

 © 2019 Shaleen Bengani, S. Vadivel and J. Angel Arul Jothi. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Efficient Music Auto-Tagging with Convolutional Neural

Networks

Shaleen Bengani, S. Vadivel and J. Angel Arul Jothi

Department of Computer Science, Birla Institute of Technology and Science Pilani Dubai Campus, Dubai, UAE

Article history

Received: 27-04-2019

Revised: 15-07-2019

Accepted: 23-08-2019

Corresponding Authors:

S. Vadivel

Department of Computer

Science, Birla Institute of

Technology and Science Pilani

Dubai Campus, Dubai, UAE
Email: vadivel@dubai.bits-pilani.ac.in

Abstract: Technology is revolutionizing the way in which music is

distributed and consumed. As a result, millions of songs are instantly

available to millions of people, on the Internet. This has created the

need for novel music search and discovery services. Music is often

searched using descriptive keywords, or tags, based on the content of

the song. Hence, one very important task in achieving a great music

search engine is automatic tagging of music. Currently, deep learning

techniques using convolutional neural networks produce state- of-

the-art results for this task. Several deep learning algorithms are able

to achieve good results but at the cost of efficiency. As neural

networks get deeper, the cost of computation grows exponentially. In

this paper, we present a deep learning-based ensemble method that

achieves near state-of-the-art performance on the music auto-tagging

task. Our method is significantly more efficient in terms of

computation time and disk space. This opens up the option of using

our proposed model directly on a mobile device.

Keywords: Deep Learning, Convolutional Neural Network, Music

Auto-Tagging, Mel Spectrogram

Introduction

About 15 years ago, most people obtained the music
they listened to from music CDs. With a majority of the
world now having internet, this has changed. The advent
of music streaming services such as Spotify, Apple Music
and Pandora, people have instant access to millions of
songs. Spotify, the most popular music streaming service
in the world, for instance, has over 40 million songs and
more than 180 million users. Apple Music and Pandora,
too, have about the same number of songs in their
library. So, these companies often compete on features
such as music discovery and recommendation.

Music is often described using special keywords called
tags. Tags convey information such as instruments (e.g.,
piano, guitar, drums), genre (e.g., rock, pop, classical,
indie), mood (e.g., happy, sad, upbeat). Manually adding
tags to millions of songs can be very expensive and time
consuming. This has made automatic tagging of music a
very important task in the field of music information
retrieval. Music auto-tagging is a classification problem
of predicting music tags using audio signals.

As deep learning was not that popular in 2011,
majority of the papers surveyed involved a feature
extractor with manually designed features followed by a
classifier. This also required the researchers to have a
fair amount of domain-level knowledge to understand
what kind of features could satisfactorily describe
acoustic properties (Fu et al., 2011). Whereas in recent
years, deep neural networks have been successfully used
to annotate music. However, deep learning models are
more often than not computationally very expensive and
occupy a lot of disk space. Hence, they cannot exist on
mobile device. The following subsection details the
related work in music auto-tagging.

Related Work

Convolutional Neural Networks (CNNs) perform really
well on pattern recognition tasks because of their ability to
learn spatially invariant features. Naturally, several
researchers have also used CNNs for music auto tagging.

Dieleman and Schrauwen (2014) used a two layer CNN
with Mel spectrogram as well as raw audio as input. They
experimented with various convolutional kernel sizes

Shaleen Bengani et al. / Journal of Computer Science 2019, 15 (8): 1203.1208

DOI: 10.3844/jcssp.2019.1203.1208

1204

and strides. Liu and Yang (2016) used a fully
convolutional neural network (FCN) in a weakly
supervised method to annotate each time frame of an
audio clip from just the clip level information. Choi et al.
(2016) experimented with fully convolutional networks
of various depths on the MagnaTagATune dataset and
Million Song Dataset (Bertin-Mahieux et al., 2011). They
find that deeper models work better on larger datasets
such as the Million Song Dataset. Lee et al. (2017)
proposed an end-to-end system in which a 9 layer 1D
convolutional network operates on small samples of raw
audio. Kim et al. (2018) used modern CNN architectures
such as residual neural networks and squeeze and
excitation networks (He et al., 2016; Hu et al., 2017).

