

© 2018 Damodar Tiwari, Shailendra Singh and Sanjeev Sharma. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Application of Viral System Algorithm in Load Balancing of

Cloud Environment

1
Damodar Tiwari,

2
Shailendra Singh and

3
Sanjeev Sharma

1Department of Computer Science and Engineering,

Bansal Institute of Science and Technology, Bhopal, India
2Department of Computer Engineering and Applications,

National Institute of Technical Teachers Training and Research, Bhopal, India
3Department of School of Information Technology,

Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, India

Article history
Received: 22-05-2018
Revised: 27-06-2018
Accepted: 11-07-2018

Corresponding Author:
Damodar Tiwari
Department of Computer
Science and Engineering,
Bansal Institute of Science and
Technology, Bhopal, India
Email: damodarptiwari21@gmail.com

Abstract: As the cloud computing technology is gaining popularity with
time, more and more users and applications are shifting towards it. This is
why clouds are experiencing high load, which demands for load balancing
of user tasks submitted to cloud for execution. This makes load balancing
of non-preemptive tasks a key issue in cloud computing. Superior task
scheduling leads to balanced loads among cloud nodes, which results in
faster execution of tasks. Task scheduling in cloud environment is an
instance of NP-hard optimization problem. When few nodes in a cloud are
overloaded whereas other nodes are under loaded then in such situation the
performance of overloaded VMs is diminished. It demands a task
scheduling so that the incoming tasks can be distributed uniformly across
virtual machines (VMs) for proper utilization of available resources. In this
study, we propose a novel load balancing algorithm named Viral System
Based Load Balancing (VSB-LB) algorithm, which is based on bio-inspired
viral system algorithm that distributes the tasks uniformly among VMs. The
proposed algorithm is compared with basic load balancing algorithms such
as First Come First Serve (FCFS), Weighted Round Robin (WRR) as well
as newer bio-inspired Load balance Aware Genetic Algorithm (LAGA) to
show its effectiveness. Simulation results proved that VSBLB outperforms
FCFS and WRR and LAGA for performing load balancing.

Keywords: Viral System Algorithm, Cloud Computing, Load Balancing,
Task Scheduling

Introduction

Now-a-days one of the fastest emerging fields in

information technology is cloud computing, also referred

to as simply “the cloud,” which delivers on-demand

computing resources including everything from platform

and applications, to data centers over internet on a pay-

for-use basis. It is entirely an internet-based approach

where all the resources are placed on a cloud consisting

number of high speed interlinked computers for serving

the incoming requests from connected clients. Under this

technology, clients can use computational power, software

services and platform offered by cloud service providers

while paying only for duration those resources have been

accessed. This forces the conventional software licensing

policies to change and avoids spending of money for the

facilities the client does not use in a software package

(Dhinesh Babu and Venkata Krishna, 2013).

On the basis of architecture, cloud computing can be

divided into three layers: Application layer, platform

layer and infrastructure layer. NIST has defined three

service models that a cloud service provider can provide

to consumers which are Software as a Service (SaaS),

Platform as a Service (PaaS) and Infrastructure as a

Service (IaaS). SaaS makes applications running on a

cloud infrastructure accessible to consumers. PaaS

makes consumer created or acquired applications

deployable onto cloud infrastructure. IaaS provides

provision for processing, storage, networks and other

fundamental computing resources where the consumer is

Damodar Tiwari et al. / Journal of Computer Science 2018, 14 (7): 908.918

DOI: 10.3844/jcssp.2018.908.918

909

able to deploy and run software, which can include

operating systems and other applications. On the other

hand, there are three commonly-used cloud deployment

models: private, public and hybrid. An additional, less-

commonly used model is community cloud. A private

cloud is meant for a single organization where software

such as VMWare, vCloud Director, or OpenStack can be

used. A public cloud is a set of computing resources

provided by third-party organizations like Amazon Web

Services, Google AppEngine and Microsoft Azure. A

hybrid cloud is a mixture of computing resources

provided by both private and public clouds. A

community cloud shares computing resources across

several organizations.
These days, most of us are using cloud services

directly or indirectly. From email systems, social
networking websites to mobile chatting apps for
connecting people to each other are running on cloud.
According to research and advisory consultancies
including International Data Corporation (IDC), global
SaaS market is projected to grow from $49B in 2015 to
$67B in 2018, attaining a CAGR of 8.14%. It also states
that global spending on IaaS is expected to reach $16.5B
this year, an increase of 32.8% from 2014 and cloud
applications will account for 90% of worldwide mobile
data traffic by 2019, which was 81% in the end of 2014.

