

© 2018 James Kok Konjaang, Fahrul Hakim Ayob and Abdullah Muhammed. This open access article is distributed under a

Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Cost Effective Expa-Max-Min Scientific Workflow Allocation

and Load Balancing Strategy in Cloud Computing

James Kok Konjaang, Fahrul Hakim Ayob and Abdullah Muhammed

Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Malaysia

Article history

Received: 22-09-2017
Revised: 26-12-2017
Accepted: 13-01-2018

Corresponding Author:
James Kok Konjaang
Faculty of Computer Science
and Information Technology,
Universiti Putra Malaysia,
Malaysia
Email: larisco10@yahoo.com
jameskonjangkok@bpoly.edu.gh

Abstract: The rise in demand for cloud resources (network, hardware and
software) requires cost effective scientific workflow scheduling algorithm
to reduce cost and balance load of all jobs evenly for a better system
throughput. Getting multiple scientific workflows scheduled with a reduced
makespan and cost in a dynamic cloud computing environment is an
attractive research area which needs more attention. Scheduling multiple
workflows with the standard Max-Min algorithm is a challenge because of
the high priority given to task with maximum execution time first. To
overcome this challenge, we proposed a new mechanism call Expanded
Max-Min (Expa-Max-Min) algorithm to effectively give equal opportunity
to both cloudlets with maximum and minimum execution time to be
scheduled for a reduce cost and time. Expa-Max-Min algorithm first
calculates the completion time of all the cloudlets in the cloudletList to
find cloudlets with minimum and maximum execution time, then it sorts
and queue the cloudlets in two queues based on their execution times.
The algorithm first select a cloudlet from the cloudletList in the
maximum execution time queue and assign it to a resource that produces
minimum completion time, while executing cloudlets in the minimum
execution time queue concurrently. The experimented results demonstrats
that our proposed algorithm, Expa-Max-Min algorithm, is able to produce
good quality solutions in terms of minimising average cost and makespan
and able to balance loads than Max-Min and Min-Min algorithms.

Keywords: Cloud Computing, Workflows, Expa-Max-Min, Load

Balancing, Makespan and Cost

Introduction

The evolution of cloud computing has taken place in
various phases which include grid computing, utility
computing, software as a service and now cloud
computing (Sharma and Pariha, 2014). Cloud computing
is classified as a type of grid computing, which is aimed
at allocating resources properly to address the quality of
service and reliability problems facing information
dissemination and data storage (Sharma and Pariha,
2014; Hamdaqa and Tahvildari, 2012). NIST defined
cloud computing as “a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of
configurable computing resources like, networks, servers,
storage, applications and other services” (Mell and Grance,
2011). Cloud technology has a broader network range that
enables cloud resources to be available anywhere in the
world by the cloud service providers to consumers on
demand. Consumers or users all over the world can access
these resources through the use of their digital devices such
as laptops, smart phones, tablets, personal computers etc.,

on pay-as-you-go model or other models through cloud
standard mechanisms (Mell and Grance, 2011).

Though cloud computing has gain a lot of successes

since its inception, but scientific workflow allocation

with the standard Max-Min algorithm in cloud is still a

major issue in research because it is unable to select and

assign both cloudlets with maximum execution time and

minimum execution time concurrently. Scientific

workflow allocation is described as a method used to get

resources channeled to cloud users at a reduced cost and

time. In scheduling, a workflow task has to be selected

and submitted to the resource manager and then, the

submitted workflow task will be put in a queue if there

are other workflow tasks with higher priority than it,

until it is time for it to be scheduled (Saraswathi et al.,

2015) as displayed in Fig. 1. A workflow task may be

required to wait in a queue for a long or short period of

time depending on some scheduling factors which

include system capacity to execute, task priority, system

load and requested resources availability.

James Kok Konjaang / Journal of Computer Science 2018, 14 (5): 623.638

DOI: 10.3844/jcssp.2018.623.638

624

Fig. 1: Workflow task scheduling in cloud

The focus of this paper is on how to achieve the
control of workload, makespan and cost on cloud
resources by ensuring that all the workloads on cloud
resources are distributed properly to allow free flow of
cloudlets on all the network nodes and to guarantee that,
all the resources are allocated to cloud users at a lower
cost. This will optimise the use of scientific workflows
in cloud computing to ensure that multiple resources are
made available to cloud users at a reduced cost and time.
To achieve this, we proposed a mechanism called Expa-
Max-Min algorithm as a way to ensure better load
balancing, makespan and cost of executing cloudlets on
cloud resources in cloud computing environment. The
algorithm takes the advantages of the standard Max-Min
algorithm by selecting and assigning cloudlets that
requires minimum executing time in the second queue of
the resources alongside the original Max-Min steps as
well in the first queue of the resource.

