of the 22nd ACM

SIGSAC Conference on Computer and

Communications Security, Oct. 12-16, ACM,

Denver, Colorado, USA, pp: 426-437.

 DOI: 10.1145/2810103.2813604

Paladion, Source Code Analysis Suite, 2018. Available

at: https://www.paladion.net/blogs/source-

codeanalysis-suite

Pistoia, M., S. Chandra, S.J. Fink and E. Yahav, 2007.

A survey of static analysis methods for

identifying security vulnerabilities in software

systems. IBM Syst. J., 46: 265-288.

 DOI: 10.1147/sj.462.0265

Strict-Transport-Security' Header, 2018. Available at:

http://www.valencynetworks.com/kb/clickjacking-

xframe-options-header-missing.html

Smith, J., B. Johnson, E. Murphy-Hill, B.T. Chu and H.

Richter, 2018. How developers diagnose potential

security vulnerabilities with a static analysis tool.

IEEE Trans. Software Eng., 45: 877-897.

 DOI: 10.1109/TSE.2018.2810116

Saaty, T.L., 1985. Decision making for leaders. IEEE

Trans. Syst. Man Cybernet., 3: 450-452.

 DOI: 10.1109/TSMC.1985.6313384

Standard, D., 1997. Requirements for safety related

software in defence equipment part 2: Guidance.

http://www.software-supportability.org/Docs/00-

55_Part_2.pdf

Sonarlint, 2017. Fix Issues before They Exist.

The Autocomplete Attribute and Web Documents using

XHTML, 2011. Available at:

https://wiki.mozilla.org/The_autocomplete_attribute

_and_web_documents_using_XHTML

Unvalidated Redirection, 2018. Available at:

https://wordpress.org/support/topic/unvalidated-

redirection/

VanDen H., B. Jeroen, P.W. Martijn and M. Warnier,

2018. Privacy and information technology.

Visual Code Grepper - Code Security Scanning Tool,

2016. Available at:

https://github.com/nccgroup/VCG

Verma, A.K. and A.K. Sharma, 2019. An Assessment

of Vulnerable Detection Source Code Tools. In:

Software Engineering, Hoda, M., N. Chauhan, S.

Quadri and P. Srivastava (Eds.), Springer,

Singapore, ISBN-13: 978-981-10-8847-6, pp:

403-412.

https://hal.inria.fr/hal01185795/document
https://www.jarchitect.com/
https://www.tenable.com/plugins/was/98056Last
https://www.paladion.net/blogs/source-codeanalysis-suite
https://www.paladion.net/blogs/source-codeanalysis-suite
http://www.software-supportability.org/Docs/00-55_Part_2.pdf
http://www.software-supportability.org/Docs/00-55_Part_2.pdf
https://wiki.mozilla.org/The_autocomplete_attribute_and_web_documents_using_XHTML
https://wiki.mozilla.org/The_autocomplete_attribute_and_web_documents_using_XHTML
https://wordpress.org/support/topic/unvalidated-redirection/
https://wordpress.org/support/topic/unvalidated-redirection/
https://github.com/nccgroup/VCG

Alka Agrawal et al. / Journal of Computer Science 2019, 15 (12): 1780.1794

DOI: 10.3844/jcssp.2019.1780.1794

1794

Web Application Vulnerabilities: Statistics for 2017,

2018. Available at:

https://www.ptsecurity.com/wwen/analytics/web-

application-vulnerabilities-2018/

Yamaguchi, F., N. Golde, D. Arp and K. Rieck, 2014.

Modeling and discovering vulnerabilities with code

property graphs. Proceedings of the IEEE

Symposium on Security and Privacy, May 18-21,

IEEE Xplore Press, San Jose, CA, USA, pp: 590-604.

DOI: 10.1109/SP.2014.44

Zampetti, F., S. Scalabrino, R. Oliveto, G. Canfora and

M. Di Penta, 2017. How open source projects use

static code analysis tools in continuous integration

pipelines. Proceedings of the IEEE/ACM 14th

International Conference on Mining Software

Repositories, May 20-21, IEEE Xplore Press,

Buenos Aires, Argentina, pp: 334-344.

 DOI: 10.1109/MSR.2017.2.