A client expects a high quality of service and therefore
strives to find a reliable and fast cloud service that falls
under the budget. In order to meet these expectations, it is
essential for cloud service provider to utilize available
resources optimally. For increasing efficiency and
capabilities of cloud, virtualization is performed which
refers to creating multiple virtual versions of resources,
known as Virtual Machines (VMs) within a host. It
enables same set of resources available in one or more
execution environments. VMs should complete the
execution of user submitted tasks as fast as possible. At
the same time, one VM may experience overload whereas
other may see under loaded condition. Such improper
utilization of resources results into longer execution time
and waiting time leaving the clients disappointed.

To avoid above situation, a scheduler (also known as
load balancer) is used, which receives all the tasks
incoming from clients for execution, keeps them in a
queue, applies a task scheduling algorithm to determine
best possible set of VMs for executing those tasks and
finally assigns the tasks across VMs for execution. A
scheduler works as good as its scheduling algorithm is
and it can significantly improve execution time by
optimizing the utilization of cloud resources. Since
billions of users can be accessing a cloud at a time
therefore it requires a large scale task scheduling
algorithm. Since performance of a cloud depends upon
how scheduling of tasks is performed therefore it makes
task scheduling one of the major concern that needs to be
addressed in this area.

In this study, we propose a viral system based load
balancing (VSB-LB) algorithm for scheduling
independent heterogeneous tasks in cloud environment
and reducing the execution time of tasks. Rest of the
paper is organized as follow: Section-2 presents related
works, section-3 discusses basics concepts of viral
system algorithm, section-4 explains the proposed load
balancing model based on viral system behavior, section-
5 discusses about the behavior and performance of
proposed model, section-6 finally concludes the paper.

Related Work

During the last decade, rapid increase in number of
cloud users has caught the attention of researchers from
all round the globe. Recently a large variety of task
scheduling and load balancing algorithms have been
introduced, which are briefly discussed in this section.

In the past few years, researchers around the globe have
proposed a variety of solutions to perform task scheduling
and load balancing in cloud. Subramanian et al. (2012) used
dynamic priority for scheduling virtual machines. Paul and
Sanyal, (2011) used credit based scheduling decision for
evaluating group of task in the task queue and find the
minimal completion time of all task. Zhao and Huang
(2009) reduced the migration time of virtual machines
through shared storage and fulfilling the zero-downtime
relocation of virtual machines by transforming them as
Red Hat cluster services. Li et al. (2011) proposed a
hybrid energy-efficient scheduling algorithm using
dynamic migration that not only reduces response time
but also conserves energy besides achieving load
balancing. Mondal et al. (2012) used a local optimization
stochastic hill climbing approach for allocating incoming
jobs to virtual machines whereas Wadhwa et al. (2015)
proposed a scheduling that aims to improve QoS by
minimizing the waiting time.

Fang et al. (2010) proposed a two levels task
scheduling mechanism for load balancing in cloud
computing. It not only meets user's requirements, but
also leads to high resource utilization. The first level
scheduling is performed at application layer to the virtual
machine and second is from virtual machine to host
resources. The performance of this technique can be
improved by taking more parameters into account such
as bandwidth, cost etc.

Bitam et al. (2012) applied population based meta
heuristic Bees Life Algorithm (BLA) to solve the job
scheduling problem in cloud. It improves the efficiency
and the performance in terms of execution time.

Xu et al. (2013) proposed a cloud partitioning based
load balancing conceptual framework for a large public
cloud. It creates separate load balancer for each partition,
all of which are controlled by a main controller. At first,
the controller chooses right partition according to partition
status that can be either idle, normal or overload. Once the
partition is chosen, the load balancer of that partition

Damodar Tiwari et al. / Journal of Computer Science 2018, 14 (7): 908.918

DOI: 10.3844/jcssp.2018.908.918

910

applies an appropriate load balancing strategy to choose
best suitable node within the partition to execute the task.
This framework does not consider many practical aspects
and its feasibility is not yet assessed.