Challenges

While methods proposed by Dieleman and
Schrauwen (2014); Liu and Yang (2016); Choi et al.
(2016) are somewhat computationally efficient, they
perform poorly when compared to the state-of-the-art. The
methods proposed by Kim et al. (2018) and Lee et al.
(2017) produce excellent results, but they use very deep
convolutional neural networks. These models are
compute intensive and have a large memory footprint.

Contribution

In this study we propose an efficient method that
solves the problem of music auto-tagging. The
proposed method uses an ensemble of lightweight and
efficient deep learning models. Our method is more
efficient as it only uses a few megabytes size and can
annotate music in less than a second. Thus, the model
can be used in mobile devices. The ensemble
comprises of three models, two that work on Mel
spectrograms, and one that works on raw audio
samples. We use the MagnaTagATune dataset to train
and evaluate the models.

Motivation

While music streaming services are gaining
popularity, a lot of people still download music from
various sources on the internet. These files usually
lack audio tags. In such cases, on device music auto
tagging has several benefits. The organisation
providing the service saves on cloud infrastructure
costs. Transferring audio files over the internet is an
added cost overhead. It also consumes a lot of
bandwidth. On device auto tagging also allows the
user to tag songs in the absence of a network
connection. Finally, there are no privacy concerns as
the files never leave the user’s device.
This paper is structured as follows: In the next

section, we discuss the dataset used. Later, we
describe the proposed algorithm. After that, we
present the experiments followed by the results

obtained. Then we give the discussion and finally we
conclude the paper.

Material

Dataset

We have used the MagnaTagATune (MTAT) dataset for
our experiments. It is one of the most popular publicly
available datasets for music annotations. MTAT has 29.
1s clips for 25, 863 songs. The data was obtained from
independent artists and some clips belong to the same
song. The dataset includes 188 tags across various
categories such as instruments used, genre and mood.
Figure 1 shows the frequency of tags in the
MagnaTagATune dataset. It can be observed from Fig. 1
that the tags are not evenly distributed. Tags beyond the
top 50 by frequency have very few samples. It is
significantly harder to train any deep learning model to
classify those labels with fewer samples. Moreover, all
existing works have dealt with only the top 50 labels.
Hence, in this research work we use only the top 50 most
frequently occurring tags for our experiments. MTAT
comes partitioned into 16 sets (0 to f). We combine and
then shuffle all of them. We split the data into training,
validation and test sets with a 13:1:2 ratios.

Methods

The proposed method is an ensemble of three
convolutional neural networks named as Model 1, Model
2 and Model 3. The first two networks (Model 1 and
Model 2) work on Mel spectrograms while the third model
works on raw audio samples. Figure 2 illustrates the
proposed model.

Acquiring Mel Spectrogram and Pre-Processing

For the two models working on Mel spectrograms,
the raw audio samples are converted to Mel
spectrograms with 128 frequency bins and 20 pixels per
second. This gives us spectrograms of shape 128×592.
The initial intuition behind using spectrograms was to
convert an audio classification problem into an image
classification one since convolutional neural networks
have performed extremely well on a wide range of
image-based tasks. Moreover, it helps in input
dimensionality reduction (128×592 = 75,776 vs
4,65,000). We arrived at this particular shape (128×592)
after comparing its performance with higher resolution
spectrograms. The higher resolution spectrograms did
not provide any improvement in the AUC score. The
spectrograms are normalized by subtracting the mean
and then dividing by the standard deviation. The
spectrograms are normalized because CNNs converge
faster when trained on normalized input.

