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Abstract: Due to simple implementation, non-preemptive scheduling has 

the advantage over preemptive counterpart when it comes to deployment of 

real-time systems. Accordingly, many feasibility techniques have been 

established to answer schedulability of the task set for non-preemptive case. 

The time complexity of exact condition for non-preemptive under dynamic 

priority assignment is of pseud-polynomial nature. Recently, efforts are 

made to decrease the computation cost of existing exact solutions. 

However, the time complexity class remains the same. In such systems, 

feasibility is tested by starting with highest priority task and test continues 

in that order until the last task is analyzed in the set. Normally, higher 

priority tasks rarely miss the deadline and hence, when a system is 

determined infeasible, it is mainly because of the low priority tasks as these 

tasks are assigned low priorities and can claim CPU time only when there is 

no pending higher priority task in the queue. In this study, we propose a 

mechanism that reduces the computation cost of feasibility for non-

preemptive earliest deadline first scheduling algorithm by testing the 

infeasibility of the system in reverse priority order. In worst case, the 

proposed technique is not inferior for a system with low utilization that 

scans a task set from feasibility perspectives. On the other hand, our test 

exhibits better performance when the system infeasibility is tested for the 

system demanding higher CPU utilization. Our experimental results show 

that the overall computation cost, especially for the larger task sets with 

higher CPU demands, is significantly reduced with the proposed solution 

by evaluating a system from infeasibility perspective. 

 

Keywords: Operating Systems, Scheduling, Non-Preemptive Scheduling, 

Real-Time Systems, Feasibility Analysis 
 

Introduction 

Task preemption play a decisive role in the 

construction of real-time systems and deeply influences 

the overall system utilization. In scheduling theory, a 

task is called non-preemptive if it runs to its completion 

once it has been given the processor. In the preemptive 

counterpart, however, processor time can be allocated to 

another waiting task based on some scheduling strategy 

and hence low priority tasks cannot block higher priority 

tasks. Though promising from utilization point of view, 

preemptive scheduling are complex due to context 

switching, pipeline, cache-related costs etc. In contrast, 

non-preemptive systems also known as co-operative 

scheduling manage all the tasks fairly and offer simple 

implementation, however, analysis of non-preemptive 

systems under dynamic scheduling is more complicated 

than the preemptive counterpart. 

A number of scheduling polices exist today in 

literature (Baruah et al., 2003; Liu and Layland, 1993; 

Swaminathan and Chakrabarty, 2005; Liu, 2000), 

especially tailored for performance metrics such as 

minimize response time, higher throughput, completion 

time and higher predictability etc (Baruah et al., 2003; 

Liu and Layland, 1993; Swaminathan and Chakrabarty, 

2005; Liu, 2000; Krishna and Shin, 1997; Davis and 

Burns, 2011; George et al., 1996; Guan et al., 2008; 

Sha et al., 2004; Min-Allah, 2019; Audsley et al., 

1995; Min-Allah et al., 2010; 2013; Burns et al., 

2012; Jeffay et al., 1991; Jejurikar and Gupta, 2005; 
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Alrashed et al., 2017; Nasri and Kargahi, 2014; Nasri, 

2017; Min-Allah et al., 2019; Khan and Min-Allah, 

2011; Min-Allah et al., 2012). Among these matrices, 

predictability is of the highest importance for the success 

of a real-time systems (Swaminathan and Chakrabarty, 

2005), however, in general system some other criteria might 

be of more interest such as throughput. 
Real-time systems ensure the deadlines associate with 

individual tasks are met and missing even a single 

deadline can result in catastrophic consequences. Thus, 

missing deadline by single task/process makes the entire 

system infeasible. Unlike non-real-time systems, where 

statistical or experimental evaluations can be used, real-

time system must be proven not to fail under any 

possible circumstances and hence the validity of each 
task is tested mathematically. For this matter, tasks are 

assigned priorities such that the decision for allocating 

processor is based on the task priority. 