Dhinesh Babu and Venkata Krishna (2013) proposed

an algorithm for load balancing of tasks, which is

completely inspired by natural foraging behavior of

honey bees, which adopt to find and reap food. In bee

hives, scout bees forage for food sources and upon

finding one, they come back to the beehive and

advertise it by a waggle/tremble/vibration dance that

gives the idea about the quality and/or quantity of food

and its distance from the beehive. Forager bees then

follow scout bees to that location and begin to reap it.

They then return to beehive and do same before other

bees in the hive giving an idea of how much food is left

and hence resulting in either more exploitation or

abandonment of the food source. In the same manner,

removed tasks from over loaded VMs are considered

analogous to honey bees. Upon submission to the under

loaded VM, the task updates the number of various

priority tasks and load of that particular VM to all other

waiting tasks. It helps other tasks in choosing their

virtual machine based on load and priorities.

Dasgupta et al. (2013) proposed a genetic

algorithm based load balancing technique for

improving the response time. The three major

operations involved are selection, genetic operation

and replacement. Authors claim that it can handle a

vast search space, applicable to complex objective

function and can avoid being trapped in local optimal

solution. However the cost function includes only two

parameters i.e., number of instructions in task and

MIPS of VM under consideration, which can be

improved by considering other valuable parameters

such as load difference among VMs etc.

Zhan et al. (2014) tried to solve the task scheduling

problem in cloud computing by using a Load balance

Aware Genetic Algorithm (LAGA) with Min-min and

Max-min methods. It introduced the Time Load

Balance (TLB) model and provided interaction between

makespan and TLB that helps the algorithm to

minimize the makespan. The Min-min and Max-min

methods were used to find promising individuals at the

beginning of evolution leading to a noticeable

improvement of evolution efficiency. The n × m task

scheduling problem was represented by corresponding

Resource-Task Model and the characteristics of the

problem were described using matrix called Expected

Time of Completion containing the completion time of

each task with each resource. Another matrix Expected

Scheduling to Compute (ESC) describes a solution to

task scheduling problem by recording the matching of

tasks and resources.

A Hybrid Artificial Bee and Ant Colony optimization

(H_BAC) load balancing algorithm is proposed in

(Gamal et al., 2017). It inherits the main behaviors of

both ACO and ABC algorithms and takes into

consideration monitoring the load of Virtual machines

(VMs) and the decision of load balancing before

scheduling tasks in VMs. The authors claim that it uses

two constraints in order to select the most suitable VM

and guarantee the load balancing of the system.

An evolutionary algorithm for scheduling tasks in

Cloud computing is proposed in (Navimipour and

Milani, 2015). It is based on the obligate brood parasitic

behavior of some cuckoo species in combination with

the Lévy flight behavior of some birds and fruit flies and

focuses on minimizing the total waiting time of tasks.

The downside of their work is that it is applicable only

for homogeneous cloud infrastructure.

Domanal et al. (2017), authors have proposed three

different Bio-Inspired algorithms for efficient

scheduling and resource management in a cloud

environment. The MPSO algorithm was found more

efficient in scheduling the tasks as compared to other

algorithms. On the other hand, the proposed HYBRID

(MPSO + MCSO) approach was more effective in

allocating the resources to VMs when compared to

other algorithms. The proposed HYBRID algorithm not

only reduced the average response time but also

increased resource utilization by 12% when compared

to other state-of-the-art benchmark algorithms.

Most existing systems consider only two resources i.e.,

CPU and memory, while evaluating their performance. In

(Gawali and Shinde, 2018), authors proposed a heuristic

algorithm that performs task scheduling and allocates

resources efficiently in cloud computing environments.

They used real Cybershake and Epigenomics scientific

workflows as input tasks for the system and have also

considered the bandwidth as a resource. Their heuristic

approach gives improved results as compared to existing

BATS and IDEA frameworks with respect to turnaround

time and response time. On the other hand, proposed

heuristic approach efficiently allocates resources with high

utility. The results have shown that it achieves maximum

utilization result for computing resources such as CPU,

memory and bandwidth.