Shaleen Bengani et al. / Journal of Computer Science 2019, 15 (8): 1203.1208

DOI: 10.3844/jcssp.2019.1203.1208

1205

Fig. 1: Frequency of tags in the MagnaTagATune dataset

Fig. 2: Proposed method

Model 1: 1D Convolutions on Mel Spectrograms

In this model, we perform 1D convolutions on the
Mel spectrogram. While called a 1D convolution, the
underlying operation is a 2D convolution where the
height of the filter in the first convolution layer is equal
to the number of frequency bins in the spectrogram, i.e.,
128. So, the convolution operation moves along the time
axis. The following layer will have a height of 1, so the
regular 1D convolution operation can be applied from
there on. The goal of such a model is to establish
invariance along the time axis as a particular music
feature can occur at any time frame but will have a
defined frequency pattern. Furthermore, 1D
convolutional layers are less demanding computationally
as the number of operations performed, as well as the
number of parameters, is significantly less than
multidimensional convolutional layers. Table 1 describes
the architecture of the Model 1. While computationally
efficient, fully connected layers occupy a lot of memory
because of the large number of connections. However, in
this case, we can get away with them by using 1D
convolution instead of fully connected layers.

Model 2: 2D Convolutions on Mel Spectrograms

In 1D CNNs, the number of parameters doesn’t grow
by a lot with increasing depth. As a result, deep 1D CNNs
tend to overfit quickly in the case of medium sized
datasets like MTAT. We use convolutional layers with
small sized kernels for this task. Just like in MobileNets
(Howard et al., 2017), we apply depth wise separable
convolutions to reduce the number of parameters and
multiplication-addition operations in the network. Table
2 describes the architecture of the Model 2.

Model 3: 1D Convolutions on Raw Audio

In this method, we sample the raw audio at a rate of
16 KHz. For a 29.1s clip, this gives 465,000 samples. We
normalise the training data by subtracting the mean and
dividing by standard deviation. We also make use of
dropout (Hinton et al., 2012) and batch normalization
(Ioffe and Szegedy, 2015) layers to reduce bias and
speed up training. The architecture of the network is
described in Table 3.

Spectrograms
Model 1

Model 2

Model 3

Combiner

Predicted Tags

Raw audio

5000

4000

3000

2000

1000

0
0 50 100 150

Shaleen Bengani et al. / Journal of Computer Science 2019, 15 (8): 1203.1208

DOI: 10.3844/jcssp.2019.1203.1208

1206

Table 1: Configuration of model 1

Mel spectrogram (Input: 128×592×1)
Conv 128×4×256 (ReLU, Output: 1×589×256)
Reshape (Target Shape: 589×256)
Max Pooling 2 (Output: 294×256)
Conv 4×256 (ReLU, Output: 291×256)
Batch Normalization
Max Pooling 2 (Output: 145×256)
Conv 4×384 (ReLU, Output: 142×384)
Max Pooling 2 (Output 71×384)
Batch Normalization
Conv 71×50 (Sigmoid, Output: 50×1)

Table 2: Configuration of model 2

Mel spectrogram (Input: 128×592×1)
Conv 3×1×128 (ReLU, Output: 128×592×128)
Conv 1×3×128 (ReLU, Output: 128×592×128)
Max Pooling 4×4 (Output: 32×148×128)
Conv 3×1×256 (ReLU, Output: 32×148×256)
Conv 1×3×256 (ReLU, Output: 32×148×256)
Max Pooling 4×4 (Output: 8×37×256)
Conv 3×1×256 (ReLU, Output: 8×37×256)
Conv 1×3×256 (ReLU, Output: 8×37×256)
Max Pooling 2×2 (Output: 4×18×256)
Conv 3×1×512 (ReLU, Output: 2×18×512, Valid padding)
Conv 1×3×512 (ReLU, Output: 2 x 16×512, Valid padding)
Max Pooling 2×2 (Output: 1×8×512)
Conv 1×8×50 (Sigmoid, Output: 1×1×50)
Reshape (Output: 50×1)