We incorporated the proposed algorithm (Expa-Max-
Min) into a simulation environment called cloudsim.
Cloudsim is a simulation toolkit that allows for the
modeling and simulation of all cloud applications and
systems for comparison of result in cloud computing
environment (Calheiros et al., 2011). The algorithm is
implemented to guarantee that all workloads on cloud
resources are distributed evenly on all the available
network nodes to avoid traffic during cloudlets
distribution and also to reduce the high priority in the
standard Max-Min algorithm where cloudlets with
maximum execution time must finish execution before
executing those with minimum execution time. Expa-

Max-Min algorithm first calculates the completion time
of all the cloudlets in the cloudletList to find cloudlets
with minimum and maximum execution time, then it
sorts and queue the cloudlets in two queues based on
their execution times. The algorithm first selects a
cloudlet from the cloudletList in the maximum execution
time queue and assigns it to a resource that produces
minimum execution time, followed by cloudlet in the
minimum execution time queue. The proposed algorithm
is able to boost up cloud scheduling processes by
simultaneously selecting and assigning cloudlets with both
maximum and minimum execution time concurrently at a
reduced cost, makespan and balancing loads fairly.

Load Balancing

The increasing demand for cloud applications
coupled with the increased in web traffic daily, where
millions of cloud users are queued and demanding for
cloud services on different servers has made load
balancing an interesting topic to be investigated. Load
balancing is a method used in cloud and in distributed
computing to mediate access to client requests to servers
by distributing cloudlets evenly across multiple servers,
(Samarsinh and Deshpande, 2014). The purpose of
balancing load on cloud is to ensure that workloads on
cloud resources are distributed evenly on all the available
network nodes to avoid traffic during cloudlets
distribution. Also, load balancing in cloud helps cloud
users and enterprises to manage their application
effectively for higher performance at a lower cost. Figure
2 displays the processes of load balancing in Cloud.

Workflow task arrival

Scheduler

Workflow engine

 Workflow
task queue

No queue

 Select base on
the algorithm

 Cloud resource
broker

 Client 1

Client 2

Client 3

Assign
workflow task

James Kok Konjaang / Journal of Computer Science 2018, 14 (5): 623.638

DOI: 10.3844/jcssp.2018.623.638

625

Fig. 2: The processes of load balancing in cloud

Scientific Workflows

Scientific Workflows allocation and Scheduling is

a procedure adapted to manage the execution of

interdependent workflow tasks on a distributed pool

of resources. This procedure ensures that appropriate

resources are identified and distributed on all the

available VMs for a successful execution of all tasks

to meet the demands of cloud users (Prathibha et al.,

2014). The three types of scientific workflows used in

this research are:

• Laser Interferometer Gravitational Wave Observatory

(LIGO) (Silva et al., 2014), also known as Inspiral

Workflow is a data-intensive workflow designed to

monitor, detect and capture gravitational waves that

is produced through various activities in the earth.

The main goal of LIGO Inspiral is to identify and

give measurement of gravitational waves forecasted

by general relativity (Einstein's theory of gravity), in

which gravity is described as due to the curvature of

the fabric of time and space (Berriman et al., 2004;

Mehta and Gideon, 2014)

• CyberShake: This is a fraction of Southern

California Earthquake Center’s (SCEC) (Graves

et al., 2011), which uses 3D wave detector to

determine source and wave that allows it to

compute Probabilistic Seismic Hazard curves for

geographic sites in order to simulate, broadcast

and to forecast the movement of ground for the

production of accurate and reliable environmental

estimates rather than relying on the use of empirical-

based ground motion methods (Silva et al., 2014;

Cpedia, 2016)

• SIPHT: This is a scientific workflow application

from the bioinformatics project at Harvard, which is

suitable for conducting a broader search for non-

translated RNAs (sRNAs) for the control of several

processes like secretion or virulence in bacteria

(Mehta and Gideon, 2014; Livny, 2016). Figure 3

displays a summarized Scientific Workflows.

James Kok Konjaang / Journal of Computer Science 2018, 14 (5): 623.638

DOI: 10.3844/jcssp.2018.623.638

626

Fig. 3: Scientific workflows

Related Work
The focus of scientific workflow scheduling in cloud

computing is to ensure that multiple resources are made

available to cloud users at their door steps. This is to

ensure that, cloud resources are allocated fairly to cloud

users at a reduced cost and time. Scientific workflows

have been lengthily used by many researchers as a means

of exploring into the parallel distribution of cloud

computing applications on distributed systems such as

cluster, grids and clouds (Talia, 2013; Gannon et al.,

2007; Silva et al., 2014). Scientific workflow allocation

and Scheduling is defined in (Prathibha et al., 2014) as

a process use to map, manage and execute

interdependent workflow cloudlets effectively on a

distributed pool of cloud resources to ensure that every

available cloud resources is distributed efficiently and

fairly on all network notes.
There are many scheduling algorithms that exist in

distributed computing, most of which are applicable in
the cloud environment, but their performance is
questionable in relation to cost, makespan and load
balancing, (Thomas et al., 2014). These algorithms include

Max-Min, (Mao et al., 2014; Kaur and Luthra, 2014),

Min-Min (Liu et al., 2013), Game Theoretic (Duan et al.,

2014; Wei et al., 2010), FCFS (Marphatia et al., 2013),

Round Robin (Agarwal and Rastogi, 2014). Though

these algorithms have brought some improvement on

resource scheduling in cloud computing, but they require

more improvement to transform how goods and services

are sold and bought in today’s competitive environment

(Wei et al., 2010).

