

 © 2019 Nasro Min-Allah. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0

license.

 Journal of Computer Science

Original Research Paper

Feasibility Analysis of Non-Preemptive Periodic Systems from

Infeasibility Perspective

Nasro Min-Allah

College of Computer Science and Information Technology,
Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia

Article history
Received: 08-04-2019
Revised: 18-06-2019
Accepted: 7-07-2019

Email: nabdullatief@iau.edu.sa

Abstract: Due to simple implementation, non-preemptive scheduling has

the advantage over preemptive counterpart when it comes to deployment of

real-time systems. Accordingly, many feasibility techniques have been

established to answer schedulability of the task set for non-preemptive case.

The time complexity of exact condition for non-preemptive under dynamic

priority assignment is of pseud-polynomial nature. Recently, efforts are

made to decrease the computation cost of existing exact solutions.

However, the time complexity class remains the same. In such systems,

feasibility is tested by starting with highest priority task and test continues

in that order until the last task is analyzed in the set. Normally, higher

priority tasks rarely miss the deadline and hence, when a system is

determined infeasible, it is mainly because of the low priority tasks as these

tasks are assigned low priorities and can claim CPU time only when there is

no pending higher priority task in the queue. In this study, we propose a

mechanism that reduces the computation cost of feasibility for non-

preemptive earliest deadline first scheduling algorithm by testing the

infeasibility of the system in reverse priority order. In worst case, the

proposed technique is not inferior for a system with low utilization that

scans a task set from feasibility perspectives. On the other hand, our test

exhibits better performance when the system infeasibility is tested for the

system demanding higher CPU utilization. Our experimental results show

that the overall computation cost, especially for the larger task sets with

higher CPU demands, is significantly reduced with the proposed solution

by evaluating a system from infeasibility perspective.

Keywords: Operating Systems, Scheduling, Non-Preemptive Scheduling,

Real-Time Systems, Feasibility Analysis

Introduction

Task preemption play a decisive role in the

construction of real-time systems and deeply influences

the overall system utilization. In scheduling theory, a

task is called non-preemptive if it runs to its completion

once it has been given the processor. In the preemptive

counterpart, however, processor time can be allocated to

another waiting task based on some scheduling strategy

and hence low priority tasks cannot block higher priority

tasks. Though promising from utilization point of view,

preemptive scheduling are complex due to context

switching, pipeline, cache-related costs etc. In contrast,

non-preemptive systems also known as co-operative

scheduling manage all the tasks fairly and offer simple

implementation, however, analysis of non-preemptive

systems under dynamic scheduling is more complicated

than the preemptive counterpart.

A number of scheduling polices exist today in

literature (Baruah et al., 2003; Liu and Layland, 1993;

Swaminathan and Chakrabarty, 2005; Liu, 2000),

especially tailored for performance metrics such as

minimize response time, higher throughput, completion

time and higher predictability etc (Baruah et al., 2003;

Liu and Layland, 1993; Swaminathan and Chakrabarty,

2005; Liu, 2000; Krishna and Shin, 1997; Davis and

Burns, 2011; George et al., 1996; Guan et al., 2008;

Sha et al., 2004; Min-Allah, 2019; Audsley et al.,

1995; Min-Allah et al., 2010; 2013; Burns et al.,

2012; Jeffay et al., 1991; Jejurikar and Gupta, 2005;

Nasro Min-Allah / Journal of Computer Science 2019, 15 (9): 1283.1290

DOI: 10.3844/jcssp.2019.1283.1290

1284

Alrashed et al., 2017; Nasri and Kargahi, 2014; Nasri,

2017; Min-Allah et al., 2019; Khan and Min-Allah,

2011; Min-Allah et al., 2012). Among these matrices,

predictability is of the highest importance for the success

of a real-time systems (Swaminathan and Chakrabarty,

2005), however, in general system some other criteria might

be of more interest such as throughput.
Real-time systems ensure the deadlines associate with

individual tasks are met and missing even a single

deadline can result in catastrophic consequences. Thus,

missing deadline by single task/process makes the entire

system infeasible. Unlike non-real-time systems, where

statistical or experimental evaluations can be used, real-

time system must be proven not to fail under any

possible circumstances and hence the validity of each
task is tested mathematically. For this matter, tasks are

assigned priorities such that the decision for allocating

processor is based on the task priority.