Table 3: Configuration of model 3

Raw Audio (Input: 465600×1)
Conv 5×64 (ReLU, Output: 465596×64)
Max Pooling 16 (Output: 29099×64)
Conv 3×128 (ReLU, Output: 29097×128)
Conv 3×128 (ReLU, Output: 29095×128)
Max Pooling 4 (Output: 7273×128)
Batch Normalization
Dropout 0.2
Conv 3×128 (ReLU, Output: 7271×128)
Conv 3×128 (ReLU, Output: 7269×128)

Max Pooling 4 (Output: 1817×128)

Batch Normalization
Dropout 0.2
Conv 3×256 (ReLU, Output: 1815×256)
Conv 3×256 (ReLU, Output: 1813×256)
Global Max Pooling (Output: 256)
Fully Connected 1024 (ReLU, Output: 1024)
Fully Connected 50 (Sigmoid, Output: 50

Combiner

The combiner takes the outputs of models 1, 2 and 3
and produces the final output. It’s a simple fully connected
neural network with two hidden layers. The structure of
the combiner is described in Table 4.

Experiments and Results

Implementation

All the models are implemented using the Keras
API (https://github.com/fchollet/keras) for Tensorflow

(Abadi et al., 2015). The models were trained on an
Nvidia Tesla V100 GPU. We have used binary cross
entropy loss for all the models (Model 1, Model 2,
Model 3) with Adam optimizer.

Evaluation Metrics

In order to measure the performance of the proposed
models, we use the area under receiver-operator curve
(AUC) metric. The AUC range lies between 0.5 to 1.0
where 0.5 denotes a bad classifier model and 1.0 denotes a
good classifier model. AUC is more robust to changes in
test set distribution as it depends on true positive and false
positive rates. Moreover, majority of the previous works
have used AUC to evaluate their model’s performance. So,
in this study we use AUC to make a fair and easy
comparison. We also tabulate the time taken for the model
to predict tags for 1000 songs.

Experiments Conducted

In order to evaluate the performance of the
proposed models in music auto-tagging we conducted
the following experiments.

Evaluation of Model 1: In this experiment, Model 1
is trained and tested using Mel spectrograms and the AUC
is calculated.

Evaluation of Model 2: In this experiment, Model 2
is trained and tested using Mel spectrograms and the AUC
is calculated.

Evaluation of Model 3: In this experiment, Model 3
is trained and tested using raw audio samples and the
AUC is calculated.

Evaluation of ensemble model: In this experiment,
the individual models mentioned above like Model 1,
Model 2 and Model 3 are combined using the combiner
and the combined model as shown in Table 4 and the
AUC is calculated. This experiment helps us to understand
the importance of combining the models to achieve better
performance in contrast to the performance of the
individual models.

Evaluation of Ensemble Model Against Other

Methods

In this experiment, the ensemble model is trained
and tested and the AUC is calculated. This experiment
helps us to understand the importance of the
combining the models to achieve better performance
in contrast to the performance of the other proposed
models in the literature.

Table 5 shows the performance comparison of Model
1, 2 and 3 individually, as well as that of various ensemble
combinations. Table 6 shows the performance comparison
of other methods with the proposed ensemble model.

Shaleen Bengani et al. / Journal of Computer Science 2019, 15 (8): 1203.1208

DOI: 10.3844/jcssp.2019.1203.1208

1207

Table 4: Configuration of combiner
Model 1 output Model 2 output Model 3 output

Concatenate Model Outputs

Fully Connected 256 (ReLU)

Fully Connected 512 (ReLU)

Fully Connected 50 (Sigmoid)

Table 5: Performance comparison of proposed models
Model AUC Time(s)
Model 1 0.857 0.48
Model 2 0.891 1.76
Model 3 0.783 9.03
Model 1+Model 2 0.894 2.07
Model 1+Model 3 0.883 9.24
Model 2+Model 3 0.905 9.78
Model 1+Model 2+Model 3 0.910 10.61

