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Abstract: Technology is revolutionizing the way in which music is 

distributed and consumed. As a result, millions of songs are instantly 

available to millions of people, on the Internet. This has created the 

need for novel music search and discovery services. Music is often 

searched using descriptive keywords, or tags, based on the content of 

the song. Hence, one very important task in achieving a great music 

search engine is automatic tagging of music. Currently, deep learning 

techniques using convolutional neural networks produce state- of-

the-art results for this task. Several deep learning algorithms are able 

to achieve good results but at the cost of efficiency. As neural 

networks get deeper, the cost of computation grows exponentially. In 

this paper, we present a deep learning-based ensemble method that 

achieves near state-of-the-art performance on the music auto-tagging 

task. Our method is significantly more efficient in terms of 

computation time and disk space. This opens up the option of using 

our proposed model directly on a mobile device. 
 

Keywords: Deep Learning, Convolutional Neural Network, Music 

Auto-Tagging, Mel Spectrogram 
 
Introduction 

About 15 years ago, most people obtained the music 
they listened to from music CDs. With a majority of the 
world now having internet, this has changed. The advent 
of music streaming services such as Spotify, Apple Music 
and Pandora, people have instant access to millions of 
songs. Spotify, the most popular music streaming service 
in the world, for instance, has over 40 million songs and 
more than 180 million users. Apple Music and Pandora, 
too, have about the same number of songs in their 
library. So, these companies often compete on features 
such as music discovery and recommendation. 

Music is often described using special keywords called 
tags. Tags convey information such as instruments (e.g., 
piano, guitar, drums), genre (e.g., rock, pop, classical, 
indie), mood (e.g., happy, sad, upbeat). Manually adding 
tags to millions of songs can be very expensive and time 
consuming. This has made automatic tagging of music a 
very important task in the field of music information 
retrieval. Music auto-tagging is a classification problem 
of predicting music tags using audio signals. 

As deep learning was not that popular in 2011, 
majority of the papers surveyed involved a feature 
extractor with manually designed features followed by a 
classifier. This also required the researchers to have a 
fair amount of domain-level knowledge to understand 
what kind of features could satisfactorily describe 
acoustic properties (Fu et al., 2011). Whereas in recent 
years, deep neural networks have been successfully used 
to annotate music. However, deep learning models are 
more often than not computationally very expensive and 
occupy a lot of disk space. Hence, they cannot exist on 
mobile device. The following subsection details the 
related work in music auto-tagging. 

Related Work 

Convolutional Neural Networks (CNNs) perform really 
well on pattern recognition tasks because of their ability to 
learn spatially invariant features. Naturally, several 
researchers have also used CNNs for music auto tagging. 

Dieleman and Schrauwen (2014) used a two layer CNN 
with Mel spectrogram as well as raw audio as input. They 
experimented with various convolutional kernel sizes 



Shaleen Bengani et al. / Journal of Computer Science 2019, 15 (8): 1203.1208 

DOI: 10.3844/jcssp.2019.1203.1208 

 

1204 

and strides. Liu and Yang (2016) used a fully 
convolutional neural network (FCN) in a weakly 
supervised method to annotate each time frame of an 
audio clip from just the clip level information. Choi et al. 
(2016) experimented with fully convolutional networks 
of various depths on the MagnaTagATune dataset and 
Million Song Dataset (Bertin-Mahieux et al., 2011). They 
find that deeper models work better on larger datasets 
such as the Million Song Dataset. Lee et al. (2017) 
proposed an end-to-end system in which a 9 layer 1D 
convolutional network operates on small samples of raw 
audio. Kim et al. (2018) used modern CNN architectures 
such as residual neural networks and squeeze and 
excitation networks (He et al., 2016; Hu et al., 2017). 

Challenges 

While methods proposed by Dieleman and 
Schrauwen (2014); Liu and Yang (2016); Choi et al. 
(2016) are somewhat computationally efficient, they 
perform poorly when compared to the state-of-the-art. The 
methods proposed by Kim et al. (2018) and Lee et al. 
(2017) produce excellent results, but they use very deep 
convolutional neural networks. These models are 
compute intensive and have a large memory footprint. 

Contribution 

In this study we propose an efficient method that 
solves the problem of music auto-tagging. The 
proposed method uses an ensemble of lightweight and 
efficient deep learning models. Our method is more 
efficient as it only uses a few megabytes size and can 
annotate music in less than a second. Thus, the model 
can be used in mobile devices. The ensemble 
comprises of three models, two that work on Mel 
spectrograms, and one that works on raw audio 
samples. We use the MagnaTagATune dataset to train 
and evaluate the models. 