The main classes of real-time scheduling are (i)

fixed priority (Min-Allah, 2019; Audsley et al., 1995;

Min-Allah et al., 2010; 2013) and (ii) dynamic

priority (Liu and Layland, 1993; Liu, 2000; Krishna

and Shin, 1997; Burns et al., 2012). Fixed priority

scheduling results in more predictability however the

processor utilization is compromised as a tradeoff for

respecting timing constraints. Infixed priority systems, a
task is assigned priority that remains unique and not

interchange-able with any other task. On the other hand,

task priority may change at execution time for the tasks

and processor is assigned to the task with shortest

deadline. Task priorities are broken arbitrarily when two

or more tasks share the same deadline. The priority as-

signment ensures that CPU is always running higher

priority task and it is always known in case of fixed

priority system that which task will miss the deadline.

While the priority order changes at run time in dynamic

system and hence CPU will be running a task that has
highest priority at a given time, say deadline of the

running task is the earliest among the other tasks in the

queue. Irrespective of fixed or dynamic priority, a

system is declared infeasible when at least one task

misses the deadline. As compared to fixed priority

systems, the advantage associated with dynamic priority

is the higher performance and hence dynamic priority

systems is discussed in this study.

To ensure that the deadlines associated with task are

fully respected, feasibility analysis has to run before the

processor is allocated to a running task (Liu and

Layland, 1993; Jeffay et al., 1991; Audsley et al.,

1995; Guan et al., 2008; Nasri and Kargahi, 2014; Nasri,

2017). Due to nature of tasks scheduling in preemptive

and non-preemptive cases, different types of feasibility

tests have been applied to know the schedulability of a

task set. Literature shows that preemptive scheduling

results in more context switching and considerable

processor time is wasted on such operations (Liu, 2000;

Krishna and Shin, 1997; Davis and Burns, 2011;

George et al., 1996; Guan et al., 2008; Sha et al.,

2004), while non-preemptive provide simpler

implementation and can be used in commercial operating

systems (Jejurikar and Gupta, 2005; Alrashed et al., 2017;

Nasri and Kargahi, 2014; Nasri, 2017; Min-Allah et al.,

2019; Khan and Min-Allah, 2011). For the feasibility

analysis of non-preemptive system under dynamic priority

assignment the existing feasibility test are expensive from

computation cost point of view.
As per existing scheduling algorithms, Earliest

Deadline First (EDF) (Liu and Layland, 1993) is

considered the optimal one among workload conserving

scheduling algorithms for preemptive real-time systems.

In such cases, EDF can schedule any task set as long as

utilization demand is less or equal to 100%. In other

words, no other scheduling algorithm can provide higher

system utilization than EDF for the preemptive case.

However, this bound becomes irrelevant when task set

has to be scheduled non-preemptively. The feasibility
analysis of non-preemptive case depends not only on the

utilization but also on the schedulability analysis of each

task and hence computation cost increases significantly.

In this study, we propose testing the schedulability of

a real-time system from the infeasibility perspective. By

in-feasibility, we mean to determine if the task set in

unschedulable with non-preemptive EDF scheduling on

a single CPU system instead of answering if the task set

is EDF schedulable under non-preemptive EDF. When

task set schedulability is of interest, testing

schedulability of individual tasks starting from the

highest priority tasks is an established approach, while

lowest priority task should be evaluated first when they

task set has to be analyzed from infeasibility perspective.

We test schedulability of lowest priority task first and if

the task is found schedulable, we test the schedulability

of lower priority task till we reach the task with highest

priority. Authors in (Alrashed et al., 2017) derived that

it is suffix to check the schedulability of the lowest

priority task in a special case on non-preemptive EDF

and hence out of scope of this paper. In this study extend

the work done in (Jejurikar and Gupta, 2005) by

employing the lowest priority first approach. For the

system when all tasks are schedulable non-preemptively

with EDF, our test exhibits the same complexity as the

testing feasibility by starting with highest priority task

and so on. On the other side, for the infeasible task sets,

our technique determines system infeasibility much early

by testing system feasibility in the opposite direction.