Viral System Behavior

Viral System Algorithm (VSA) is a relatively new
bio inspired algorithm based on viral infection
process. It was originally proposed in (Cortés et al.,
2012). VSA consists of two basic operations namely
replication and infection. A Viral System (VS) consists
of following three components:

Damodar Tiwari et al. / Journal of Computer Science 2018, 14 (7): 908.918

DOI: 10.3844/jcssp.2018.908.918

911

a) Set of viruses (V), where each virus consists of its
own state (s), input (i), output (o) and a process (p):

{ }1 2 3, , , , nV Virus Virus Virus Virus= …

where, Virusi = {si, ii, oi, pi}

b) An organism to be infected (O), which includes its
state (S) and process (P):

{ },O S P=

c) Interaction (I) between the above two components

Thus a viral system can be represented using three

tuples as VS = {V,O,I}. A clinical picture represents

organism’s health, which contains a set of infected cells.

The organism may generate antibodies during infection,

which resists the spreading of infection in organism.

Once the viral system has been created, it works under

following steps:

i. Set coding and measuring criteria

• Create coding representation for possible
solutions

• Set criteria for measuring quality of solutions

• Set criteria about how antibodies are generated

ii. Initialize system and let the infection spread

• Create and initialize clinical picture

• Determine the type of infection to be applied

• Run through iterations and let the viruses interact

with organism’s cells. The cells get gradually

infected by virus and during this process, cell

may produce antibody as a result of which, they

are excluded from clinical picture

iii. Termination

• Either the organism will die which refers to

finding a good solution or

• The viruses get isolated from organism

The life cycle of a virus within organism’s body

can be of two types namely lytic replication and

lysogenic replication. Lytic replication results in

generating number of new viruses, which in turn

infect other cells selectively or massively. Lysogenic

replication is carried out by performing mutation in

organism cells present in clinical picture. Let Y be the

binomial random variable representing cells infected

by the virus in the neighborhood. In selective

infection, single cell from neighborhood is selected

and its antigenic response is evaluated as a Bernoulli

process (A). In massive infection, (Y-A)

neighborhood cells are selected, infected and included

into the clinical picture. If there is lack of space in

clinical picture then it erases the cells randomly from

the (Y-A) selected cells. In case of antigenic response,

a lysogenic replication is performed.
Cortés et al. (2010) have applied VSA to solve the

Steiner problem, which falls under NP-Complete
problems. It was found that VSA was able to produce
even better results as compared to GA. This motivated us
to apply VSA for performing tasks scheduling in cloud,
which is an NP-hard problem.

Modeling of Viral System based Load

Balancing

The clinical picture contains a number of cells where
each cell or genome is represented using resource task
model as described in (Zhan et al., 2014). According to
this model, if there are n tasks to be assigned among m

virtual machines then ith
 cell (Ci) is represented as shown

in Fig. 1.
Where, Cik is an integer value representing the

index number of virtual machine on which the kth task
in ith chromosome is scheduled to execute. The length
of a cell is equal to the number of available tasks and
Ci represents a possible distribution of tasks across
available VMs. This whole distribution is one possible
solution from numerous solutions in solution space.
The cells in clinical picture repeatedly undergo
infections massively or selectively according to Viral

System algorithm.

As Fig. 2 depicts, the clinical picture contains a

fixed number of cells. The ith
 cell is represented as Ci

where 1 ≤ i ≤ Size of clinical picture. With each cell,

expected time to complete (ETC) and load difference

(LD) is associated. The term ETCi and LDi denotes the

expected time duration to complete the execution of

all tasks and the load difference among all the VMs

respectively in ith
 solution. Smaller values of ETC and

LD are desired i.e. smaller the values of ETCi and LDi

better is the solution represented by cell Ci.

Fig. 1: Cell representation in resource task model

Damodar Tiwari et al. / Journal of Computer Science 2018, 14 (7): 908.918

DOI: 10.3844/jcssp.2018.908.918

912

Fig. 2: Clinical picture representation

The Ideal Average Load on a VM:

()()
()

()
()

()

1

1

1

100
_

_

VM j

j m

VM kk

m

j ik

j ideal m

VM kk

MIPS
MIPS Share

MIPS

MIPS Share Noof instructionsintask T
L

MIPS

=

=

=

×
=

×
=

∑
∑
∑

where, Lj(ideal) denotes the ideal average load on jth

 VM
(VMj), Ti denotes the i

th
 task, n is the total number of

tasks to be assigned across available m number of VMs.
The value of i varies from 1 through n whereas k varies
from 1 through m. MIPS_Sharej is the share of VMj in
total MIPS available through all k VMs.