Max-Min is the most commonly used scheduling

algorithm that assigns tasks to resources based on the

priority of the tasks. It gives high priority to tasks with

high completing time by selecting and assigning them to

resources first before considering any other task (Brar and

Rao, 2015). Max-Min has been considered as the most

proactive algorithm in scheduling because of its ability

to assign multiple tasks to a resource at a reduced time

and cost. Much work has been done by various

researches in a quest to improve the performance of

Max-Min scheduling algorithm. For example, Li et al.,

(2014) proposed for an improved Max-Min algorithm for

cloud computing. The idea behind the improved

algorithm was to allow task with maximum execution

time to be assigned to resources that produces minimum

completion time rather than the traditional Max-Min

algorithm that select and assigns task with maximum

completion time to resource that produces minimum

execution time. Though the results of their study suggest

a reduction in makespan, however the study was not

Node Dax: 30, 50, 100 and 1000 Node Dax: 30, 50, 100 and 1000 Node Dax: 30, 60, 100 and 1000

Inspiral CyberShake Sipht

Scientific Workflows

James Kok Konjaang / Journal of Computer Science 2018, 14 (5): 623.638

DOI: 10.3844/jcssp.2018.623.638

627

applied in a real cloud computing environment. Also, the

result was only limited to makespan analysis while the other

parameters were left out.

Similarly, in (Kaur and Ghumman, 2014), hybrid

improved Max-Min Ant algorithms for load balancing

and makespan optimisation by selecting and assigning

tasks based on their execution time was proposed.

Assigning tasks based on execution time reduces the load

imbalance, but increases the finishing time (makespan).

Dehkordi and Bardsiri (2015), a compounding

algorithm built in the conditions of both Min-Min and

Sufferage algorithms called Task-Aware Scheduling

Algorithm (TASA) was proposed. The aim of the

proposed algorithm was to map tasks with odd number

on a machine using Min-Min strategy and tasks with

even number on machine using Sufferage strategy.

The algorithm was able to achieve higher performance by

reducing response time of scheduling task to a resource.

However, more emphasis was placed on the number of

tasks available to be scheduled instead of placing emphasis

on both tasks and resources. Moreover, the parameters for

benchmarking was only limited to makespan.

Also, Job scheduling approach in cloud computing

based on genetic algorithm on load balancing of virtual

machines was proposed in (Hu et al., 2010). The paper

took advantage of generic algorithm and suggested for a

historical data and current data state to be computed in

advance to determine the solution that will have

influence on the current Virtual Machine and the

resources to be deployed on every physical node to allow

for the selection of any deployment mode that will have

least influence on the system to be selected. The authors

implemented the algorithm on open-source Virtual

Machine management platform called OpenNebula

(2010) to analyse the load balancing effect and the

migration cost on the systems. The advantages of the

algorithm were that; it achieves the best result of

balancing load fairly and reduces the migration cost of

scheduling. Unfortunately, the delay in migrating tasks

to VM which may itself waste the processing

bandwidth was not address.

Moreover (Bhoi and Ramanuj, 2013; Santhosh and

Manjaiah, 2014) improved on Max-Min algorithm.

Bhoi and Ramanuj (2013), an Enhanced Max-Min

algorithm was proposed. The mandate of the proposed

algorithm was to assign tasks with an average execution

time to resources that can best give minimum completion

time. Santhosh and Manjaiah (2014) proposed an

improved task scheduling algorithm based on Max-Min

algorithm which selects and assigns tasks that are greater

than average execution time to a resource that gives

minimum completion time. Though all these algorithms

have improved the performance of the standard Max-

Min algorithm, nevertheless, the issues of task priority of

scientific workflow and scalability were left out, which is

the more reason why this research needs to be conducted.

Table 1 displays abbreviations used in this research.

Table 1: Abbreviations and its definitions

Abbreviations Definition

Expa-max-min Expanded max-min

CTij Completing time i

ETij Execution time i on resource j

RT Ready time

VMs Virtual machines

MaxExtn Maximum execution

MinExtn Minimum execution

MaxClt Maximum cloudlet

MinClt Minimum cloudlet

Existing Scheduling Algorithms in Cloud
Computing

There are many scheduling algorithms in cloud

computing environment, but for the purpose of

comparison, we will discuss Max-Min and Min-Min

algorithms.