The remaining of this paper is organized as follows.

Section 2 presents the related work and background of

our task model. Section 3 establishes a novel task-

scheduling mechanism for non-preemptive tasks that are

Nasro Min-Allah / Journal of Computer Science 2019, 15 (9): 1283.1290

DOI: 10.3844/jcssp.2019.1283.1290

1285

of periodic nature. The results for in-feasibility analysis

are shown in Section 4 and the effectiveness of our

technique is evaluated accordingly. Finally, we conclude

the paper in Section 5.

Related Work and Problem Formulations

As the complexity of smart home solution grows,

many devices are expected to support tasks that demands

timely responses. While simple tasks can be supported

with tiny sensors with no computation capability,

complex tasks need devices offering desired computation

capabilities. Such embedded devices generally need a

basic operating system at least to run a few tasks

successfully. However, due to memory and power

constraints, it is always preferred to incorporate a

lightweight operating system in such devices. Again, the

functionality of an operating system depends on the

target application and accordingly a scheduling policy

should be decided before deploying onto the real system.

In a simple embedded system, implementing one

scheduling approach might suffix but for basic

operations but for flexible systems the scheduler should

support multiple schemes that can be configured per

application needs. The role of scheduling algorithm is of

particular interest to the real-time system where timings

requirements are of great interest.

Real time system can be categorized into multiple

levels but the two major types are soft and hard real-time

systems. In soft real-time system, meeting the task

deadline is desirable while its becomes inevitable for the

hard real-time system. Consequently scheduling

algorithms are selected based on the nature of targeted

systems. Real-time system theory is rich in this aspect

and a number of alternatives are available (Liu and

Layland, 1993; Swaminathan and Chakrabarty, 2005)

of the fundamental fixed and dynamic scheduling

algorithms (Liu and Layland, 1993) our work is

applicable to independent tasks system where there is no

precedence among tasks. The task set is periodic and all

tasks are ready for execution simultaneously at time t =

0. A task τi may finish early that its worst case

completion time and each independent task createsa

sequence of jobs where each job arrived at integer

multiple of task period pi. Theexecution requirement of a

task is given by ci. There are n number of tasks and to

assign a unique priority to a task, the number of discrete

priority levels that are supported bythe hardware is the

same as task number. Each task must have a priority that

my change at run time.
The utilization of a task is denoted by ui and it is the

ration of execution time to the task period. The task set is

represented by  and total system utilization is given by

 
1

/ .
n

tot i ii
u c p

 Our target system is uni-processor

system and run at uniform speed which is the maximum

speed in this case. The results established in this study

can be potentially applied to the CPUs running on

multiple discrete levels but such systems are out of the

scope of this work. The system never becomes idle when

there is a pending task and a task needs to be executed
till completion as soon as the priority system can assigns

it the CPU. In the beginning all tasks are assumed to

arrive at t = 0. This assumption allows us to mimic the

worst case of combination of tasks release times also

known as critical instant (Liu and Layland, 1993).

To schedule a task set, various scheduling schemes

have been implement such as First-come First-served

(FCFS) (FIFO), Last-in First-Out (LIFO), Shortest Job

First (SJF), Round Robin (RR), Rate-Monotonic (RM),

Earliest Deadline First (EDF) etc. (Baruah et al., 2003;

Liu and Layland, 1993; Swaminathan and Chakrabarty,
2005). Thesetechnique are designed for keeping some

perforans criterion in mind such as CPU utilization,

throughput, waiting time, response time and predictability

etc. The applicability of these metrics depends on the

system that is under study. For instance, in real-time

systems predictability is everything i.e., task deadline must

be respected irrespective of the system load.

The aforementioned scheduling schemes can be

classified into two main types: (i) general scheduling for

handling any task queue and (ii) priority specific mainly

designed for real-time systems such as RR and EDF etc.