Motivation 

While music streaming services are gaining 
popularity, a lot of people still download music from 
various sources on the internet. These files usually 
lack audio tags. In such cases, on device music auto 
tagging has several benefits. The organisation 
providing the service saves on cloud infrastructure 
costs. Transferring audio files over the internet is an 
added cost overhead. It also consumes a lot of 
bandwidth. On device auto tagging also allows the 
user to tag songs in the absence of a network 
connection. Finally, there are no privacy concerns as 
the files never leave the user’s device. 
This paper is structured as follows: In the next 

section, we discuss the dataset used. Later, we 
describe the proposed algorithm. After that, we 
present the experiments followed by the results 

obtained. Then we give the discussion and finally we 
conclude the paper. 

Material 

Dataset 

We have used the MagnaTagATune (MTAT) dataset for 
our experiments. It is one of the most popular publicly 
available datasets for music annotations. MTAT has 29. 
1s clips for 25, 863 songs. The data was obtained from 
independent artists and some clips belong to the same 
song. The dataset includes 188 tags across various 
categories such as instruments used, genre and mood. 
Figure 1 shows the frequency of tags in the 
MagnaTagATune dataset. It can be observed from Fig. 1 
that the tags are not evenly distributed. Tags beyond the 
top 50 by frequency have very few samples. It is 
significantly harder to train any deep learning model to 
classify those labels with fewer samples. Moreover, all 
existing works have dealt with only the top 50 labels. 
Hence, in this research work we use only the top 50 most 
frequently occurring tags for our experiments. MTAT 
comes partitioned into 16 sets (0 to f). We combine and 
then shuffle all of them. We split the data into training, 
validation and test sets with a 13:1:2 ratios. 

Methods 

The proposed method is an ensemble of three 
convolutional neural networks named as Model 1, Model 
2 and Model 3. The first two networks (Model 1 and 
Model 2) work on Mel spectrograms while the third model 
works on raw audio samples. Figure 2 illustrates the 
proposed model. 

Acquiring Mel Spectrogram and Pre-Processing 

For the two models working on Mel spectrograms, 
the raw audio samples are converted to Mel 
spectrograms with 128 frequency bins and 20 pixels per 
second. This gives us spectrograms of shape 128×592. 
The initial intuition behind using spectrograms was to 
convert an audio classification problem into an image 
classification one since convolutional neural networks 
have performed extremely well on a wide range of 
image-based tasks. Moreover, it helps in input 
dimensionality reduction (128×592 = 75,776 vs 
4,65,000). We arrived at this particular shape (128×592) 
after comparing its performance with higher resolution 
spectrograms. The higher resolution spectrograms did 
not provide any improvement in the AUC score. The 
spectrograms are normalized by subtracting the mean 
and then dividing by the standard deviation. The 
spectrograms are normalized because CNNs converge 
faster when trained on normalized input. 
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Fig. 1: Frequency of tags in the MagnaTagATune dataset 
 

 
 

Fig. 2: Proposed method 
 
Model 1: 1D Convolutions on Mel Spectrograms 

In this model, we perform 1D convolutions on the 
Mel spectrogram. While called a 1D convolution, the 
underlying operation is a 2D convolution where the 
height of the filter in the first convolution layer is equal 
to the number of frequency bins in the spectrogram, i.e., 
128. So, the convolution operation moves along the time 
axis. The following layer will have a height of 1, so the 
regular 1D convolution operation can be applied from 
there on. The goal of such a model is to establish 
invariance along the time axis as a particular music 
feature can occur at any time frame but will have a 
defined frequency pattern. Furthermore, 1D 
convolutional layers are less demanding computationally 
as the number of operations performed, as well as the 
number of parameters, is significantly less than 
multidimensional convolutional layers. Table 1 describes 
the architecture of the Model 1. While computationally 
efficient, fully connected layers occupy a lot of memory 
because of the large number of connections. However, in 
this case, we can get away with them by using 1D 
convolution instead of fully connected layers. 

Model 2: 2D Convolutions on Mel Spectrograms 

In 1D CNNs, the number of parameters doesn’t grow 
by a lot with increasing depth. As a result, deep 1D CNNs 
tend to overfit quickly in the case of medium sized 
datasets like MTAT. We use convolutional layers with 
small sized kernels for this task. Just like in MobileNets 
(Howard et al., 2017), we apply depth wise separable 
convolutions to reduce the number of parameters and 
multiplication-addition operations in the network. Table 
2 describes the architecture of the Model 2. 