The main classes of real-time scheduling are (i) 

fixed priority (Min-Allah, 2019; Audsley et al., 1995; 

Min-Allah et al., 2010; 2013) and (ii) dynamic 

priority (Liu and Layland, 1993; Liu, 2000; Krishna 

and Shin, 1997; Burns et al., 2012). Fixed priority 

scheduling results in more predictability however the 

processor utilization is compromised as a tradeoff for 

respecting timing constraints. Infixed priority systems, a 
task is assigned priority that remains unique and not 

interchange-able with any other task. On the other hand, 

task priority may change at execution time for the tasks 

and processor is assigned to the task with shortest 

deadline. Task priorities are broken arbitrarily when two 

or more tasks share the same deadline. The priority as-

signment ensures that CPU is always running higher 

priority task and it is always known in case of fixed 

priority system that which task will miss the deadline. 

While the priority order changes at run time in dynamic 

system and hence CPU will be running a task that has 
highest priority at a given time, say deadline of the 

running task is the earliest among the other tasks in the 

queue. Irrespective of fixed or dynamic priority, a 

system is declared infeasible when at least one task 

misses the deadline. As compared to fixed priority 

systems, the advantage associated with dynamic priority 

is the higher performance and hence dynamic priority 

systems is discussed in this study. 

To ensure that the deadlines associated with task are 

fully respected, feasibility analysis has to run before the 

processor is allocated to a running task (Liu and 

Layland, 1993; Jeffay et al., 1991; Audsley et al., 

1995; Guan et al., 2008; Nasri and Kargahi, 2014; Nasri, 

2017). Due to nature of tasks scheduling in preemptive 

and non-preemptive cases, different types of feasibility 

tests have been applied to know the schedulability of a 

task set. Literature shows that preemptive scheduling 

results in more context switching and considerable 

processor time is wasted on such operations (Liu, 2000; 

Krishna and Shin, 1997; Davis and Burns, 2011; 

George et al., 1996; Guan et al., 2008; Sha et al., 

2004), while non-preemptive provide simpler 

implementation and can be used in commercial operating 

systems (Jejurikar and Gupta, 2005; Alrashed et al., 2017; 

Nasri and Kargahi, 2014; Nasri, 2017; Min-Allah et al., 

2019; Khan and Min-Allah, 2011). For the feasibility 

analysis of non-preemptive system under dynamic priority 

assignment the existing feasibility test are expensive from 

computation cost point of view. 
As per existing scheduling algorithms, Earliest 

Deadline First (EDF) (Liu and Layland, 1993) is 

considered the optimal one among workload conserving 

scheduling algorithms for preemptive real-time systems. 

In such cases, EDF can schedule any task set as long as 

utilization demand is less or equal to 100%. In other 

words, no other scheduling algorithm can provide higher 

system utilization than EDF for the preemptive case. 

However, this bound becomes irrelevant when task set 

has to be scheduled non-preemptively. The feasibility 
analysis of non-preemptive case depends not only on the 

utilization but also on the schedulability analysis of each 

task and hence computation cost increases significantly. 

In this study, we propose testing the schedulability of 

a real-time system from the infeasibility perspective. By 

in-feasibility, we mean to determine if the task set in 

unschedulable with non-preemptive EDF scheduling on 

a single CPU system instead of answering if the task set 

is EDF schedulable under non-preemptive EDF. When 

task set schedulability is of interest, testing 

schedulability of individual tasks starting from the 

highest priority tasks is an established approach, while 

lowest priority task should be evaluated first when they 

task set has to be analyzed from infeasibility perspective. 

We test schedulability of lowest priority task first and if 

the task is found schedulable, we test the schedulability 

of lower priority task till we reach the task with highest 

priority. Authors in (Alrashed et al., 2017) derived that 

it is suffix to check the schedulability of the lowest 

priority task in a special case on non-preemptive EDF 

and hence out of scope of this paper. In this study extend 

the work done in (Jejurikar and Gupta, 2005) by 

employing the lowest priority first approach. For the 

system when all tasks are schedulable non-preemptively 

with EDF, our test exhibits the same complexity as the 

testing feasibility by starting with highest priority task 

and so on. On the other side, for the infeasible task sets, 

our technique determines system infeasibility much early 

by testing system feasibility in the opposite direction. 