EDF is dynamic priority schemes that support both
preemptive and non-preemptive systems. EDF is an

optimal technique for real-time systems in the sense that if

any other scheduling approach can successfully schedule

a non-preemptive task set then EDF will never fail.

Various techniques are available for feasibility analysis

of preemptive (Baruah et al., 2003; Liu and Layland,

1993; Guan et al., 2008; Sha et al., 2008; Min-Allah,

2019; Audsley et al., 1995; Min-Allah et al., 2010; 2013)

and non-preemptive case (Jeffay et al., 1991; Jejurikar and

Gupta, 2005; Guan et al., 2008). For dynamic scheduling,

the classic test for preemptive real-time systems was
derived in (Liu and Layland, 1993).

Theorem 2.1. Liu and Layland (1993)

Under a non-preemptive EDF scheduling policy, a

periodic task set is schedulable on a uni-processor

system iff:

1

1
n

i

i i

c

p

 (1)

The test given in Theorem 2.1 is pretty straight
forward and guarantees schedulability of any task set, as

long as utilization is less than or equal to 100%,

Nasro Min-Allah / Journal of Computer Science 2019, 15 (9): 1283.1290

DOI: 10.3844/jcssp.2019.1283.1290

1286

preemptively. It is worth highlighting that Inequality 1

denotes the maximum theocratical limit on system

utilization that can be achieved be achieved under a

simple uni-processor system. How-ever, non-preemptive
system presents new challenge of letting a running task

continue till completion. Inequality 1 suggests that

higher utilization is obtained for the preemptive case,

while such system utilization has to be traded for the

sake of predictability incase of non-preemptive systems.

For instance, there are situations where the utilization

bound drops to zero for non-preemptive scheduling e.g.,

assuming two tasks in the task set are τ1 = (c1,p1) and τ2

= (p1,p2), where c1 and p2 is arbitrary small and large, re-

spectively. Hence,
2

1
/ 0.i ii

c p


 In contrast to

satisfying only condition of utilization under preemptive

scheduling, EDF test has two conditions to satisfy for
non-preemptive case i.e., (i) utilization and (ii) passing

schedulability test at all scheduling points in a set.

Authors in (Jeffay et al., 1991) presented the most

celebrated results for the non-preemptive periodic

systems given as.

Theorem 2.2. Jeffay et al. (1991)

A periodic task set that is sorted in increasing order

of the task period can only be scheduled feasibly under a

non-preemptive EDF scheduling policy iff:

0

1

1

1

1,

,() :

n
i

i i

i

i i i k

k k

c

p

t
i n t p t p c c t

p









 
        

 





 (2)

Theorem 2.2 shows that the feasibility of i needs to
be checked in (p1<t< pi). Before we present our main

contribution, we provide a recent work that solve the
issue of (p1<t< pi) (open interval starting from p1 up to pi)

in Theorem 2.2 by restricting the feasibility analysis to a

subset of points in (Jejurikar and Gupta, 2005) for

obtaining power efficient scheduling. According to

(Jejurikar and Gupta, 2005), a set of periodic tasks that

is sorted in increasing task period order can be scheduled

non-preemptively under EDF scheduling policy, when:

0

1

1

1

1,

1
,() : ,

n
i

i i

i

i i k

k k

c

p

t
i i n t p t p c c t

p









  
          

  





 (3)

where,  1,..., , 1, / .i j j i jt S lp j i l l p p          See

(Jejurikar and Gupta, 2005) for more details.

The work done in (Jejurikar and Gupta, 2005)

provides the foundation to lower the system speed on the

fly for energy gains in non-preemptive real-time systems

under dynamic scheduling mecha-nism. The approach

discussed in (Jejurikar and Gupta, 2005) determines the

suitable system speed such that the deadlines of the tasks
are never compromised. In rest of the study, we assume η

= 1 in Inequality 3 as our system is running at only speed

level (full speed). Since the feasibility starts with higher

priority task in Inequality 2, we denote this expression

with Highest Priority First EDF (HPF-EDF) for the EDF

class. Recently, an improved tests was pro-posed in

(Min-Allah, 2019) by exploiting the probability of

satisfying task schedulability at larger points, however,

the approach applies to fixed priority systems. In (Nasri

and Kargahi, 2014), authors discussed feasibility test for

non-preemptive case at scheduling points that are
common to tasks. The test derived in (Nasri and Kargahi,

2014) is aligned with traditional EDF feasibility

techniques as it follows the highest priority first order

when analyzing the feasibility of the entire task set

according to non-preemptive scheduling algorithm. This

work is focused on the lowest priority first order and

hence uses (Jeffay et al., 1991) for comparison purposes.