Discussion

Performance Analysis of Individual and

Ensemble Models

From Table 5 it is clear that none of the individual
models could achieve good performance. Model 1, Model 2
and Model 3 have AUC values of 0.857, 0.891 and 0.783
respectively. It is evident from the table that if two models
are combined, then the combined performance of the
models is greater than the individual performance of each
models. For example, from Table 5 it can be seen that the
combined performance of Model 1 and Model 2 is AUC =
0.894 which is greater than the performance of Model 1
(AUC = 0.857) and Model 2 (AUC = 0.891) separately.
The combined performance of Model 1 and Model 3 is
AUC = 0.883 which is greater than the performance of
Model 1 (AUC = 0.857) and Model 3 (AUC = 0.783)
separately. Also, the combined performance of Model 2 and
Model 3 is AUC = 0.905 which is greater than the
performance of Model 2 (AUC = 0.891) and Model 3
(AUC = 0.783) separately. Finally combining all three
models yields the best AUC value of 0.910. Values in the
0.88 to 0.89 range haven’t been considered to be that good
because previous works from even 5 years ago have been
able to achieve similar performance. 0.910 is very close to
the current state of the art which is 0.911.

It can be seen from the results that among the two
models (Model 1 and Model 2) that operate on the Mel
spectrograms, Model 2 has a better AUC score. This is
because Model 2 uses the 2D convolution of the Mel
spectrograms and has learnt better features. Hence,
combining Model 2 with other models like Model 1 or
Model 3 provides a better AUC score. Finally, it can be
noted that combining the models that works on spectrogram
inputs and the raw audio increases the performance. This
means that models working on spectrograms and raw audio
learn different kinds of features.

Table 6: Performance comparison of proposed model
with other state-of-the-art methods

Model AUC
Dieleman and Schrauwen (2014) 0.881
Liu and Yang (2016) 0.896
FCN-4 (Choi et al., 2016) 0.894
Multi-D CNN (Pons et al., 2017) 0.893
Sample-level CNN (Lee et al., 2017) 0.905
ReSE-2-multisample (Kim et al., 2018) 0.911
Model 1+Model 2+Model 3 0.910

Performance Analysis of Ensemble Model Against

other Methods

Table 6 shows the AUC value of the proposed ensemble
model along with few other models discussed in the
related work section of this paper. It can be observed that
among other state-of-the-art methods, the proposed model
is better than most of the other models (Dieleman and
Schrauwen, 2014; Liu and Yang, 2016; Choi et al., 2016;
Pons et al., 2017; Lee et al., 2017). The performance of
the proposed model is in par with the performance of the
model proposed by Kim et al. (2018) (AUC = 0.910 and
AUC = 0.911 respectively). Thus the results show that
the proposed ensemble model works in par with the
model proposed by Kim et al. (2018) and other state-of-
the-art models.

Performance Analysis of Model Size and Time

The sizes of Model 1, 2 and 3 and the combiner are
13.59 MB, 8.14 MB, 3.09 MB and 784 KB respectively.
Therefore, the overall model has a size of just 25.60 MB.
Moreover, on a Tesla V100 GPU, the model can predict
tags for 1000 songs in just 10.61s. If a little compromise
on accuracy is acceptable, using just Model 1 and Model
2, the same task can be performed in a just 2.07 seconds.
That is just 2ms per song, making it feasible to deploy
the model on mobile devices.

Conclusion

This research work presented an ensemble of three
convolutional neural networks that automatically tags
music clips with the goal of being accurate yet
computationally efficient. From our experiments with
different ensemble combinations, we inferred that CNNs
working on Mel spectrograms and raw audio tend to
learn different kinds of acoustic features. Experimental
results show that the proposed ensemble model performs
on par with the state-of-the-art methods.

Funding Information

The Authors declare that there are no funding sources
for this research work.

Shaleen Bengani et al. / Journal of Computer Science 2019, 15 (8): 1203.1208

DOI: 10.3844/jcssp.2019.1203.1208

1208

Author’s Contributions

Shaleen Bengani: Contributed in identifying the
methods, performed experiments, analyzed the results and
drafted the paper.

