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Abstract: The rise in demand for cloud resources (network, hardware and 
software) requires cost effective scientific workflow scheduling algorithm 
to reduce cost and balance load of all jobs evenly for a better system 
throughput. Getting multiple scientific workflows scheduled with a reduced 
makespan and cost in a dynamic cloud computing environment is an 
attractive research area which needs more attention. Scheduling multiple 
workflows with the standard Max-Min algorithm is a challenge because of 
the high priority given to task with maximum execution time first. To 
overcome this challenge, we proposed a new mechanism call Expanded 
Max-Min (Expa-Max-Min) algorithm to effectively give equal opportunity 
to both cloudlets with maximum and minimum execution time to be 
scheduled for a reduce cost and time. Expa-Max-Min algorithm first 
calculates the completion time of all the cloudlets in the cloudletList to 
find cloudlets with minimum and maximum execution time, then it sorts 
and queue the cloudlets in two queues based on their execution times. 
The algorithm first select a cloudlet from the cloudletList in the 
maximum execution time queue and assign it to a resource that produces 
minimum completion time, while executing cloudlets in the minimum 
execution time queue concurrently. The experimented results demonstrats 
that our proposed algorithm, Expa-Max-Min algorithm, is able to produce 
good quality solutions in terms of minimising average cost and makespan 
and able to balance loads than Max-Min and Min-Min algorithms. 
 
Keywords: Cloud Computing, Workflows, Expa-Max-Min, Load 

Balancing, Makespan and Cost 

 

Introduction  

The evolution of cloud computing has taken place in 
various phases which include grid computing, utility 
computing, software as a service and now cloud 
computing (Sharma and Pariha, 2014). Cloud computing 
is classified as a type of grid computing, which is aimed 
at allocating resources properly to address the quality of 
service and reliability problems facing information 
dissemination and data storage (Sharma and Pariha, 
2014; Hamdaqa and Tahvildari, 2012). NIST defined 
cloud computing as “a model for enabling ubiquitous, 
convenient, on-demand network access to a shared pool of 
configurable computing resources like, networks, servers, 
storage, applications and other services” (Mell and Grance, 
2011). Cloud technology has a broader network range that 
enables cloud resources to be available anywhere in the 
world by the cloud service providers to consumers on 
demand. Consumers or users all over the world can access 
these resources through the use of their digital devices such 
as laptops, smart phones, tablets, personal computers etc., 

on pay-as-you-go model or other models through cloud 
standard mechanisms (Mell and Grance, 2011).  

Though cloud computing has gain a lot of successes 

since its inception, but scientific workflow allocation 

with the standard Max-Min algorithm in cloud is still a 

major issue in research because it is unable to select and 

assign both cloudlets with maximum execution time and 

minimum execution time concurrently. Scientific 

workflow allocation is described as a method used to get 

resources channeled to cloud users at a reduced cost and 

time. In scheduling, a workflow task has to be selected 

and submitted to the resource manager and then, the 

submitted workflow task will be put in a queue if there 

are other workflow tasks with higher priority than it, 

until it is time for it to be scheduled (Saraswathi et al., 

2015) as displayed in Fig. 1. A workflow task may be 

required to wait in a queue for a long or short period of 

time depending on some scheduling factors which 

include system capacity to execute, task priority, system 

load and requested resources availability.  
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Fig. 1: Workflow task scheduling in cloud 

 

The focus of this paper is on how to achieve the 
control of workload, makespan and cost on cloud 
resources by ensuring that all the workloads on cloud 
resources are distributed properly to allow free flow of 
cloudlets on all the network nodes and to guarantee that, 
all the resources are allocated to cloud users at a lower 
cost. This will optimise the use of scientific workflows 
in cloud computing to ensure that multiple resources are 
made available to cloud users at a reduced cost and time. 
To achieve this, we proposed a mechanism called Expa-
Max-Min algorithm as a way to ensure better load 
balancing, makespan and cost of executing cloudlets on 
cloud resources in cloud computing environment. The 
algorithm takes the advantages of the standard Max-Min 
algorithm by selecting and assigning cloudlets that 
requires minimum executing time in the second queue of 
the resources alongside the original Max-Min steps as 
well in the first queue of the resource. 