Determining Schedulability with Lowest

Priority Task First

As a close counter part, fixed priority system handle

a task set preemptively by assigned fixed priorities to

task that remains fixed throughout. Under fixed priority

class, Rate-Monotonic (RM) (Liu and Layland, 1993)

scheduling algorithm is highly celebrated result. The
total workload due a task τi is calculated as

1

1
()

i

i i jj
j

t
W t c c

p





 
  

  
 and hence τi is schedulable if and

only if  ()iW t t at any pint in time it L where

 | 1, , ; 1, , /i b i bL ap b i a p p      . It is to be noted

that under RM, a task is considered schedulable

according to RM priority assignment on uni-processor
device when this expression holds even at a single

scheduling point as the task is guaranteed to get the

required time by that time. However, with Inequality 3,

the cumulative work load must be satisfied at all candidate

points to make a task EDF schedulable under non-

preemptive scheduling strategy. Traditionally, feasibility

tests are performed by testing schedulability of individual

task, starting from the task with shortest period/deadline

and continue in that order with HPF-EDF.

The idea of determining task set feasibility with lowest

priority task has been discussed in (Min-Allah et al.,

2013) for the preemptive scheduling for static priority

systems. However, for the non-preemptive systems, to the

best of our knowledge, the feasibility analysis of non-

preemptive case with lowest priority first approach has

Nasro Min-Allah / Journal of Computer Science 2019, 15 (9): 1283.1290

DOI: 10.3844/jcssp.2019.1283.1290

1287

not been discussed in the literature. Authors in (Min-

Allah et al., 2013) answered the in-feasibility problem

of preemptive systems for fixed prior-ity tasks using

HPF approach. The work done in (Min-Allah et al.,

2013) is more appealing when the system infeasible,

otherwise all n tasks have to be analyzed for the feasible

system. On the other hand, for non-preemptive case, the

set of scheduling points is vital for the analysis of non-

preemptive EDF schedulability. In this way, the

complexity of non-preemptive EDF test is much

higher than the preemptive counter part. Each task in

our system is assigned a priority that can change at

run time due to the nature of EDF. The highest

priority task has the shorted deadline. The CPU is also

released in favor of highest priority task when task are

competing for the CPU at at any time t. The likelihood

of missing a deadline by task is higher when the task

has lower priority and hence lowest priority task is

very likely to miss its respective deadline. In priority

based scheduling of tasks/processes, a lower priority

task/process can only be allocated CPU slots when is

no higher priority tasl/process in the system queue to

be scheduled on a uni-processor system.

Assuming a point t1
 where a task i is schedulable, a

lower priority task j may alsobe feasible at the same

point in time. However, vice versa is not true as the

cumulative demand increases with lower priority tasks.

Since the schedulability of a task is tested at a set of

scheduling pints and the following relationships exist

among sets of points. Unlike the fixed priority

scenario, where any t that satisfies the commutative

workload is enough to declare task schedulability, all

points in set Si must satisfies the workload incase of

non-preemptive EDF. This requirement makes each

and every point in Si schedulability must be analyzed

respectively at all individual points. It can be seen tha

a set Si+1, consist of set Si as well as the additional

points constituted due to pi+1. It is very likely that if a

system is infeasible, it due to lower priority tasks they

can only run when system is idle and system will be

never idle in case of infeasible system under our

assumptions made in Section 2. It is worth mentioning

that EDF test depends only on the utilization bound in

preemptive case, while in non-preemptive case, in

addition to utilization bound it also needs check

feasibility of a task at all candidates scheduling

points. We now establish a connection between two

consecutive tasks from feasibility perspective.