The remaining of this paper is organized as follows. 

Section 2 presents the related work and background of 

our task model. Section 3 establishes a novel task-

scheduling mechanism for non-preemptive tasks that are 
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of periodic nature. The results for in-feasibility analysis 

are shown in Section 4 and the effectiveness of our 

technique is evaluated accordingly. Finally, we conclude 

the paper in Section 5. 

Related Work and Problem Formulations 

As the complexity of smart home solution grows, 

many devices are expected to support tasks that demands 

timely responses. While simple tasks can be supported 

with tiny sensors with no computation capability, 

complex tasks need devices offering desired computation 

capabilities. Such embedded devices generally need a 

basic operating system at least to run a few tasks 

successfully. However, due to memory and power 

constraints, it is always preferred to incorporate a 

lightweight operating system in such devices. Again, the 

functionality of an operating system depends on the 

target application and accordingly a scheduling policy 

should be decided before deploying onto the real system. 

In a simple embedded system, implementing one 

scheduling approach might suffix but for basic 

operations but for flexible systems the scheduler should 

support multiple schemes that can be configured per 

application needs. The role of scheduling algorithm is of 

particular interest to the real-time system where timings 

requirements are of great interest. 

Real time system can be categorized into multiple 

levels but the two major types are soft and hard real-time 

systems. In soft real-time system, meeting the task 

deadline is desirable while its becomes inevitable for the 

hard real-time system. Consequently scheduling 

algorithms are selected based on the nature of targeted 

systems. Real-time system theory is rich in this aspect 

and a number of alternatives are available (Liu and 

Layland, 1993; Swaminathan and Chakrabarty, 2005) 

of the fundamental fixed and dynamic scheduling 

algorithms (Liu and Layland, 1993) our work is 

applicable to independent tasks system where there is no 

precedence among tasks. The task set is periodic and all 

tasks are ready for execution simultaneously at time t = 

0. A task τi may finish early that its worst case 

completion time and each independent task createsa 

sequence of jobs where each job arrived at integer 

multiple of task period pi. Theexecution requirement of a 

task is given by ci. There are n number of tasks and to 

assign a unique priority to a task, the number of discrete 

priority levels that are supported bythe hardware is the 

same as task number. Each task must have a priority that 

my change at run time. 
The utilization of a task is denoted by ui and it is the 

ration of execution time to the task period. The task set is 

represented by  and total system utilization is given by 

 
1

/ .
n

tot i ii
u c p

  Our target system is uni-processor 

system and run at uniform speed which is the maximum 

speed in this case. The results established in this study 

can be potentially applied to the CPUs running on 

multiple discrete levels but such systems are out of the 

scope of this work. The system never becomes idle when 

there is a pending task and a task needs to be executed 
till completion as soon as the priority system can assigns 

it the CPU. In the beginning all tasks are assumed to 

arrive at t = 0. This assumption allows us to mimic the 

worst case of combination of tasks release times also 

known as critical instant (Liu and Layland, 1993). 

To schedule a task set, various scheduling schemes 

have been implement such as First-come First-served 

(FCFS) (FIFO), Last-in First-Out (LIFO), Shortest Job 

First (SJF), Round Robin (RR), Rate-Monotonic (RM), 

Earliest Deadline First (EDF) etc. (Baruah et al., 2003; 

Liu and Layland, 1993; Swaminathan and Chakrabarty, 
2005). Thesetechnique are designed for keeping some 

perforans criterion in mind such as CPU utilization, 

throughput, waiting time, response time and predictability 

etc. The applicability of these metrics depends on the 

system that is under study. For instance, in real-time 

systems predictability is everything i.e., task deadline must 

be respected irrespective of the system load. 