We incorporated the proposed algorithm (Expa-Max-
Min) into a simulation environment called cloudsim. 
Cloudsim is a simulation toolkit that allows for the 
modeling and simulation of all cloud applications and 
systems for comparison of result in cloud computing 
environment (Calheiros et al., 2011). The algorithm is 
implemented to guarantee that all workloads on cloud 
resources are distributed evenly on all the available 
network nodes to avoid traffic during cloudlets 
distribution and also to reduce the high priority in the 
standard Max-Min algorithm where cloudlets with 
maximum execution time must finish execution before 
executing those with minimum execution time. Expa-

Max-Min algorithm first calculates the completion time 
of all the cloudlets in the cloudletList to find cloudlets 
with minimum and maximum execution time, then it 
sorts and queue the cloudlets in two queues based on 
their execution times. The algorithm first selects a 
cloudlet from the cloudletList in the maximum execution 
time queue and assigns it to a resource that produces 
minimum execution time, followed by cloudlet in the 
minimum execution time queue. The proposed algorithm 
is able to boost up cloud scheduling processes by 
simultaneously selecting and assigning cloudlets with both 
maximum and minimum execution time concurrently at a 
reduced cost, makespan and balancing loads fairly. 

Load Balancing  

The increasing demand for cloud applications 
coupled with the increased in web traffic daily, where 
millions of cloud users are queued and demanding for 
cloud services on different servers has made load 
balancing an interesting topic to be investigated. Load 
balancing is a method used in cloud and in distributed 
computing to mediate access to client requests to servers 
by distributing cloudlets evenly across multiple servers, 
(Samarsinh and Deshpande, 2014). The purpose of 
balancing load on cloud is to ensure that workloads on 
cloud resources are distributed evenly on all the available 
network nodes to avoid traffic during cloudlets 
distribution. Also, load balancing in cloud helps cloud 
users and enterprises to manage their application 
effectively for higher performance at a lower cost. Figure 
2 displays the processes of load balancing in Cloud. 
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Fig. 2: The processes of load balancing in cloud 

 

Scientific Workflows 

Scientific Workflows allocation and Scheduling is 

a procedure adapted to manage the execution of 

interdependent workflow tasks on a distributed pool 

of resources. This procedure ensures that appropriate 

resources are identified and distributed on all the 

available VMs for a successful execution of all tasks 

to meet the demands of cloud users (Prathibha et al., 

2014). The three types of scientific workflows used in 

this research are:  

 

• Laser Interferometer Gravitational Wave Observatory 

(LIGO) (Silva et al., 2014), also known as Inspiral 

Workflow is a data-intensive workflow designed to 

monitor, detect and capture gravitational waves that 

is produced through various activities in the earth. 

The main goal of LIGO Inspiral is to identify and 

give measurement of gravitational waves forecasted 

by general relativity (Einstein's theory of gravity), in 

which gravity is described as due to the curvature of 

the fabric of time and space (Berriman et al., 2004; 

Mehta and Gideon, 2014) 

• CyberShake: This is a fraction of Southern 

California Earthquake Center’s (SCEC) (Graves 

et al., 2011), which uses 3D wave detector to 

determine source and wave that allows it to 

compute Probabilistic Seismic Hazard curves for 

geographic sites in order to simulate, broadcast 

and to forecast the movement of ground for the 

production of accurate and reliable environmental 

estimates rather than relying on the use of empirical-

based ground motion methods (Silva et al., 2014; 

Cpedia, 2016) 

• SIPHT: This is a scientific workflow application 

from the bioinformatics project at Harvard, which is 

suitable for conducting a broader search for non-

translated RNAs (sRNAs) for the control of several 

processes like secretion or virulence in bacteria 

(Mehta and Gideon, 2014; Livny, 2016). Figure 3 

displays a summarized Scientific Workflows. 
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Fig. 3: Scientific workflows 

 