Theorem 3.1

Under non-preceptive EDF, a task i+1 is always

infeasible when i is unschedulable on a uni-processor

system.

Proof

Since there are common points in set Si and Si+1, we

compare the workload of i and i+1 on same points

1 1: . .i i it t S S  
  As

0
1

n i

i
i

c

p
 is obvious term for

both task, we compare the addition part which is due to

non-preemptive component of the scheduling theory i.e.,

 
1

1
: .

i

i i kk
k

t
t p t p c c t

p



 

  
       

 
 This comparison

straight way shows that when i+1 is feasible at a point t′

while i+1 is unschedulable at same point t′, then it shows

ci+1≤0 which is not possible as i+1 can not have negative
workload. This completes the proof.

The above theorem advocates that when a scheduling

point is unable to satisfy schedulability of a higher

priority task then it can not accommodate the workload
due to a low priority task as well. This is understandable

as the workload increases with low priority task as CPU

can be assigned to such tasks when there is no pending

higher priority task in the run queue. We extend the

above formulation to independent task set consisting of n

tasks to be scheduled non-preemptively under EDF. Our

proposed solution test task schedulability in reverse

order starting with lowest priority first task such that any

un-schedulable task encountered in the process

determines in in-feasibility of the entire task set. When

determining the feasibility of the task set, the following

theorem applies to non-preemptive EDF case.

Theorem 3.2

Under non-preemptive case,  is feasible with EDF if:

 

0

1

1

1

1,

1 ,() : ,

n
i

i i

i

i i i k

k k

c

p

t
n i t p t p c c t

p









 
         

 





 (4)

where,  1 1, , , 1, , / .j i jt S lp j j i l l p p         

Proof

The proof follows directly from the Theorem 3.1.

It is clear from Theorem 3.2 that feasibility is tested

for the periodic tasks set starting with task n. When n is
infeasibly, the test stops as one schedulable task makes

the overall system infeasible. Incase, n is schedulable

under EDF, the schedulability of next test n-1 is
determined and so on. Theorem 3.2 has the advantage of

determining system in-feasibility much faster than the

existing counter part (Jejurikar and Gupta, 2005) as

lower priority task are prone to deadline miss. It should

be noted that our test just explores another dimension of

feasibility analysis in the domain of non-preemptive

Nasro Min-Allah / Journal of Computer Science 2019, 15 (9): 1283.1290

DOI: 10.3844/jcssp.2019.1283.1290

1288

dynamic scheduling and the timings parameters

associated with a task are kept intact. When the system is

declared feasible, the scheduling of the task will follow

the EDF policy where highest priority tasks will be
executed first followed by the next priority and so on in

the decreasing priority order. Incase the task set is EDF

feasible under non-preemptive case, the computational

cost of our test is the same as Theorem 2.2. This is due

to the fact that our solution starts with lowest priority task

τn and continue till 1, the highest priority task and hence
behavethe same. However, when the task set in infeasible

according to non-preemptive EDF, the test finds task set

infeasibility way faster than the highest priority first

counterpart. We represent our work by Non-Preemptive

Lowest Priority First EDF (NP-LPF) while Theorem 2.2 by

Non-Preemptive Highest Priority First EDF (NP-HPF) and

study their behavior in the following section.

Experimental Results and Analysis

Experimentation is done in Matlab and uniform
distribution of 70% utilization for individual tasks has
been used while creating task parameters. As a second
step for creating tasks set, the corresponding task
utilization is distributed among task such that the system
utilization does not exceed the overall limit. Task
periods and computation demands are also obtained
using uniform distribution. First in Fig. 1, we kept
utilization up to 80% as experiments show that below
this point, almost all the task set are feasible non-
preemptively under EDF and hence both techniques share
the same trend. Since the system is under utilized in Fig. 1,
behavior of both techniques is almost the same. But as
there is a good chance that a few lower priority tasks can