The aforementioned scheduling schemes can be 

classified into two main types: (i) general scheduling for 

handling any task queue and (ii) priority specific mainly 

designed for real-time systems such as RR and EDF etc. 

EDF is dynamic priority schemes that support both 
preemptive and non-preemptive systems. EDF is an 

optimal technique for real-time systems in the sense that if 

any other scheduling approach can successfully schedule 

a non-preemptive task set then EDF will never fail. 

Various techniques are available for feasibility analysis 

of preemptive (Baruah et al., 2003; Liu and Layland, 

1993; Guan et al., 2008; Sha et al., 2008; Min-Allah, 

2019; Audsley et al., 1995; Min-Allah et al., 2010; 2013) 

and non-preemptive case (Jeffay et al., 1991; Jejurikar and 

Gupta, 2005; Guan et al., 2008). For dynamic scheduling, 

the classic test for preemptive real-time systems was 
derived in (Liu and Layland, 1993). 

Theorem 2.1. Liu and Layland (1993) 

Under a non-preemptive EDF scheduling policy, a 

periodic task set is schedulable on a uni-processor 

system iff: 
 

1

1
n

i

i i

c

p

  (1) 

 

The test given in Theorem 2.1 is pretty straight 
forward and guarantees schedulability of any task set, as 

long as utilization is less than or equal to 100%, 



Nasro Min-Allah / Journal of Computer Science 2019, 15 (9): 1283.1290 

DOI: 10.3844/jcssp.2019.1283.1290 

 

1286 

preemptively. It is worth highlighting that Inequality 1 

denotes the maximum theocratical limit on system 

utilization that can be achieved be achieved under a 

simple uni-processor system. How-ever, non-preemptive 
system presents new challenge of letting a running task 

continue till completion. Inequality 1 suggests that 

higher utilization is obtained for the preemptive case, 

while such system utilization has to be traded for the 

sake of predictability incase of non-preemptive systems. 

For instance, there are situations where the utilization 

bound drops to zero for non-preemptive scheduling e.g., 

assuming two tasks in the task set are τ1 = (c1,p1) and τ2 

= (p1,p2), where c1 and p2 is arbitrary small and large, re-

spectively. Hence, 
2

1
/ 0.i ii

c p


  In contrast to 

satisfying only condition of utilization under preemptive 

scheduling, EDF test has two conditions to satisfy for 
non-preemptive case i.e., (i) utilization and (ii) passing 

schedulability test at all scheduling points in a set. 

Authors in (Jeffay et al., 1991) presented the most 

celebrated results for the non-preemptive periodic 

systems given as. 

Theorem 2.2. Jeffay et al. (1991) 

A periodic task set that is sorted in increasing order 

of the task period can only be scheduled feasibly under a 

non-preemptive EDF scheduling policy iff: 
 

0

1

1

1

1,

,( ) :

n
i

i i

i

i i i k

k k

c

p

t
i n t p t p c c t

p









 
        

 





 (2) 

 

Theorem 2.2 shows that the feasibility of i needs to 
be checked in (p1<t< pi). Before we present our main 

contribution, we provide a recent work that solve the 
issue of (p1<t< pi) (open interval starting from p1 up to pi) 

in Theorem 2.2 by restricting the feasibility analysis to a 

subset of points in (Jejurikar and Gupta, 2005) for 

obtaining power efficient scheduling. According to 

(Jejurikar and Gupta, 2005), a set of periodic tasks that 

is sorted in increasing task period order can be scheduled 

non-preemptively under EDF scheduling policy, when: 

 

0

1

1

1

1,

1
,( ) : ,

n
i

i i

i

i i k

k k

c

p

t
i i n t p t p c c t

p









  
          

  





 (3) 

 

where,  1,..., , 1, / .i j j i jt S lp j i l l p p           See 

(Jejurikar and Gupta, 2005) for more details. 