Related Work 
The focus of scientific workflow scheduling in cloud 

computing is to ensure that multiple resources are made 

available to cloud users at their door steps. This is to 

ensure that, cloud resources are allocated fairly to cloud 

users at a reduced cost and time. Scientific workflows 

have been lengthily used by many researchers as a means 

of exploring into the parallel distribution of cloud 

computing applications on distributed systems such as 

cluster, grids and clouds (Talia, 2013; Gannon et al., 

2007; Silva et al., 2014). Scientific workflow allocation 

and Scheduling is defined in (Prathibha et al., 2014) as 

a process use to map, manage and execute 

interdependent workflow cloudlets effectively on a 

distributed pool of cloud resources to ensure that every 

available cloud resources is distributed efficiently and 

fairly on all network notes. 
There are many scheduling algorithms that exist in 

distributed computing, most of which are applicable in 
the cloud environment, but their performance is 
questionable in relation to cost, makespan and load 
balancing, (Thomas et al., 2014). These algorithms include  

Max-Min, (Mao et al., 2014; Kaur and Luthra, 2014), 

Min-Min (Liu et al., 2013), Game Theoretic (Duan et al., 

2014; Wei et al., 2010), FCFS (Marphatia et al., 2013), 

Round Robin (Agarwal and Rastogi, 2014). Though 

these algorithms have brought some improvement on 

resource scheduling in cloud computing, but they require 

more improvement to transform how goods and services 

are sold and bought in today’s competitive environment 

(Wei et al., 2010).  

Max-Min is the most commonly used scheduling 

algorithm that assigns tasks to resources based on the 

priority of the tasks. It gives high priority to tasks with 

high completing time by selecting and assigning them to 

resources first before considering any other task (Brar and 

Rao, 2015). Max-Min has been considered as the most 

proactive algorithm in scheduling because of its ability 

to assign multiple tasks to a resource at a reduced time 

and cost. Much work has been done by various 

researches in a quest to improve the performance of 

Max-Min scheduling algorithm. For example, Li et al., 

(2014) proposed for an improved Max-Min algorithm for 

cloud computing. The idea behind the improved 

algorithm was to allow task with maximum execution 

time to be assigned to resources that produces minimum 

completion time rather than the traditional Max-Min 

algorithm that select and assigns task with maximum 

completion time to resource that produces minimum 

execution time. Though the results of their study suggest 

a reduction in makespan, however the study was not 
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applied in a real cloud computing environment. Also, the 

result was only limited to makespan analysis while the other 

parameters were left out.  

Similarly, in (Kaur and Ghumman, 2014), hybrid 

improved Max-Min Ant algorithms for load balancing 

and makespan optimisation by selecting and assigning 

tasks based on their execution time was proposed. 

Assigning tasks based on execution time reduces the load 

imbalance, but increases the finishing time (makespan). 

Dehkordi and Bardsiri (2015), a compounding 

algorithm built in the conditions of both Min-Min and 

Sufferage algorithms called Task-Aware Scheduling 

Algorithm (TASA) was proposed. The aim of the 

proposed algorithm was to map tasks with odd number 

on a machine using Min-Min strategy and tasks with 

even number on machine using Sufferage strategy. 

The algorithm was able to achieve higher performance by 

reducing response time of scheduling task to a resource. 

However, more emphasis was placed on the number of 

tasks available to be scheduled instead of placing emphasis 

on both tasks and resources. Moreover, the parameters for 

benchmarking was only limited to makespan. 

Also, Job scheduling approach in cloud computing 

based on genetic algorithm on load balancing of virtual 

machines was proposed in (Hu et al., 2010). The paper 

took advantage of generic algorithm and suggested for a 

historical data and current data state to be computed in 

advance to determine the solution that will have 

influence on the current Virtual Machine and the 

resources to be deployed on every physical node to allow 

for the selection of any deployment mode that will have 

least influence on the system to be selected. The authors 

implemented the algorithm on open-source Virtual 

Machine management platform called OpenNebula 

(2010) to analyse the load balancing effect and the 

migration cost on the systems. The advantages of the 

algorithm were that; it achieves the best result of 

balancing load fairly and reduces the migration cost of 

scheduling. Unfortunately, the delay in migrating tasks 

to VM which may itself waste the processing 

bandwidth was not address.  