The Actual Load on a VM:

() ij ideal
L Number of instructionsintask T=∑

where, Lj(actual) denotes the actual load on VMj and Ti

denotes a task scheduled to run on VMj.

The Load Difference (LD)

() ()
1

Size

i j actual j ideal
i

LD L L
=

= −∑

The load difference parameter LDi is the summation

of differences between actual load and ideal load of all

the VMs when tasks are assigned as guided by solution

Ci in clinical picture, a good load balancing algorithm

should try to minimize this value.

The Expected Time to Complete (ETC) all the Tasks

1

j

i
j m

j

Number of instructions assigned toVM
ETC Max

MIPS≤ ≤

=

The term ETCi denotes the expected time to finish

execution of all tasks when tasks are distributed

according to solution Ci in clinical picture. The term m

denotes total number of available VMs and MIPSj

denotes the million instructions that can be executed per

second by VMj. The ETCi is maximum time duration

required among all the VMs to finish all the tasks

assigned to it according to solution Ci. It is the most

significant parameter in load balancing and a smaller

value of ETC represents a better solution.

The Objective Function (OF)

1 2
i

i i

w w
OF

ETC LD
= +

The objective function for solution Ci is denoted by

OFi which is the weighted sum of ETC and LD. The
terms w1 and w2 denote the weights associated with ETCi

and LDi respectively.

Algorithm: ViralLoadBalancing

Let the array ClinicalPicture denotes clinical picture
and the variable Size denotes the size of clinical picture.
 Initialize the variables Size, MaxLytic, MaxLysogenic,

RangeLytic and RangeLysogenic
 Set LysogenicCount[i] = LyticCount[i] = 0 for all i

where 1 < i < Size

 Create ClinicalPicture[Size]
 Do until all cells develop antibody or all cells are

collapsed i.e., death of organism
 For each cell (Ci) in ClinicalPicture do
 Generate random number R between 0 and 1

and find AntibodyCi = Bernouli(R)
 If AntibodyCi > ThresholdAntibody (which means

this cell has produced antibody)
 Remove cell Ci from ClinicalPicture leaving

a vacant space
 Else (which means the cell failed to produce

antibody and therefore will get infected)
 Generate a random number ReplicationType

between 0 and 1
 If value of ReplicationType is within

RangeLytic (which results in lytic replication)
 ++LyticCount[i]

Damodar Tiwari et al. / Journal of Computer Science 2018, 14 (7): 908.918

DOI: 10.3844/jcssp.2018.908.918

913

 MaxLytic(Ci) = MaxLytic x [(OF(Ci)-

OF(CBest)/OF(CBest))]
 If(LyticCount[i] > MaxLytic(Ci))
 Remove cell Ci from ClinicalPicture
 Else
 Generate a boolean value InfectionType

that can contain either 0 or 1
 If(InfectionType==0) (which means a

massive infection)
 Remove Ci from ClinicalPicture (The cell

has collapsed)
 z = BinRndmNmbr(MaxLytic(Ci), p)
 Create a set S containing z new viruses

created by mutating z neighbors of Ci
such that any cell in S is not already
present in ClinicalPicture

 If
(NumberOfVacantSpace(ClinicalPicture)

< z) then
 Remove such z cells from ClinicalPicture

that have lowest value of OF
 Add all the viruses from S to ClinicalPicture
 Else (which means a selective infection)
 Infect one neighbor cell of Ci in

ClinicalPicture by performing mutation
operation on it such that newly generated
cell is not present in ClinicalPicture

 Else If value of ReplicationType is within
RangeLysogenic (which results in lysogenic
replication)

 ++ LysogenicCount[i]
 MaxLysogenic(Ci) = MaxLysogenic x [(OF(Ci)-

OF(CBest)/OF(CBest))]
 If(LysogenicCount[i] > MaxLysogenic(Ci))
 Ci = Perform mutation operation on Ci such

that mutated Ci is not present in
ClinicalPicture

The algorithm continues to execute until either all the

cells in clinical picture develop antibody or all the cells

are collapsed resulting into death of organism. In clinical

picture, the ith
 cell is represented as Ci which represents

the ith
 possible solution. The function Bernouli(R) returns

a bernouli random number. If the value returned by this

function is greater than ThresholdAntibody than it is

assumed that the cell Ci has generated antibody against

viruses. The RangeLytic and RangeLysogenic represent the

range of values to determine the replication type of

viruses in current cell. If the value of random variable

ReplicationType comes out between the range set by

RangeLytic then it results into a lytic replication otherwise

a lysogenic replication is initiated in Ci.
The arrays LyticCount and LysogenicCount keep