The work done in (Jejurikar and Gupta, 2005) 

provides the foundation to lower the system speed on the 

fly for energy gains in non-preemptive real-time systems 

under dynamic scheduling mecha-nism. The approach 

discussed in (Jejurikar and Gupta, 2005) determines the 

suitable system speed such that the deadlines of the tasks 
are never compromised. In rest of the study, we assume η 

= 1 in Inequality 3 as our system is running at only speed 

level (full speed). Since the feasibility starts with higher 

priority task in Inequality 2, we denote this expression 

with Highest Priority First EDF (HPF-EDF) for the EDF 

class. Recently, an improved tests was pro-posed in 

(Min-Allah, 2019) by exploiting the probability of 

satisfying task schedulability at larger points, however, 

the approach applies to fixed priority systems. In (Nasri 

and Kargahi, 2014), authors discussed feasibility test for 

non-preemptive case at scheduling points that are 
common to tasks. The test derived in (Nasri and Kargahi, 

2014) is aligned with traditional EDF feasibility 

techniques as it follows the highest priority first order 

when analyzing the feasibility of the entire task set 

according to non-preemptive scheduling algorithm. This 

work is focused on the lowest priority first order and 

hence uses (Jeffay et al., 1991) for comparison purposes. 

Determining Schedulability with Lowest 

Priority Task First 

As a close counter part, fixed priority system handle 

a task set preemptively by assigned fixed priorities to 

task that remains fixed throughout. Under fixed priority 

class, Rate-Monotonic (RM) (Liu and Layland, 1993) 

scheduling algorithm is highly celebrated result. The 
total workload due a task τi is calculated as 

1

1
( )

i

i i jj
j

t
W t c c

p





 
  

  
  and hence τi is schedulable if and 

only if  ( )iW t t  at any pint in time it L  where 

 | 1, , ; 1, , /i b i bL ap b i a p p      . It is to be noted 

that under RM, a task is considered schedulable 

according to RM priority assignment on uni-processor 
device when this expression holds even at a single 

scheduling point as the task is guaranteed to get the 

required time by that time. However, with Inequality 3, 

the cumulative work load must be satisfied at all candidate 

points to make a task EDF schedulable under non-

preemptive scheduling strategy. Traditionally, feasibility 

tests are performed by testing schedulability of individual 

task, starting from the task with shortest period/deadline 

and continue in that order with HPF-EDF. 

The idea of determining task set feasibility with lowest 

priority task has been discussed in (Min-Allah et al., 

2013) for the preemptive scheduling for static priority 

systems. However, for the non-preemptive systems, to the 

best of our knowledge, the feasibility analysis of non-

preemptive case with lowest priority first approach has 
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not been discussed in the literature. Authors in (Min-

Allah et al., 2013) answered the in-feasibility problem 

of preemptive systems for fixed prior-ity tasks using 

HPF approach. The work done in (Min-Allah et al., 

2013) is more appealing when the system infeasible, 

otherwise all n tasks have to be analyzed for the feasible 

system. On the other hand, for non-preemptive case, the 

set of scheduling points is vital for the analysis of non-

preemptive EDF schedulability. In this way, the 

complexity of non-preemptive EDF test is much 

higher than the preemptive counter part. Each task in 

our system is assigned a priority that can change at 

run time due to the nature of EDF. The highest 

priority task has the shorted deadline. The CPU is also 

released in favor of highest priority task when task are 

competing for the CPU at at any time t. The likelihood 

of missing a deadline by task is higher when the task 

has lower priority and hence lowest priority task is 

very likely to miss its respective deadline. In priority 

based scheduling of tasks/processes, a lower priority 

task/process can only be allocated CPU slots when is 

no higher priority tasl/process in the system queue to 

be scheduled on a uni-processor system. 

Assuming a point t1
 where a task i is schedulable, a 

lower priority task j may alsobe feasible at the same 

point in time. However, vice versa is not true as the 

cumulative demand increases with lower priority tasks. 