Moreover (Bhoi and Ramanuj, 2013; Santhosh and 

Manjaiah, 2014) improved on Max-Min algorithm. 

Bhoi and Ramanuj (2013), an Enhanced Max-Min 

algorithm was proposed. The mandate of the proposed 

algorithm was to assign tasks with an average execution 

time to resources that can best give minimum completion 

time. Santhosh and Manjaiah (2014) proposed an 

improved task scheduling algorithm based on Max-Min 

algorithm which selects and assigns tasks that are greater 

than average execution time to a resource that gives 

minimum completion time. Though all these algorithms 

have improved the performance of the standard Max-

Min algorithm, nevertheless, the issues of task priority of 

scientific workflow and scalability were left out, which is 

the more reason why this research needs to be conducted. 

Table 1 displays abbreviations used in this research. 

 
Table 1: Abbreviations and its definitions 

Abbreviations Definition 

Expa-max-min Expanded max-min 

CTij Completing time i 

ETij Execution time i on resource j 

RT Ready time 

VMs Virtual machines  

MaxExtn Maximum execution 

MinExtn Minimum execution  

MaxClt Maximum cloudlet 

MinClt Minimum cloudlet  

 
Existing Scheduling Algorithms in Cloud 
Computing 

There are many scheduling algorithms in cloud 

computing environment, but for the purpose of 

comparison, we will discuss Max-Min and Min-Min 

algorithms. 

Max-Min Algorithm 

This algorithm is designed to schedule task in cloud 

by considering the completion time of every task in the 

meta-task. In Max-Min algorithm, priority is placed on 

tasks that have maximum completion time. The 

algorithm selects and assigns tasks with maximum 

completion time to resource that produces its minimum 

execution time. Max-Min algorithm first computes the 

completion time (CTij) = etij + rtj; (for each tasks in all 

VMs) to find tasks with maximum completion time. Then 

it starts by assigning those tasks with maximum 

completion time to resources that gives minimum 

execution time first, (El-Kenawy et al., 2012; Kanani and 

Maniyar, 2015). Figures 4 and 5 present the Pseudo code 

and flowchart of Max-Min algorithm.  
 

Standard Max-Min Algorithm 

For all submitted tasks in the meta-task Ti 

 For all resource Rj 

  Calculate completion time (Ctij)=etij+rtj; (for each task in  

 all VMs) 

 Find a task with maximum completing time 

 Assign the task to a resource that gives minimum  

 completion time 

 End if 

 Update the meta-tasks 

 Update ready time (rtj) of the selected Rj 

 Update ctij for all Ti 

End while  

Fig. 4: Pseudo code of Max-Min algorithm 
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Fig. 5: Flowchart of Max-Min Algorithm 

 

Min-Min Algorithm 

Min-Min scheduling algorithm was built on a concept 
of selecting and assigning task with minimum 
completion time to resource that has the capability to 
execute them within a shorter period of time. This 
algorithm has two steps to consider when scheduling 
task. The first step is to compute all the available 
resource on metatask to find the completion time (CTij) = 
etij + rtj; (for each tasks in all VMs) and the second step 
involve selecting task with minimum expected 
completion time to a corresponding resource that can 
execute it faster, (Sharma and Tyagi, 2017; Etminani and 
Naghibzadeh, 2007; Anousha and Ahmadi, 2013). The 
pseudo code and the flowchart of Min-Min algorithm are 
displayed in Fig. 6 and 7. 
 

Standard Min-Min Algorithm 

For all submitted tasks in the meta-task Ti 

 For all resource Rj 

 Calculate completion time (Ctij)=etij+rtj; (for each task in  

 all VMs) 

 Find a task with minimum completing time 

 Assign the task to a resource that gives minimum  

 completion time 

 End if 

 Update the meta-tasks 

 Update ready time (rtj) of the selected Rj 

 Update ctij for all Ti 

End while  

Fig. 6: Pseudo code of standard Min-Min algorithm 

 

 

 

 Find a task with maximum completion time and 

Assign to resource that gives minimum execution time 

Update the ready time of the sources 

 No 

 

 Is meta set 

empty? 