Model 3: 1D Convolutions on Raw Audio 

In this method, we sample the raw audio at a rate of 
16 KHz. For a 29.1s clip, this gives 465,000 samples. We 
normalise the training data by subtracting the mean and 
dividing by standard deviation. We also make use of 
dropout (Hinton et al., 2012) and batch normalization 
(Ioffe and Szegedy, 2015) layers to reduce bias and 
speed up training. The architecture of the network is 
described in Table 3. 
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Table 1: Configuration of model 1 

Mel spectrogram (Input: 128×592×1) 
Conv 128×4×256 (ReLU, Output: 1×589×256) 
Reshape (Target Shape: 589×256) 
Max Pooling 2 (Output: 294×256) 
Conv 4×256 (ReLU, Output: 291×256) 
Batch Normalization 
Max Pooling 2 (Output: 145×256) 
Conv 4×384 (ReLU, Output: 142×384) 
Max Pooling 2 (Output 71×384) 
Batch Normalization 
Conv 71×50 (Sigmoid, Output: 50×1) 
 
Table 2: Configuration of model 2 

Mel spectrogram (Input: 128×592×1) 
Conv 3×1×128 (ReLU, Output: 128×592×128)  
Conv 1×3×128 (ReLU, Output: 128×592×128)  
Max Pooling 4×4 (Output: 32×148×128) 
Conv 3×1×256 (ReLU, Output: 32×148×256)  
Conv 1×3×256 (ReLU, Output: 32×148×256)  
Max Pooling 4×4 (Output: 8×37×256) 
Conv 3×1×256 (ReLU, Output: 8×37×256) 
Conv 1×3×256 (ReLU, Output: 8×37×256) 
Max Pooling 2×2 (Output: 4×18×256) 
Conv 3×1×512 (ReLU, Output: 2×18×512, Valid padding) 
Conv 1×3×512 (ReLU, Output: 2 x 16×512, Valid padding) 
Max Pooling 2×2 (Output: 1×8×512) 
Conv 1×8×50 (Sigmoid, Output: 1×1×50) 
Reshape (Output: 50×1) 
 
Table 3: Configuration of model 3 

Raw Audio (Input: 465600×1) 
Conv 5×64 (ReLU, Output: 465596×64) 
Max Pooling 16 (Output: 29099×64) 
Conv 3×128 (ReLU, Output: 29097×128) 
Conv 3×128 (ReLU, Output: 29095×128) 
Max Pooling 4 (Output: 7273×128) 
Batch Normalization 
Dropout 0.2 
Conv 3×128 (ReLU, Output: 7271×128) 
Conv 3×128 (ReLU, Output: 7269×128) 

Max Pooling 4 (Output: 1817×128) 

Batch Normalization 
Dropout 0.2 
Conv 3×256 (ReLU, Output: 1815×256) 
Conv 3×256 (ReLU, Output: 1813×256) 
Global Max Pooling (Output: 256) 
Fully Connected 1024 (ReLU, Output: 1024) 
Fully Connected 50 (Sigmoid, Output: 50 

 
Combiner 

The combiner takes the outputs of models 1, 2 and 3 
and produces the final output. It’s a simple fully connected 
neural network with two hidden layers. The structure of 
the combiner is described in Table 4. 

Experiments and Results 

Implementation 

All the models are implemented using the Keras 
API (https://github.com/fchollet/keras) for Tensorflow 

(Abadi et al., 2015). The models were trained on an 
Nvidia Tesla V100 GPU. We have used binary cross 
entropy loss for all the models (Model 1, Model 2, 
Model 3) with Adam optimizer. 

Evaluation Metrics 

In order to measure the performance of the proposed 
models, we use the area under receiver-operator curve 
(AUC) metric. The AUC range lies between 0.5 to 1.0 
where 0.5 denotes a bad classifier model and 1.0 denotes a 
good classifier model. AUC is more robust to changes in 
test set distribution as it depends on true positive and false 
positive rates. Moreover, majority of the previous works 
have used AUC to evaluate their model’s performance. So, 
in this study we use AUC to make a fair and easy 
comparison. We also tabulate the time taken for the model 
to predict tags for 1000 songs. 

Experiments Conducted 

In order to evaluate the performance of the 
proposed models in music auto-tagging we conducted 
the following experiments. 

Evaluation of Model 1: In this experiment, Model 1 
is trained and tested using Mel spectrograms and the AUC 
is calculated. 

Evaluation of Model 2: In this experiment, Model 2 
is trained and tested using Mel spectrograms and the AUC 
is calculated. 

Evaluation of Model 3: In this experiment, Model 3 
is trained and tested using raw audio samples and the 
AUC is calculated. 

Evaluation of ensemble model: In this experiment, 
the individual models mentioned above like Model 1, 
Model 2 and Model 3 are combined using the combiner 
and the combined model as shown in Table 4 and the 
AUC is calculated. This experiment helps us to understand 
the importance of combining the models to achieve better 
performance in contrast to the performance of the 
individual models. 

Evaluation of Ensemble Model Against Other 

Methods 

In this experiment, the ensemble model is trained 
and tested and the AUC is calculated. This experiment 
helps us to understand the importance of the 
combining the models to achieve better performance 
in contrast to the performance of the other proposed 
models in the literature. 