Since the schedulability of a task is tested at a set of 

scheduling pints and the following relationships exist 

among sets of points. Unlike the fixed priority 

scenario, where any t that satisfies the commutative 

workload is enough to declare task schedulability, all 

points in set Si must satisfies the workload incase of 

non-preemptive EDF. This requirement makes each 

and every point in Si schedulability must be analyzed 

respectively at all individual points. It can be seen tha 

a set Si+1, consist of set Si as well as the additional 

points constituted due to pi+1. It is very likely that if a 

system is infeasible, it due to lower priority tasks they 

can only run when system is idle and system will be 

never idle in case of infeasible system under our 

assumptions made in Section 2. It is worth mentioning 

that EDF test depends only on the utilization bound in 

preemptive case, while in non-preemptive case, in 

addition to utilization bound it also needs check 

feasibility of a task at all candidates scheduling 

points. We now establish a connection between two 

consecutive tasks from feasibility perspective. 

Theorem 3.1 

Under non-preceptive EDF, a task i+1 is always 

infeasible when i is unschedulable on a uni-processor 

system. 

Proof 

Since there are common points in set Si and Si+1, we 

compare the workload of i and i+1 on same points 

1 1: . .i i it t S S  
   As 

0
1

n i

i
i

c

p
  is obvious term for 

both task, we compare the addition part which is due to 

non-preemptive component of the scheduling theory i.e., 

 
1

1
: .

i

i i kk
k

t
t p t p c c t

p



 

  
       

 
  This comparison 

straight way shows that when i+1 is feasible at a point t′ 

while i+1 is unschedulable at same point t′, then it shows 

ci+1≤0 which is not possible as i+1 can not have negative 
workload. This completes the proof. 

The above theorem advocates that when a scheduling 

point is unable to satisfy schedulability of a higher 

priority task then it can not accommodate the workload 
due to a low priority task as well. This is understandable 

as the workload increases with low priority task as CPU 

can be assigned to such tasks when there is no pending 

higher priority task in the run queue. We extend the 

above formulation to independent task set consisting of n 

tasks to be scheduled non-preemptively under EDF. Our 

proposed solution test task schedulability in reverse 

order starting with lowest priority first task such that any 

un-schedulable task encountered in the process 

determines in in-feasibility of the entire task set. When 

determining the feasibility of the task set, the following 

theorem applies to non-preemptive EDF case.  

Theorem 3.2 

Under non-preemptive case,  is feasible with EDF if: 
 

 

0

1

1

1

1,

1 ,( ) : ,

n
i

i i

i

i i i k

k k

c

p

t
n i t p t p c c t

p









 
         

 





 (4) 

 

where,  1 1, , , 1, , / .j i jt S lp j j i l l p p           

Proof 

The proof follows directly from the Theorem 3.1. 

It is clear from Theorem 3.2 that feasibility is tested 

for the periodic tasks set starting with task n. When n is 
infeasibly, the test stops as one schedulable task makes 

the overall system infeasible. Incase, n is schedulable 

under EDF, the schedulability of next test n-1 is 
determined and so on. Theorem 3.2 has the advantage of 

determining system in-feasibility much faster than the 

existing counter part (Jejurikar and Gupta, 2005) as 

lower priority task are prone to deadline miss. It should 

be noted that our test just explores another dimension of 

feasibility analysis in the domain of non-preemptive 
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dynamic scheduling and the timings parameters 

associated with a task are kept intact. When the system is 

declared feasible, the scheduling of the task will follow 

the EDF policy where highest priority tasks will be 
executed first followed by the next priority and so on in 

the decreasing priority order. Incase the task set is EDF 

feasible under non-preemptive case, the computational 

cost of our test is the same as Theorem 2.2. This is due 

to the fact that our solution starts with lowest priority task 

τn and continue till 1, the highest priority task and hence 
behavethe same. However, when the task set in infeasible 

according to non-preemptive EDF, the test finds task set 

infeasibility way faster than the highest priority first 

counterpart. We represent our work by Non-Preemptive 

Lowest Priority First EDF (NP-LPF) while Theorem 2.2 by 

Non-Preemptive Highest Priority First EDF (NP-HPF) and 

study their behavior in the following section. 