Max-Min Algorithm

This algorithm is designed to schedule task in cloud

by considering the completion time of every task in the

meta-task. In Max-Min algorithm, priority is placed on

tasks that have maximum completion time. The

algorithm selects and assigns tasks with maximum

completion time to resource that produces its minimum

execution time. Max-Min algorithm first computes the

completion time (CTij) = etij + rtj; (for each tasks in all

VMs) to find tasks with maximum completion time. Then

it starts by assigning those tasks with maximum

completion time to resources that gives minimum

execution time first, (El-Kenawy et al., 2012; Kanani and

Maniyar, 2015). Figures 4 and 5 present the Pseudo code

and flowchart of Max-Min algorithm.

Standard Max-Min Algorithm

For all submitted tasks in the meta-task Ti

 For all resource Rj

 Calculate completion time (Ctij)=etij+rtj; (for each task in

 all VMs)

 Find a task with maximum completing time

 Assign the task to a resource that gives minimum

 completion time

 End if

 Update the meta-tasks

 Update ready time (rtj) of the selected Rj

 Update ctij for all Ti

End while

Fig. 4: Pseudo code of Max-Min algorithm

James Kok Konjaang / Journal of Computer Science 2018, 14 (5): 623.638

DOI: 10.3844/jcssp.2018.623.638

628

Fig. 5: Flowchart of Max-Min Algorithm

Min-Min Algorithm

Min-Min scheduling algorithm was built on a concept
of selecting and assigning task with minimum
completion time to resource that has the capability to
execute them within a shorter period of time. This
algorithm has two steps to consider when scheduling
task. The first step is to compute all the available
resource on metatask to find the completion time (CTij) =
etij + rtj; (for each tasks in all VMs) and the second step
involve selecting task with minimum expected
completion time to a corresponding resource that can
execute it faster, (Sharma and Tyagi, 2017; Etminani and
Naghibzadeh, 2007; Anousha and Ahmadi, 2013). The
pseudo code and the flowchart of Min-Min algorithm are
displayed in Fig. 6 and 7.

Standard Min-Min Algorithm

For all submitted tasks in the meta-task Ti

 For all resource Rj

 Calculate completion time (Ctij)=etij+rtj; (for each task in

 all VMs)

 Find a task with minimum completing time

 Assign the task to a resource that gives minimum

 completion time

 End if

 Update the meta-tasks

 Update ready time (rtj) of the selected Rj

 Update ctij for all Ti

End while

Fig. 6: Pseudo code of standard Min-Min algorithm

 Find a task with maximum completion time and

Assign to resource that gives minimum execution time

Update the ready time of the sources

 No

 Is meta set

empty?

 Yes

End

Start

For all task in the meta-task, calculate the

completion time (CTij) = etij + rtj)

James Kok Konjaang / Journal of Computer Science 2018, 14 (5): 623.638

DOI: 10.3844/jcssp.2018.623.638

629

Fig. 7: Flowchart of Min-Min algorithm

Proposed Method (Expa-Max-Min)

The main challenges faced by the standard Max-

Min algorithm are the production of high makespan,

imbalanced loads and the high priority it gives in

favour of cloudlets with maximum completion time in

the expense of cloudlets with minimum completion

time. To solve these, we proposed a method called

Expanded Max-Min (Expa-Max-Min) algorithm. It is

an expansion of the standard Max-Min algorithm that

reduces the priority given to workflow cloudlets with

maximum execution time. Expa-Max-Min allows both

workflow cloudlets with maximum and minimum

execution time to be selected and assigned to a

resource that can execute it within a shorter period of

time. Expa-Max-Min algorithm first calculates the

completion time of all the cloudlets in the cloudletList

to find cloudlets with minimum and maximum

execution time, then it sorts and queue the cloudlets in

two queues based on their execution times. The first

queue will be for cloudlets with maximum execution

time and the second queue will be for cloudlets with

minimum execution time. First the algorithm will

select and assign a cloudlet from maximum cloudlets

(MaxClt) queue to a resource that produces its

minimum completion time and then followed by the

minimum cloudlets (MinClt) queue or else it will

continue with the maximum cloudlets. The pseudo

code and the flowchart of Exp-Max-Min algorithm are

presented in Fig. 8 and 9.

 Find a task with minimum completion time and assign

resource that gives minimum execution time

 Start

 For all task in the meta-task, calculate the

completion time (CTij) = etij + rtij)

 Update the ready time of the sources

 Is meta set

empty

Yes

 End

No

James Kok Konjaang / Journal of Computer Science 2018, 14 (5): 623.638

DOI: 10.3844/jcssp.2018.623.638

630

Proposed algorithm (Expa-Max-Min algorithm)