miss the deadline at such utilization due to non-
preemptive constraints and as highlighted in previous
section, there are low priority tasks. This arrangement
results in early conclusion for infeasible task set by NP-
LPF and hence results are slightly better as compared to
NP-HPF. Due to non-preemptive nature, some tasks start
missing the deadlines at 80% utilization, especially the
low priority tasks and hence this situation favors our
approach to conclude system infeasibility faster. A similar
study for preemptive RM has been made in (Min-Allah et
al., 2013) which provides the foundation for the current
work. Since non-preemptive case is more pessimistic as
compared to preemptive scheduling and it is very likely that
randomly generated tasks will start missing deadlines much
early. NP-HPF takes all task in decreasing order and test
schedulability at all scheduling points and hence take more
time before feasibility is determined. NP-HPF uses the
highest priority first approach and continue till last task in
the set when the task set is feasible or can stop whenever an
unschedulable task is determined in the process. NP-HPF
might need to analyse all tasks when system utilization is
low as the overall task set can be schedulable with lower
utilization. Thus, both NP-HPF and NP-LPF show similar
behavior with slight improvement in favor of NP-LPF
which is due to presence of no unschedulable tasks,
especially when task size increases.

Figure 2 shows the behavior of both approaches

when system utilization is increased to 90% which is

very high system utilization for non-preemptive

scheduling. At such high utilization, there is a fair

chance that majority of the tasks are infeasible

according to non-preemptive EDF scheduling. In Fig.

2, NP-HPF has to test significant number of higher

priority tasks before it reached the unschedulable one.

Fig. 1: Number of scheduling points needed for determining systemfeasibility at 80% system utilization

Tasks number

5 10 15 20 25 30

P
o
in

ts
 t

es
te

d

NP-HPF

NP-LPF

4000

3500

3000

2500

2000

1500

1000

500

0

Nasro Min-Allah / Journal of Computer Science 2019, 15 (9): 1283.1290

DOI: 10.3844/jcssp.2019.1283.1290

1289

Fig. 2: Number of scheduling points needed for determining system feasibility at 90% system utilizationis

NP-LPF, on the other hand, only takes the lowest
priority task but the computation cost is mainly due to he

largest set of scheduling pints as Sn is the superset of all
scheduling points sets constituted due to all higher

priority tasks. Our solution has the advantage of
determining system infeasibility much early and does not

need to test schedulability of all tasks. It can be seen that
with lower utilization, our system behaves like NP-HPF

but suppresses NP-HPF when system utilization is
higher which is the intended purpose of Theorem 3.2.

Conclusion

The effect of testing task feasibility of non-

preemptive systems with lowest priority approach was
analyzed and results were established using priority first

approach. Under various system utilizations, comparisons
were made with lowest priority first approach. The results

were more promising when EDF feasibility was tested for
a task set with higher utilization. It was also showed that

the task infeasibility was due to the deadline miss of the
task with largest task period and not because of the

smallest one. It was concluded that starting feasibility with
highest priority task is superior to the highest priority first

approach, especially when system utilization is high. As a
future work, infeasibility of dependent task sets under

dynamic priority scheduling class should be considered in
addition to the hybrid test that can combine both inexact

and exact feasibility conditions.

Acknowledgment

The author expresses since thanks to the generous

funding from the Deanship of Scientific Research, Imam

Abdulrahman Bin Faisal University IAU), under project

numbered 2019-359-CSIT. Thanks to Farman Ullah Jan
and other colleagues at IAU for their helpful discussions

on initial draft of this work. Special thanks to the

reviewers for their thoughtful comments.

Ethics

All the experimental and theoretical results reported

in this study were achieved by keeping in view the

standard ethics practices.

References

Alrashed, S., J. Alhiyafi and S.A. Min-Allah, 2017. An
efficient schedulability condition for non-
preemptivereal-time systems at common scheduling
points. J. Super Comput. 72: 4651-4661.

 DOI: 10.1007/s11227-016-1751-6
Audsley, N.C., A. Burns, R.I. Davis, K.W. Tindell and

A.J. Wellings, 1995. Real-Time System Scheduling.

In: Predictably Dependable Computing Systems,
Randell, B., J.C. Laprie, H. Kopetz and B.
Littlewood (Eds.), Springer, pp: 41-52.