Experimental Results and Analysis 

Experimentation is done in Matlab and uniform 
distribution of 70% utilization for individual tasks has 
been used while creating task parameters. As a second 
step for creating tasks set, the corresponding task 
utilization is distributed among task such that the system 
utilization does not exceed the overall limit. Task 
periods and computation demands are also obtained 
using uniform distribution. First in Fig. 1, we kept 
utilization up to 80% as experiments show that below 
this point, almost all the task set are feasible non-
preemptively under EDF and hence both techniques share 
the same trend. Since the system is under utilized in Fig. 1, 
behavior of both techniques is almost the same. But as 
there is a good chance that a few lower priority tasks can 

miss the deadline at such utilization due to non-
preemptive constraints and as highlighted in previous 
section, there are low priority tasks. This arrangement 
results in early conclusion for infeasible task set by NP-
LPF and hence results are slightly better as compared to 
NP-HPF. Due to non-preemptive nature, some tasks start 
missing the deadlines at 80% utilization, especially the 
low priority tasks and hence this situation favors our 
approach to conclude system infeasibility faster. A similar 
study for preemptive RM has been made in (Min-Allah et 
al., 2013) which provides the foundation for the current 
work. Since non-preemptive case is more pessimistic as 
compared to preemptive scheduling and it is very likely that 
randomly generated tasks will start missing deadlines much 
early. NP-HPF takes all task in decreasing order and test 
schedulability at all scheduling points and hence take more 
time before feasibility is determined. NP-HPF uses the 
highest priority first approach and continue till last task in 
the set when the task set is feasible or can stop whenever an 
unschedulable task is determined in the process. NP-HPF 
might need to analyse all tasks when system utilization is 
low as the overall task set can be schedulable with lower 
utilization. Thus, both NP-HPF and NP-LPF show similar 
behavior with slight improvement in favor of NP-LPF 
which is due to presence of no unschedulable tasks, 
especially when task size increases. 

Figure 2 shows the behavior of both approaches 

when system utilization is increased to 90% which is 

very high system utilization for non-preemptive 

scheduling. At such high utilization, there is a fair 

chance that majority of the tasks are infeasible 

according to non-preemptive EDF scheduling. In Fig. 

2, NP-HPF has to test significant number of higher 

priority tasks before it reached the unschedulable one.  

 

 
 

Fig. 1: Number of scheduling points needed for determining systemfeasibility at 80% system utilization 
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Fig. 2: Number of scheduling points needed for determining system feasibility at 90% system utilizationis 

 

NP-LPF, on the other hand, only takes the lowest 
priority task but the computation cost is mainly due to he 

largest set of scheduling pints as Sn is the superset of all 
scheduling points sets constituted due to all higher 

priority tasks. Our solution has the advantage of 
determining system infeasibility much early and does not 

need to test schedulability of all tasks. It can be seen that 
with lower utilization, our system behaves like NP-HPF 

but suppresses NP-HPF when system utilization is 
higher which is the intended purpose of Theorem 3.2. 

Conclusion 

The effect of testing task feasibility of non-

preemptive systems with lowest priority approach was 
analyzed and results were established using priority first 

approach. Under various system utilizations, comparisons 
were made with lowest priority first approach. The results 

were more promising when EDF feasibility was tested for 
a task set with higher utilization. It was also showed that 

the task infeasibility was due to the deadline miss of the 
task with largest task period and not because of the 

smallest one. It was concluded that starting feasibility with 
highest priority task is superior to the highest priority first 

approach, especially when system utilization is high. As a 
future work, infeasibility of dependent task sets under 

dynamic priority scheduling class should be considered in 
addition to the hybrid test that can combine both inexact 

and exact feasibility conditions. 
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