S. Vadivel: Contributed in overall monitoring of the
research work, identifying the methods, analysis of results,
interpretation of the results and reviewing the paper.

J. Angel Arul Jothi: Contributed to this research by
critically reviewing the literature, methodology,
experiments, results and the manuscript for significant
intellectual content.

Ethics

This work is original and not published elsewhere. The
authors confirm that they have read and approved the
manuscript and there is no conflict of interest. Also, the
authors declare that there are no ethical issues associated
with this research work.

References

Abadi, M., A. Agarwal, P. Barham, E. Brevdo and Z.
Chen et al., 2015. TensorFlow: Large-scale machine
learning on heterogeneous distributed systems.

Bertin-Mahieux, T., D.P. Ellis, B. Whitman and P.
Lamere, 2011. The million song dataset.
Proceedings of the 12th International Conference on
Music Information Retrieval, Oct. 24-28, Miami,
Florida, USA.

Choi, K., G. Fazekas and M.B. Sandler, 2016. Automatic
tagging using deep convolutional neural networks.
Proceedings of the International Society for Music
Information Retrieval Conference, (IRC’ 16), New
York, pp: 805-811.

Dieleman, S. and B. Schrauwen, 2014. End-to-end
learning for music audio. Proceedings of the IEEE
International Conference on Acoustics, Speech and
Signal Processing, May 4-9, IEEE Xplore Press,
Florence, Italy, pp: 6964-6968.

 DOI: 10.1109/ICASSP.2014.6854950
Fu, Z., G. Lu, K.M. Ting and D. Zhang, 2011. A survey

of audio-based music classification and annotation.
IEEE Trans. Multimedia, 13: 303-319.

He, K., X. Zhang, S. Ren and J. Sun, 2016. Deep
residual learning for image recognition. Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition, Jun. 27-30, IEEE Xplore Press,
Las Vegas, NV, USA, pp: 770-778.

 DOI: 10.1109/CVPR.2016.90
Hinton, G.E., N. Srivastava, A. Krizhevsky, I.

Sutskever and R. Salakhutdinov, 2012. Improving
neural networks by preventing co-adaptation of
feature detectors.

Howard, A.G., M. Zhu, B. Chen, D. Kalenichenko and W.
Wang et al., 2017. Mobile nets: Efficient convolutional
neural networks for mobile vision applications.

Hu, J., L. Shen and G. Sun, 2017. Squeeze-and-
excitation networks.

Ioffe, S. and C. Szegedy, 2015. Batch normalization:
Accelerating deep network training by reducing
internal covariate shift.

Kim, T., J. Lee and J. Nam, 2018. Sample-level CNN
architectures for music auto-tagging using raw
waveforms. Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal
Processing, Apr. 15-20, IEEE Xplore Press,
Calgary, AB, Canada, pp: 366-367.

 DOI: 10.1109/ICASSP.2018.8462046
Lee, J., J. Park, K.L. Kim and J. Nam, 2017. Sample-

level deep convolutional neural networks for music
auto-tagging using raw waveforms. Proceedings of
the 2nd Music Computing Conference, Jul, 5-7,
Espoo, Finland, pp: 220-226.

Liu, J.Y. and Y.H. Yang, 2016. Event localization in
music auto-tagging. Proceedings of the 24th ACM
International Conference on Multimedia, Amsterdam,
Oct. 15-19, Netherlands, pp: 1048-1057.

 DOI: 10.1145/2964284.2964292
Pons, J., O. Slizovskaia, R. Gong, E. G Komez and X.

Serra, 2017. Timbre analysis of music audio signals
with convolutional neural networks. Proceedings of
the 25th European Signal Processing Conference,
Aug. 5-7, Kos Island, Greece, pp: 2744-2748.

 DOI: 10.23919/EUSIPCO.2017.8081710