 Yes 

End 

Start 

For all task in the meta-task, calculate the 

completion time (CTij) = etij + rtj) 
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Fig. 7: Flowchart of Min-Min algorithm 

 

Proposed Method (Expa-Max-Min) 

The main challenges faced by the standard Max-

Min algorithm are the production of high makespan, 

imbalanced loads and the high priority it gives in 

favour of cloudlets with maximum completion time in 

the expense of cloudlets with minimum completion 

time. To solve these, we proposed a method called 

Expanded Max-Min (Expa-Max-Min) algorithm. It is 

an expansion of the standard Max-Min algorithm that 

reduces the priority given to workflow cloudlets with 

maximum execution time. Expa-Max-Min allows both 

workflow cloudlets with maximum and minimum 

execution time to be selected and assigned to a 

resource that can execute it within a shorter period of 

time. Expa-Max-Min algorithm first calculates the 

completion time of all the cloudlets in the cloudletList 

to find cloudlets with minimum and maximum 

execution time, then it sorts and queue the cloudlets in 

two queues based on their execution times. The first 

queue will be for cloudlets with maximum execution 

time and the second queue will be for cloudlets with 

minimum execution time. First the algorithm will 

select and assign a cloudlet from maximum cloudlets 

(MaxClt) queue to a resource that produces its 

minimum completion time and then followed by the 

minimum cloudlets (MinClt) queue or else it will 

continue with the maximum cloudlets. The pseudo 

code and the flowchart of Exp-Max-Min algorithm are 

presented in Fig. 8 and 9. 

 Find a task with minimum completion time and assign 

resource that gives minimum execution time 

 Start 

 For all task in the meta-task, calculate the 

completion time (CTij) = etij + rtij) 

 Update the ready time of the sources 

 Is meta set 

empty 

 
Yes 

 End 

 
No 
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Proposed algorithm (Expa-Max-Min algorithm) 

 While there are cloudlets in the cloudletList 

 for all submitted cloudlets, 

 for all VMs; vmj 

 calculate the completion time (CTij)=etij+rtj; of  

 all VMs 

  Sort the cloudlets with maximum execution  

 time (MaxExtn) and queue it 

 Sort the cloudlets with minimum execution  

 time (MinExtn) and queue it 

 Select a cloudlet in the MaxExtn queue and  

 assign to a resource that produce it minimum  

 completion time for execution  

 Select a cloudlet in the MinExtn queue and assign  

 to a resource that produces it minimum  

 completion time for execution 

 Else continue with MaxExtn queue /MinExtn queue  

 Update CloudletList 

 Update ready time (rtj) of the selected vmRj 

 update Ctij for call ci 

 End while 
 

Fig. 8: Pseudo code for Expa-Max-Min algorithm 
 

 
 

Fig. 9: Flowchart of the proposed algorithm (Expa-Max-Min) 

 
For all cloudlets and VMs, calculate the completion time  

(CTij) = etij + rti (for each cloudlet in all VMs) 

 
Start 

 

 

Sort the cloudlets with MaxExtn time and queue it. 
And, 
 

Sort the cloudlets with MinExtn time in another queue 

 
Assign a cloudlet from MaxExtn queue to a resource that gives minimum compltetion, 

 
Then 
 

Assign a cloudlet from MinExtn queue to a resource that gives minimum compltetion, 
 

 Update the cloudletList and the ready time of the VMs  

 
Is 

cloudletList 

Empty 
  Yes 

 No 

End 
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Results and Analysis 

Our proposed algorithm, Expa-Max-Min, is 

implemented using cloudsim, the simulation is run on 

Intel® core i3, 500GB HDD and 4GB RAM on 64 bit 

windows 8 operating system. We considered three 

workflows such as Inspiral, CyberShake and Sipht. The 

processing speed of each workflow cloudlet is measured 

in Million Instructions Per Second (MIPS). Table 2 gives 

a detailed setting of the simulator parameters whereas 

Table 3-5 gives scenarios involved in using each of the 

three (3) workflows selected in this research. 
 