 While there are cloudlets in the cloudletList

 for all submitted cloudlets,

 for all VMs; vmj

 calculate the completion time (CTij)=etij+rtj; of

 all VMs

 Sort the cloudlets with maximum execution

 time (MaxExtn) and queue it

 Sort the cloudlets with minimum execution

 time (MinExtn) and queue it

 Select a cloudlet in the MaxExtn queue and

 assign to a resource that produce it minimum

 completion time for execution

 Select a cloudlet in the MinExtn queue and assign

 to a resource that produces it minimum

 completion time for execution

 Else continue with MaxExtn queue /MinExtn queue

 Update CloudletList

 Update ready time (rtj) of the selected vmRj

 update Ctij for call ci

 End while

Fig. 8: Pseudo code for Expa-Max-Min algorithm

Fig. 9: Flowchart of the proposed algorithm (Expa-Max-Min)

For all cloudlets and VMs, calculate the completion time

(CTij) = etij + rti (for each cloudlet in all VMs)

Start

Sort the cloudlets with MaxExtn time and queue it.
And,

Sort the cloudlets with MinExtn time in another queue

Assign a cloudlet from MaxExtn queue to a resource that gives minimum compltetion,

Then

Assign a cloudlet from MinExtn queue to a resource that gives minimum compltetion,

 Update the cloudletList and the ready time of the VMs

Is

cloudletList

Empty
 Yes

 No

End

James Kok Konjaang / Journal of Computer Science 2018, 14 (5): 623.638

DOI: 10.3844/jcssp.2018.623.638

631

Results and Analysis

Our proposed algorithm, Expa-Max-Min, is

implemented using cloudsim, the simulation is run on

Intel® core i3, 500GB HDD and 4GB RAM on 64 bit

windows 8 operating system. We considered three

workflows such as Inspiral, CyberShake and Sipht. The

processing speed of each workflow cloudlet is measured

in Million Instructions Per Second (MIPS). Table 2 gives

a detailed setting of the simulator parameters whereas

Table 3-5 gives scenarios involved in using each of the

three (3) workflows selected in this research.

Table 2: Simulation parameters Setting

Entities Number of jobs
Workflows Inspiral, 30, 50, 100, 1000
 CyberShake

 Sipht 30, 60, 100, 1000
Data centre 1
Virtual machines 10
Data centre broker 1

Table 3: Inspiral workflows distribution

Scenarios Inspiral workflow Data set

1 Inspi-light Inspiral with light workflows load 30
2 Inspi-median Inspiral with median workflows load 50
3 Inspi-large Inspiral with large workflows load 100
4 Inspi-heavy Inspiral with heavy workflows load 1000

Table 4: CyberShake workflows distribution

Scenarios CyberShake workflow Data set

1 Cyber-light CyberShake with light workflows load 30
2 Cyber-median CyberShake with median workflows load 50
3 Cyber-large CyberShake with large workflows load 100

4 Cyber-heavy CyberShake with heavy workflows load 1000

Table 5: Sipht workflows distribution

Scenarios Sipht workflow Data set

1 Sipht-light Sipht with light workflows load 30
2 Sipht-median Sipht with median workflows load 60
3 Sipht-large Sipht with large workflows load 100
4 Sipht-heavy Sipht with heavy workflows load 1000

Performance Measures

There are various standard performance measurement

used in cloud computing to measure, compare and

benchmark the performance of every scheduling

algorithm. In this research, we used three performance

measures such as:

Load Balancing Metrics

Load balancing is the process by which cloudlets are

distributed evenly in the cloud computer environment to

avoid traffic and allow free flow of cloud resource on all

network nodes. Maipan-uku et al. (2016; Cao et al., 2005),

load balancing is calculated as in Equations 1 and 2:

1 *100
d

Avgru
β

= −

 (1)

The deviation (d) is defined as:

2

1
()

n

i i
Avgru ru

d
n

=
−

=

∑
 (2)

The results are analysed based on the four scenarios
given in Table 3, 4 and 5, with different algorithms like
Expa-Max-Min, Max-Min and Min-Min. Figure 10
presented results on the performance of the evaluated
proposed Expa-Max-Min, Max-Min and Min-Min
algorithms with regards to load balancing using
Inspiral. The proposed Expa-Max-Min algorithm gives
remarkable results in terms of load balancing efficiency
at all the four scenarios as compared to Max-Min and
Min-Min. This is because Expa-Max-Min was able to
do away with cloudlets priority by allowing both
cloudlets with maximum and minimum execution time
to be scheduled concurrently.

Figure 11 and 12 also illustrate results of load balancing
using CyberShake and Sipht for each of the evaluated
algorithms. Based on the implemented results, it has been
observed that, at every execution of cloudlet, the load
balancing of the proposed algorithm remains more
balanced than the standard Max-Min and Min-Min
algorithms, this is because the proposed algorithm was
able to assign all the cloudlets to the correct resources
properly. Moreover, the comparison also shows that,
Min-Min algorithm has produced good values of load
balancing in Fig. 11 and 12 at all the four scenarios
than Max-Min algorithm.