track about the number of lytic and lysogenic infections
respectively that have occurred in each cell. The
MaxLytic(Ci) is updated based upon the value of objective

function OF. The OF(Ci) denotes value of OF for cell Ci
and OF(CBest) denotes the best (minimal) value of OF
discovered so far. If LyticCount for a cell exceeds
MaxLytic(Ci) then that cell is removed from ClinicalPicture.
Otherwise selective or massive infection takes place
depending upon the value of random boolean variable
InfectionType. A 0 value of InfectionType means
massive infection whereas 1 means selective infection.

For massive infection, the value of z is calculated
through function BinRndmNmbr(MaxLytic(Ci), p) which
return the random variable according to binomial
distribution. This function takes two arguments
MaxLytic(Ci) and p which is the single probability of one
replication. In case of selective infection, only one
neighboring cell of Ci is mutated. The array
LysogenicCount maintains the number of lysogenic
infections occurred in each cell in clinical picture. In
case of lysogenic replication, the value of
LysogenicCount[i] is incremented by one and
MaxLysogenic(Ci) is updated according to value of OF. If
LysogenicCount[i] exceeds MaxLysogenic(Ci) then mutation
takes place in Ci.

A variety of mutation operators such as twors, central
inverse, reverse sequence, throas, thrors, partial transfer
shuffle etc. are available for performing mutation in a
cell. Since the partial transfer shuffle mutation (PSM) is
known to effective in travelling salesman problem
therefore we have used PSM in which, a part of the order
of genes gets changed. Next section presents the details
of simulation environment and performance evaluation
of viral system based load balancing algorithm.

Experimental Results

For evaluating the performance of VSBLB it is
implemented using CloudSim-3.0.3 proposed in
(Calheiros et al., 2011), which is considered as a
standard test bench for simulating cloud environments.
Since effective load balancing can reduce the makespan
considerably therefore in this section, performance of
VSBLB is compared with FCFS, WRR and LAGA in
terms of makespan i.e., the overall task completion time
(Dhinesh Babu and Venkata Krishna, 2013). The initial
values of various parameters of algorithm used in
VSBLB during simulation are shown in Table 1.

Moreover, we have created a heterogeneous

simulation environment where hardware configuration of

each VM and length of each task is different than the

other. Table 2 illustrates the makespan before and after

applying load balancing using VSBLB.

Figure 3 illustrates the graphical representation of

makespan before and after applying load balancing using

VSBLB. The X-axis represents number of tasks and Y-

axis represents the execution time. Figure 4 compares the

load difference before and after applying load balancing

using VSBLB.

Damodar Tiwari et al. / Journal of Computer Science 2018, 14 (7): 908.918

DOI: 10.3844/jcssp.2018.908.918

914

Table 3 illustrates the load difference before and after
applying load balancing using VSBLB.

The makespan and load difference were calculated
when number of tasks were 100, 200, 300 and 400
with 10 VMs. It is apparent that VSBLB improves
both makespan and the load difference considerably.
As the number of tasks increases, the difference in
makespan becomes higher. The reduction in makespan
was found to be 22%, 37%, 56% and 67% when
number of tasks is 100, 200, 300 and 400 respectively.

Table 1: Parameter values

Parameter Value

Size 25
MaxLytic 5
RangeLytic 0.1-0.5
RangeLysogenic 0.6-1
ThresholdAntibody 0.5

Table 2: Makespan before and after applying VSBLB

 Execution time
Number --
of tasks Before load balancing After load balancing

100 377 293
200 1045 650
300 2004 882
400 3150 1050

Table 3: Load difference before and after applying VSBLB

 Load difference

Number of tasks Before load balancing After load balancing

100 454634 347339
200 1363635 662725
300 2727281 1692013
400 5454639 3384109

In Fig. 4, X-axis represents load difference value and Y-

axis represents the number of tasks. After applying

VSBLB, the load difference is reduced considerably,

which reveals better load distribution among VMs.