Table 2: Simulation parameters Setting 

Entities  Number of jobs  
Workflows Inspiral, 30, 50, 100, 1000 
 CyberShake 
  
 Sipht 30, 60, 100, 1000 
Data centre  1 
Virtual machines  10 
Data centre broker  1 

 
Table 3: Inspiral workflows distribution  

Scenarios Inspiral workflow  Data set 

1 Inspi-light Inspiral with light workflows load 30 
2 Inspi-median Inspiral with median workflows load  50 
3 Inspi-large Inspiral with large workflows load 100 
4 Inspi-heavy Inspiral with heavy workflows load 1000 

 

Table 4: CyberShake workflows distribution 

Scenarios CyberShake workflow  Data set 

1 Cyber-light CyberShake with light workflows load  30 
2 Cyber-median  CyberShake with median workflows load  50 
3 Cyber-large CyberShake with large workflows load  100 

4 Cyber-heavy CyberShake with heavy workflows load  1000 

 

Table 5: Sipht workflows distribution 

Scenarios Sipht workflow  Data set 

1 Sipht-light Sipht with light workflows load  30 
2 Sipht-median  Sipht with median workflows load  60 
3 Sipht-large Sipht with large workflows load  100 
4 Sipht-heavy Sipht with heavy workflows load  1000 

 

Performance Measures  

There are various standard performance measurement 

used in cloud computing to measure, compare and 

benchmark the performance of every scheduling 

algorithm. In this research, we used three performance 

measures such as: 

Load Balancing Metrics  

Load balancing is the process by which cloudlets are 

distributed evenly in the cloud computer environment to 

avoid traffic and allow free flow of cloud resource on all 

network nodes. Maipan-uku et al. (2016; Cao et al., 2005), 

load balancing is calculated as in Equations 1 and 2: 

 

1 *100
d

Avgru
β

 
= − 
 

 (1) 

 

The deviation (d) is defined as: 

 
2

1
( )

n

i i
Avgru ru

d
n

=
−

=

∑
 (2) 

The results are analysed based on the four scenarios 
given in Table 3, 4 and 5, with different algorithms like 
Expa-Max-Min, Max-Min and Min-Min. Figure 10 
presented results on the performance of the evaluated 
proposed Expa-Max-Min, Max-Min and Min-Min 
algorithms with regards to load balancing using 
Inspiral. The proposed Expa-Max-Min algorithm gives 
remarkable results in terms of load balancing efficiency 
at all the four scenarios as compared to Max-Min and 
Min-Min. This is because Expa-Max-Min was able to 
do away with cloudlets priority by allowing both 
cloudlets with maximum and minimum execution time 
to be scheduled concurrently. 

Figure 11 and 12 also illustrate results of load balancing 
using CyberShake and Sipht for each of the evaluated 
algorithms. Based on the implemented results, it has been 
observed that, at every execution of cloudlet, the load 
balancing of the proposed algorithm remains more 
balanced than the standard Max-Min and Min-Min 
algorithms, this is because the proposed algorithm was 
able to assign all the cloudlets to the correct resources 
properly. Moreover, the comparison also shows that, 
Min-Min algorithm has produced good values of load 
balancing in Fig. 11 and 12 at all the four scenarios 
than Max-Min algorithm. 
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Fig. 10: Load balancing of different algorithms using Inspiral 
 

 
 

Fig. 11: Load balancing of different algorithms using CyberShake 
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Fig. 12: Load balancing of different algorithms using Sipht 
 

Makespan Metrics 

Makespan is the total amount of time that cloudlets 

spend during execution. 
Figures 13-15 present results in respect of makespan 

performances produced by different algorithms using 
different workflows such as Inspiral, CyberShake and 
Sipht respectively. Results in Fig. 13 shows that Expa-
Max-Min algorithm is outperforming  
 

the standard Max-Min and Min-Min by producing lower 
values of makespan in every execution of cloudlet at all 
the four scenarios. In Fig. 14 and 15, Expa-Max-Min 
was able to schedule all the resources on all the available 
Virtual Machines at a reduced makespan in all the 
scenarios except at scenario 4 of Sipht (Sipht-heavy) that 
Min-Min algorithm performed slightly better than the 
proposed algorithm, this is because Min-Min was able to 
assign all the cloudlets at that stage properly.