James Kok Konjaang / Journal of Computer Science 2018, 14 (5): 623.638

DOI: 10.3844/jcssp.2018.623.638

632

Fig. 10: Load balancing of different algorithms using Inspiral

Fig. 11: Load balancing of different algorithms using CyberShake

 Load balancing for inspiral

Load balancing for Cybershake

250000

200000

150000

100000

50000

0

Expa-Max-Min

Max-Min

Min-Min

 Inspi-

light
Inspi-
median

Inspi-
large

Inspi-
heavy

6617.51 11762.54

1335.47 1411.09 2399.76 15254.39

15254.52 2399.73 1411.09 1335.47

25000

20000

15000

10000

5000

0

Expa-Max-Min

Min-Min

Max-Min

Cyber-

light
Cyber -

median
Cyber -

large
Cyber -

heavy

471.46 784.89 1200.03 21943.36

462.2 342.63 431.22 1823.92

462.82 343.15 431.79 1824.25

21024.92 227710.67

James Kok Konjaang / Journal of Computer Science 2018, 14 (5): 623.638

DOI: 10.3844/jcssp.2018.623.638

633

Fig. 12: Load balancing of different algorithms using Sipht

Makespan Metrics

Makespan is the total amount of time that cloudlets

spend during execution.
Figures 13-15 present results in respect of makespan

performances produced by different algorithms using
different workflows such as Inspiral, CyberShake and
Sipht respectively. Results in Fig. 13 shows that Expa-
Max-Min algorithm is outperforming

the standard Max-Min and Min-Min by producing lower
values of makespan in every execution of cloudlet at all
the four scenarios. In Fig. 14 and 15, Expa-Max-Min
was able to schedule all the resources on all the available
Virtual Machines at a reduced makespan in all the
scenarios except at scenario 4 of Sipht (Sipht-heavy) that
Min-Min algorithm performed slightly better than the
proposed algorithm, this is because Min-Min was able to
assign all the cloudlets at that stage properly.

Fig. 13: Makespan of different algorithms using inspiral

 200000

180000

160000

140000

120000

100000

80000

60000

40000

20000

0

 Load Balancing for Sipht

Makespan using inspiral

45000

40000

35000

30000

25000

20000

15000

10000

5000

0

Expa-Max-Min

Max-Min

Min-Min

Siphtlight Siphtmedian Siphtlarge Siphtheavy

5546.93

5390.44

5390.73

6708.86

6708.89

17380.27

10651.24

10651.54

Inspi-light Inspi-median Inspi-large Inspi-heavy

Expa-Max-Min (MIPS) Max-Min (MIPS) Min-Min (MIPS)

11669.43 173679.17

72778.47

72778.75

James Kok Konjaang / Journal of Computer Science 2018, 14 (5): 623.638

DOI: 10.3844/jcssp.2018.623.638

634

Fig. 14: Makespan of different algorithms using CyberShake

Fig. 15: Makespan of different algorithms using Sipht

Cost Metrics

Cost is referred to as the amount needed to be spent

on scheduling a cloudlet in a cloud computing

environment. The cost takes in to consideration of the

Job size, cost of network, allocation size of the job, cost

of executing a cloudlet, bandwidth, resource scheduling

speed and cost of a data center as simplified in Table 6. In

(Kamarajapandian and Chitra, 2016), the cost of scheduling
in cloud is calculating using Equation 3 to 7:

i. Network Transmission Time

S
ij

Wi

J
NTT

B
= (3)

ii. Expected Time to Complete

Makespan using CyberShake

Expa-Max-Min

Max-Min

Min-Min

500

400

300

200

100

0

Cyber-light Cyber- median Cyber-large Cyber-heavy

Makespan using Shipt

Sipht-light Sipht- median Sipht-large Sipht-heavy

Expa-Max-Min

Max-Min

Min-Min

45000

40000

35000

30000

25000

20000

15000

10000

5000

0

James Kok Konjaang / Journal of Computer Science 2018, 14 (5): 623.638

DOI: 10.3844/jcssp.2018.623.638

635

()

()

S
ij

i

J MI
ETC

RSS MIPS
= (4)

iii. Expected Waiting Time

si

ij

i

A
EWT

RSS
=∑ (5)

iv. Overall Cloudlet Completion Time

OCCT NTT BTC BWT= + + (6)

v. Overall Cost for Cloudlet Completion

() () ()ij i ij Ci ij i ijOCCC CN NTT CE ETC CDC EWT
=

× + × + × (7)

Table 6: Cost computation variables description

Variable Description Inspiral CyberShake Sipht

Js Job Size 1180 1180 1190
CNi Cost of network
Asi Allocated Size of job i
CEci Cost of execution cloudlet i
Bwi Bandwidth
RSSi Resource scheduling speed
CDCi Cost of Data Center

Figures 16, 17 and 18 depicts the performance analysis of
average executional cost with respect to the job size of 1180
workflows of Inspiral and CyberShake and 1190 workflows
of Sipht. The results in the figures shows that Expa-Max-
Min (proposed algorithm) has proven beyond reasonable

doubt that it is more cost effective in scheduling cloudlets in
all the three workflows used as compared to Max-Min and
Min-Min algorithms, this is because Expa-Max-Min is able

to boost up cloud scheduling processes by simultaneously
selecting and assigning cloudlets with both maximum and
minimum execution time concurrently at a reduced cost. On
the other hand, Max-Min, one of the benchmarked
algorithms has also performed better than the standard Min-

Min algorithm at almost all the three workflows used except
at CyberShake that Min-Min performed better than Max-
Min algorithm.