Table 5 shows the performance comparison of Model 
1, 2 and 3 individually, as well as that of various ensemble 
combinations. Table 6 shows the performance comparison 
of other methods with the proposed ensemble model. 
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Table 4: Configuration of combiner 
Model 1 output Model 2 output Model 3 output 

Concatenate Model Outputs 

Fully Connected 256 (ReLU) 

Fully Connected 512 (ReLU) 

Fully Connected 50 (Sigmoid) 

 
Table 5: Performance comparison of proposed models  
Model AUC Time(s) 
Model 1 0.857 0.48 
Model 2 0.891 1.76 
Model 3 0.783 9.03 
Model 1+Model 2 0.894 2.07 
Model 1+Model 3 0.883 9.24 
Model 2+Model 3 0.905 9.78 
Model 1+Model 2+Model 3 0.910 10.61 
 
Discussion 

Performance Analysis of Individual and 

Ensemble Models 

From Table 5 it is clear that none of the individual 
models could achieve good performance. Model 1, Model 2 
and Model 3 have AUC values of 0.857, 0.891 and 0.783 
respectively. It is evident from the table that if two models 
are combined, then the combined performance of the 
models is greater than the individual performance of each 
models. For example, from Table 5 it can be seen that the 
combined performance of Model 1 and Model 2 is AUC = 
0.894 which is greater than the performance of Model 1 
(AUC = 0.857) and Model 2 (AUC = 0.891) separately. 
The combined performance of Model 1 and Model 3 is 
AUC = 0.883 which is greater than the performance of 
Model 1 (AUC = 0.857) and Model 3 (AUC = 0.783) 
separately. Also, the combined performance of Model 2 and 
Model 3 is AUC = 0.905 which is greater than the 
performance of Model 2 (AUC = 0.891) and Model 3 
(AUC = 0.783) separately. Finally combining all three 
models yields the best AUC value of 0.910. Values in the 
0.88 to 0.89 range haven’t been considered to be that good 
because previous works from even 5 years ago have been 
able to achieve similar performance. 0.910 is very close to 
the current state of the art which is 0.911. 

It can be seen from the results that among the two 
models (Model 1 and Model 2) that operate on the Mel 
spectrograms, Model 2 has a better AUC score. This is 
because Model 2 uses the 2D convolution of the Mel 
spectrograms and has learnt better features. Hence, 
combining Model 2 with other models like Model 1 or 
Model 3 provides a better AUC score. Finally, it can be 
noted that combining the models that works on spectrogram 
inputs and the raw audio increases the performance. This 
means that models working on spectrograms and raw audio 
learn different kinds of features. 

Table 6: Performance comparison of proposed model 
with other state-of-the-art methods 

 
 

Model AUC 
Dieleman and Schrauwen (2014) 0.881 
Liu and Yang (2016) 0.896 
FCN-4 (Choi et al., 2016) 0.894 
Multi-D CNN (Pons et al., 2017) 0.893 
Sample-level CNN (Lee et al., 2017) 0.905 
ReSE-2-multisample (Kim et al., 2018) 0.911 
Model 1+Model 2+Model 3 0.910 
 
Performance Analysis of Ensemble Model Against 

other Methods 

Table 6 shows the AUC value of the proposed ensemble 
model along with few other models discussed in the 
related work section of this paper. It can be observed that 
among other state-of-the-art methods, the proposed model 
is better than most of the other models (Dieleman and 
Schrauwen, 2014; Liu and Yang, 2016; Choi et al., 2016; 
Pons et al., 2017; Lee et al., 2017). The performance of 
the proposed model is in par with the performance of the 
model proposed by Kim et al. (2018) (AUC = 0.910 and 
AUC = 0.911 respectively). Thus the results show that 
the proposed ensemble model works in par with the 
model proposed by Kim et al. (2018) and other state-of-
the-art models. 

Performance Analysis of Model Size and Time 

The sizes of Model 1, 2 and 3 and the combiner are 
13.59 MB, 8.14 MB, 3.09 MB and 784 KB respectively. 
Therefore, the overall model has a size of just 25.60 MB. 
Moreover, on a Tesla V100 GPU, the model can predict 
tags for 1000 songs in just 10.61s. If a little compromise 
on accuracy is acceptable, using just Model 1 and Model 
2, the same task can be performed in a just 2.07 seconds. 
That is just 2ms per song, making it feasible to deploy 
the model on mobile devices. 

Conclusion 

This research work presented an ensemble of three 
convolutional neural networks that automatically tags 
music clips with the goal of being accurate yet 
computationally efficient. From our experiments with 
different ensemble combinations, we inferred that CNNs 
working on Mel spectrograms and raw audio tend to 
learn different kinds of acoustic features. Experimental 
results show that the proposed ensemble model performs 
on par with the state-of-the-art methods. 
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