Figure 5 shows comparison of makespan between

VSBLB, first come first serve and weighted round robin

algorithms. The X-axis represents the time taken for

finishing the execution and Y-axis represents the

number of tasks.

As compared to WRR, VSBLB improves the execution

times by 13%, 51%, 34%, 48% and 46% when number of

tasks is set to 100, 200, 300, 400 and 500 respectively.

Similarly, in comparison to FCFS, an improvement of 22%,

67%, 38%, 60% and 56% in execution time were seen for

100, 200, 300, 400 and 500 tasks respectively. It reveals

that VSBLB shows significant improvement in execution

time as compared to WRR and FCFS.

Figure 6 compares the makespan between VSBLB

and LAGA algorithm which is another bio inspired,

genetic algorithm based load balancing technique. As

compared to LAGA, the VSBLB improves execution

time by 8%, 38%, 9%, 13% and 14% when number of

tasks is set to 100, 200, 300, 400 and 500 respectively.

The VSBLB performs slightly better than LAGA and it

does reveal that VSBLB seems at least equally

promising as genetic algorithm, which opens a new

direction for research in this field.
Figure 7 to 10 compares the execution time between

VSBLB, FCFS and WRR when number of VMs is set to
12, 15, 18 and 20 respectively. It is apparent that the
time taken by VMs for executing the tasks with VSBLB
is always smaller as compared to FCFS and WRR
irrespective of number of VMs employed.

Fig. 3: Comparison of makespan before and after load balancing using VSBLB

Damodar Tiwari et al. / Journal of Computer Science 2018, 14 (7): 908.918

DOI: 10.3844/jcssp.2018.908.918

915

Fig. 4: Comparison of load difference before and after load balancing using VSBLB

Fig. 5: Comparison of makespan between FCFS, WRR and VSBLB

Fig. 6: Comparison of makespan between LAGA and VSBLB

Damodar Tiwari et al. / Journal of Computer Science 2018, 14 (7): 908.918

DOI: 10.3844/jcssp.2018.908.918

916

Fig. 7: Comparison of execution time between FCFS, WRR and VSBLB with 12 VMs

Fig. 8: Comparison of execution time between FCFS, WRR and VSBLB with 15 VMs

Fig. 9: Comparison of execution time between FCFS, WRR and VSBLB with 18 VMs

Damodar Tiwari et al. / Journal of Computer Science 2018, 14 (7): 908.918

DOI: 10.3844/jcssp.2018.908.918

917

Fig. 10: Comparison of execution time between FCFS, WRR and VSBLB with 20 VMs

Conclusion

In this study a bio inspired viral system based load

balancing technique for cloud computing environment is

proposed. The goal of this paper is to enable the reader

how viral system can be applied for performing load

balancing in cloud. The algorithm distributes balanced

load among the nodes and reduces execution time of user

submitted tasks. Simulation results have revealed a

significant improvement in distributed load and total

execution time of tasks as compared to FCFS and WRR.

It is also seen that viral system based load balancing,j is

slightly better than genetic algorithm when applied in

cloud computing environment, which may be a

motivating fact for further research in this field.

Author’s Contributions

Damodar Tiwari: Contributed in literature survey,

algorithm preparation, writing manuscript.

Shailendra Singh: Contributed in writing algorithm.
Sanjeev Sharma: Contributed in result analysis.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and there are no ethical issues involved.

References

Bitam, S., 2012. Bees life algorithm for job scheduling
in cloud computing. Proceedings of the ICCIT,
(CIT’ 12), pp: 186-191.

Calheiros, R.N., R. Ranjan, A. Beloglazov, C.A.F. De

Rose and R. Buyya, 2011. CloudSim: A toolkit for

modeling and simulation of cloud computing

environments and evaluation of resource

provisioning algorithms. Software Pract. Exp., 41:

23-50. DOI: 10.1002/spe.995

Cortés, P., J.M. García, J. Muñuzuri and J. Guadix,

2010. A viral system massive infection algorithm to

solve the Steiner tree problem in graphs with

medium terminal density. Int. J. Bio-Inspired

Comput., 2: 71-77.

 DOI: 10.1504/IJBIC.2010.032123

Cortés, P., J.M. García, J. Muñuzuri and J. Guadix,

2012. Viral system algorithm: Foundations and

comparison between selective and massive

infections. Trans. Inst. Measurement Control, 34:

677-690. DOI: 10.1177/0142331211402897

Dasgupta, K., B. Mandal, P. Dutta, J.K. Mondal and S.