Fig. 16: Comparison of average executional cost of different algorithms using Inspiral

Fig. 17: Comparison of average executional cost of different algorithms using CyberShake

682.7

682.69

682.68

682.67

682.66

682.65

682.64

682.63

Expa-Max-Min Max-Min Min-Min

222.4

222.35

222.3

222.25

222.2

222.15

222.1

Average cost of scheduling 1180 of CyberShake

Expa-Max-Min Max-Min Min-Min

Average cost of scheduling 1180 of Inspiral

Expa-Max-Min Max-Min Min-Min

Expa-Max-Min Max-Min Min-Min

James Kok Konjaang / Journal of Computer Science 2018, 14 (5): 623.638

DOI: 10.3844/jcssp.2018.623.638

636

Fig. 18: Comparison of average executional Cost of Different Algorithms using Sipht

Conclusion

In this study, we identified three major challenges in

the standard Max-Min algorithm, which includes high

cost of scheduling workflows, high makespan and high

priority given to workflows with maximum Execution

time. In order to tackle these problems, we presented a

state of the arc algorithm known as an Expanded Max-

Min (Expa-Max-Min) Algorithm.

Our algorithm (Expa-Max-Min) was designed and

simulated on cloud simulation platform called cloudsim

for the purpose of minimising the makespan value, cost

of scheduling scientific workflow and to balance load

effectively in a dynamic cloud computing environment.

The proposed algorithm is able to produce good

quality solutions for all the cases, schedule both workflow

cloudlets with maximum and minimum execution time

concurrently without giving priority to workflow cloudlets

with maximum execution time as always in the case of the

standard Max-Min algorithm. To further prove the

effectiveness of the proposed Expa-Max-Min algorithm,

we experimented the results on a cloudsim simulator. The

simulation results shows that, our proposed algorithm has

the ability to balance load fairly, producing better

makespan and average executional cost when compared

with the standard Max-Min and Min-Min algorithms.

Acknowledgement

This research was partially supported by the Universiti

Putra Malaysia [Grant No: GP/2017/9588500].

Author’s Contribution

James Kok Konjaang: Contributed in all
experimentation, simulation design, data-analysis and
writing part of the article.

Fahrul Hakim Ayob: Contributed in the organization

of the study, methodology and writing part of the article.

Abdullah Muhammed: Contributed in the coding of

the algorithm, experimentation, result presentation and

the designing of the research plan.

Ethics

This research is our original contribution and no
ethical issues are involved.

References

Agarwal, A. and R. Rastogi, 2014. Round robin

approach for vm load balancing algorithm in cloud

computing environment. Int. J. Adv. Res. Comput.

Sci. Softw. Eng., 4: 34-39.

Anousha, S. and M. Ahmadi, 2013. An improved min-

min task scheduling algorithm in grid computing.

Proceedings of the International Conference on Grid

and Pervasive Computing, (GPC’13), Springer-

Verlag Berlin Heidelberg, pp: 103-113.

 DOI: 10.1007/978-3-642-38027-3_11

Berriman, G.B., E. Deelman, J.C. Good, J.C. Jacob and

D.S. Katz et al., 2004. Montage: A grid-enabled

engine for delivering custom science-grade mosaics

on demand. SPIE Astronomical Telescopes +

Instrumentation, International Society for Optics and

Photonics, pp: 221-232.

Bhoi, U. and P.N. Ramanuj, 2013. Enhanced max-min

task scheduling algorithm in cloud computing. Int. J.

Applic. Innovat. Eng. Manage., 2: 259-264.

Brar, S.S. and S. Rao, 2015. Optimizing workflow

scheduling using max-min algorithm in cloud

environment. Int. J. Comput. Applic., 124: 44-49.

Average cost of scheduling 1190 of Sipht

525.71

525.705

525.7

525.695

525.69

525.685

525.68

525.675

Expa-Max-Min Max-Min Min-Min

Expa-Max-Min Max-Min Min-Min

James Kok Konjaang / Journal of Computer Science 2018, 14 (5): 623.638

DOI: 10.3844/jcssp.2018.623.638

637

Calheiros, R.N., R. Ranjan, A. Beloglazov, C.A. De Rose

and R. Buyya, 2011. CloudSim: A toolkit for modeling

and simulation of cloud computing environments and

evaluation of resource provisioning algorithms.

Softw. Prac. Experience, 41: 23-50.