 
 

 

 
Fig. 13: Makespan of different algorithms using inspiral 
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Fig. 14: Makespan of different algorithms using CyberShake 
 
 
 

 
 
 

Fig. 15: Makespan of different algorithms using Sipht 

 

Cost Metrics 

Cost is referred to as the amount needed to be spent 

on scheduling a cloudlet in a cloud computing 

environment. The cost takes in to consideration of the 

Job size, cost of network, allocation size of the job, cost 

of executing a cloudlet, bandwidth, resource scheduling 

speed and cost of a data center as simplified in Table 6. In  

 
(Kamarajapandian and Chitra, 2016), the cost of scheduling 
in cloud is calculating using Equation 3 to 7: 
 
i. Network Transmission Time 
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( )

( )

S
ij

i

J MI
ETC

RSS MIPS
=   (4) 

 
iii. Expected Waiting Time 

 

si

ij

i

A
EWT

RSS
=∑   (5) 

iv. Overall Cloudlet Completion Time 
 
OCCT NTT BTC BWT= + +   (6) 
 

v. Overall Cost for Cloudlet Completion 
 

( ) ( ) ( )ij i ij Ci ij i ijOCCC CN NTT CE ETC CDC EWT
=

× + × + ×   (7)

 

Table 6: Cost computation variables description 

Variable  Description Inspiral CyberShake Sipht 

Js Job Size 1180 1180 1190  
CNi Cost of network  
Asi Allocated Size of job i 
CEci Cost of execution cloudlet i 
Bwi Bandwidth 
RSSi Resource scheduling speed 
CDCi Cost of Data Center 

 

Figures 16, 17 and 18 depicts the performance analysis of 
average executional cost with respect to the job size of 1180 
workflows of Inspiral and CyberShake and 1190 workflows 
of Sipht. The results in the figures shows that Expa-Max-
Min (proposed algorithm) has proven beyond reasonable 

doubt that it is more cost effective in scheduling cloudlets in 
all the three workflows used as compared to Max-Min and 
Min-Min algorithms, this is because Expa-Max-Min is able 

to boost up cloud scheduling processes by simultaneously 
selecting and assigning cloudlets with both maximum and 
minimum execution time concurrently at a reduced cost. On 
the other hand, Max-Min, one of the benchmarked 
algorithms has also performed better than the standard Min-

Min algorithm at almost all the three workflows used except 
at CyberShake that Min-Min performed better than Max-
Min algorithm. 

 

 

 
 

Fig. 16: Comparison of average executional cost of different algorithms using Inspiral 
 
 

 
 

Fig. 17: Comparison of average executional cost of different algorithms using CyberShake 
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Fig. 18: Comparison of average executional Cost of Different Algorithms using Sipht 

 

Conclusion 

In this study, we identified three major challenges in 

the standard Max-Min algorithm, which includes high 

cost of scheduling workflows, high makespan and high 

priority given to workflows with maximum Execution 

time. In order to tackle these problems, we presented a 

state of the arc algorithm known as an Expanded Max-

Min (Expa-Max-Min) Algorithm.  

Our algorithm (Expa-Max-Min) was designed and 

simulated on cloud simulation platform called cloudsim 

for the purpose of minimising the makespan value, cost 

of scheduling scientific workflow and to balance load 

effectively in a dynamic cloud computing environment.  

The proposed algorithm is able to produce good 

quality solutions for all the cases, schedule both workflow 

cloudlets with maximum and minimum execution time 

concurrently without giving priority to workflow cloudlets 

with maximum execution time as always in the case of the 

standard Max-Min algorithm. To further prove the 

effectiveness of the proposed Expa-Max-Min algorithm, 

we experimented the results on a cloudsim simulator. The 

simulation results shows that, our proposed algorithm has 

the ability to balance load fairly, producing better 

makespan and average executional cost when compared 

with the standard Max-Min and Min-Min algorithms. 
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