Baruah, S., S. Funk and J. Goossens, 2003. Robustness
results concerning EDF scheduling upon
uniformmultiprocessors. IEEE Transact. Comput.,
52: 1185-1195.

Burns, A., R.I. Davis, P. Wang and F. Zhang, 2012.

Partitioned EDF scheduling for multiprocessors
usinga C = D Scheme. Real-Time Syst. J., 48: 3-33.

Davis, R.I. and A. Burns, 2011. A survey of hard real-

time scheduling for multiprocessor systems. ACM
Comput. Surveys, 43: 1-44.

Tasks number

5 10 15 20 25 30

P
o
in

ts
 t

es
te

d

NP-HPF
NP-LPF

3000

2500

2000

1500

1000

500

0

Nasro Min-Allah / Journal of Computer Science 2019, 15 (9): 1283.1290

DOI: 10.3844/jcssp.2019.1283.1290

1290

George, L., N. Riverre and M. Spuri, 1996. Preemptive

and non-preemptive real-time uniprocessor

scheduling. Research Report 2966, INRIA, France.

Guan, N., D. Qingxu, G. Zonghua, X. Wenyao and Y.
Ge, 2008. Schedulability analysis of preemptive

andnon-preemptive EDF on partial runtime-

reconfigurable FPGAs. ACM Trans. Des. Autom.

Electron. Syst., 13: 1-43.

Jeffay, K., D.F. Stanat and C.U. Martel, 1991. On non-

preemptive scheduling of periodic and sporadic

tasks. Real-Time Syst. Symposium, 1: 129-139.

Jejurikar, R. and R. Gupta, 2005. Energy aware non-

preemptive scheduling for hard real-time systems.

Procendings of the 17th of Euromicro Conference

on Real-Time Systems, (RTS’ 05), pp: 21-30.
Khan, S.U. and N. Min-Allah, 2011. A goal programming

based energy efficient resource allocation in

datacenters. J. Super Comput., 61: 502-519.

Krishna, C.M. and K.G. Shin, 1997. Real-Time Systems.

1st Edn., McGrawHill.

Liu, C.L. and J.W. Layland, 1973. Scheduling

algorithms for multiprogramming in a hard real-time

environ-ment. J. ACM, 20: 40-61

Liu, J.W.S., 2000. Real Time Systems. 1st Edn.,

Prentice Hall.

Min-Allah, N., 2019. Effect of ordered set on feasibility

analysis of static priority system. J. Super Comput.,
75: 475-487.

Min-Allah, N., M.B. Qureshi, S. Alrashed and F. Rana,

2019. Cost efficient resource alloca-tion for real-time

tasks in embedded systems. Sustainable Cities Society.

Min-Allah, N., S.U. Khan, N. Ghani, J. Li and L.
Wang et al., 2012. A comparative study of rate

monotonicschedulability tests. J. Super Comput.,

59: 1419-1430.
Min-Allah, N., S.U. Khan, X. Wang and A.Y. Zomaya,

2013. Lowest priority first based feasibility analysis

ofreal-time systems. J. Parallel Distributed Comput.,

73: 1066-1075.

Min-Allah, N., X. Jiansheng and W. Yongji, 2010.

Utilization bound for periodic task set with composite-

deadline. J. Comput. Electrical Eng., 6: 1101-1109.

Nasri, M. and M. Kargahi, 2014. Precautious-RM: A
predictable non-preemptive scheduling algorithm

forharmonic tasks. Real-Time Syst., 50: 548-584.

Nasri, M., 2017. On flexible and robust parameter

assignment for periodic real-time components. ACM

SIGBED Rev., 14: 8-15.

Sha, L., T. Abdelzaher, K. Erzen, A. Cervin and T.

Baker et al., 2004. Real-time scheduling theory: A

historical perspective. Real-Time Syst., 28: 101-155

Swaminathan, V. and K. Chakrabarty, 2005. Pruning-

based, energy-optimal, deterministic I/O device

sched-uling for hard real-time systems. ACM Trans.

Embedded Comput. Syst. 4: 141-167.