Dam, 2013. A Genetic Algorithm (GA) based Load

balancing strategy for cloud computing. Proc.

Technol., 10: 340-347.

 DOI: 10.1016/j.protcy.2013.12.369

Dhinesh Babu, L.D. and P. Venkata Krishna, 2013.

Honey bee behavior inspired load balancing of tasks

in cloud computing environments. Applied Soft

Comput., 13: 2292-2303.

 DOI: 10.1016/j.asoc.2013.01.025

Domanal, S., R.M.R. Guddeti and R. Buyya, 2017. A

hybrid bio-inspired algorithm for scheduling and

resource management in cloud environment. IEEE

Trans. Services Comput.
 DOI: 10.1109/TSC.2017.2679738

Damodar Tiwari et al. / Journal of Computer Science 2018, 14 (7): 908.918

DOI: 10.3844/jcssp.2018.908.918

918

Fang, Y., F. Wang and J. Ge, 2010. A task scheduling
algorithm based on load balancing in cloud
computing. Proceedings of the International
Conference on Web Information Systems and
Mining, Oct. 23-24, Springer, Sanya, China, pp:
271-277. DOI: 10.1007/978-3-642-16515-3_34

Gamal, M., R. Rizk, H. Mahdi and B. Elhady, 2017. Bio-
inspired load balancing algorithm in cloud
computing. Proceedings of the International
Conference on Advanced Intelligent Systems and
Informatics, (ISI’ 17), Springer, Cham, pp: 579-589.
DOI: 10.1007/978-3-319-64861-3_54

Gawali, M.B. and S.K. Shinde, 2018. Task scheduling
and resource allocation in cloud computing using a
heuristic approach. J. Cloud Comput., 7: 4-4.

 DOI: 10.1186/s13677-018-0105-8
Li, J., J. Peng and W. Zhang, 2011. A scheduling

algorithm for private clouds. J. Convergence Inform.
Technol., 6: 1-9. DOI: 10.4156/jcit.vol6.issue7.1

Mondal, B., K. Dasgupta and P. Dutta, 2012. Load
balancing in cloud computing using stochastic hill
climbing-a soft computing approach. Proc. Technol.,
4: 783-789. DOI: 10.1016/j.protcy.2012.05.128

Navimipour, N.J. and F.S. Milani, 2015. Task scheduling
in the cloud computing based on the cuckoo search
algorithm. Int. J. Model. Optimiz., 5: 44-47.

 DOI: 10.7763/IJMO.2015.V5.434
Paul, M. and G. Sanyal, 2011. Task-scheduling in cloud

computing using credit based assignment problem.
IJCSE, 3: 3426-3430.

Subramanian, S., G. Nitish Krishna, M. Kiran Kumar, P.

Sreesh and G.R. Karpagam, 2012. An adaptive

algorithm for dynamic priority based virtual

machine scheduling in cloud. IJCSI, 9: 397-402.

Wadhwa, S., M. Jain and B. Pandey, 2015. Design and

implementation of scheduling algorithm for high

performance cloud computing. Int. J. Web Sci. Eng.,

2: 15-20. DOI: 10.21742/ijwsesd.2015.2.1.02

Xu, G., J. Pang and X. Fu, 2013. A load balancing model

based on cloud partitioning for the public cloud.

Tsinghua Sci. Technol., 18: 34-39.

 DOI: 10.1109/TST.2013.6449405

Zhan, Z.H., G.Y. Zhang, Ying-Lin, Y.J. Gong and J.

Zhang, 2014. Load balance aware genetic algorithm

for task scheduling in cloud computing. Proceedings

of the 10th International Conference on Simulated

Evolution and Learning, Dec. 15-18, Springer,

Dunedin, New Zealand, pp: 644-655.

 DOI: 10.1007/978-3-319-13563-2_54

Zhao, Y. and W. Huang, 2009. Adaptive distributed load

balancing algorithm based on live migration of

virtual machines in cloud. Proceedings of the 5th

International Joint Conference on INC, IMS and

IDC, Aug. 25-27, IEEE Xplore Press, Seoul, South

Korea, pp: 170-176. DOI: 10.1109/NCM.2009.350