 DOI: 10.1002/spe.995

Cao, J., D.P. Spooner, S.A. Jarvis and G.R. Nudd, 2005.

Grid load balancing using intelligent agents. Future

Generat. Comput. Syst., 21: 135-149.

 DOI: 10.1016/j.future.2004.09.032
Cpedia, S.C.E., 2016. CyberShake.

https://scec.usc.edu/scecpedia/CyberShake

Dehkordi, S.T. and V.K. Bardsiri, 2015. TASA: A new

task scheduling algorithm in cloud computing. J.

Advan. Comput. Eng. Technol., 1: 26-32.

Duan, R., R. Prodan and X. Li, 2014. Multi-objective

game theoretic scheduling of bag of-tasks

workflows on hybrid clouds. Cloud Comput., IEEE

Trans., 2: 29-42. DOI: 10.1109/TCC.2014.2303077

El-Kenawy, E.S.T., A.I. El-Desoky and M.F. Al-

Rahamawy, 2012. Extended max-min scheduling

using petri net and load balancing. Int. J. Soft

Comput. Eng.

Etminani, K. and M. Naghibzadeh, 2007. A min-min

max-min selective algorihtm for grid task

scheduling. Proceedings of the 3rd International

Conference in Central Asia, Sep. 26-28, IEEE

Xplore Press, Tashkent, Uzbekistan.
 DOI: 10.1109/CANET.2007.4401694

Gannon, D., E. Deelman, I. Taylor and M. Shields, 2007.

Workflows in e-Science.

Graves, R., T.H. Jordan, S. Callaghan, E. Deelman and

E. Field et al., 2011. CyberShake: A physics-based

seismic hazard model for southern California. Pure

Geophys., 168: 367-381.

 DOI: 10.1007/s00024-010-0161-6

Hamdaqa, M. and L. Tahvildari, 2012. Cloud computing

covered: A research landscape. Adv. Comput., 86:

41-85. DOI: 10.1016/B978-0-12-396535-6.00002-8

Hu, J., J. Gu, G. Sun and T. Zhao, 2010. A scheduling

strategy on load balancing of virtual machine

resources in cloud computing environment.

Proceedings of the 3rd International Symposium on

Parallel Architectures, Algorithms and Programming,

Dec. 18-20, IEEE Computer Society, Washington, DC,

USA, pp: 89-96. DOI: 10.1109/PAAP.2010.65

Kamarajapandian, P. and P. Chitra, 2016. HJSA: A

hierarchical job scheduling algorithm for cost

optimization in cloud computing environment.

Econom. Computat. Econom. Cybernet. Stud. Res.,

50: 281-296.

Kanani, B. and B. Maniyar, 2015. Review on max-min

task scheduling algorithm for cloud computing. J.

Emerg. Technol. Innovat. Res., 2: 782-784.

Kaur, R. and N. Ghumman, 2014. Hybrid improved max

min ant algorithm for load balancing in cloud.

Proceedings of the International Conference on

Communication, Computing and Systems (CCS’14),

pp: 188-191.

 Kaur, R. and P. Luthra, 2014. Load balancing in cloud
system using max-min min and min algorithm.

Proceedings of the National Conference on Emerging

Trends in Computer Technology, (TCT’14), pp: 31-34.

Li, X., Y. Mao, X. Xiao and Y. Zhuang, 2014. An

improved max-min task-scheduling algorithm for

elastic cloud. Proceedings of the International

Symposium on Computer, Consumer and Control,

Jun. 10-12, IEEE Xplore Press, Taichung, Taiwan,
pp: 340-343 DOI: 10.1109/IS3C.2014.95

Liu, G., J. Li and J. Xu, 2013. An improved min-min

algorithm in cloud computing. Proceedings of the

International Conference of Modern Computer

Science and Applications, (CSA’13), Springer,

Berlin, Heidelberg, pp: 47-52.

 DOI: 10.1007/978-3-642-33030-8_8

Livny, J., 2016. SIPHT.

https://pegasus.isi.edu/application-showcase/sipht/

Maipan-uku, J.Y., J.K. Konjaang and A.I. Baba, 2016.

New batch mode scheduling strategy for grid

computing system. Int. J. Eng. Technol., 8: 1314-1323.

Mao, Y., X. Chen and X. Li, 2014. Max-Min task

scheduling algorithm for load balance in cloud

computing. Proceedings of the International

Conference on Computer Science and Information

Technology, Sep. 21-23, Kunming, China, pp:

457-465. DOI: 10.1007/978-81-322-1759-6_53

Marphatia, A., A. Muhnot, T. Sachdeva, E. Shukla and

L. Kurup, 2013. Optimization of FCFS based resource

provisioning algorithm for cloud computing.

Mehta and Gideon, 2014. Workflow examples.

http://www.workflowsim.org/workflows.html

Mell, P. and T. Grance, 2011. The NIST definition of

cloud computing. Technical Report, SP 800-145,

National Institute of Standards and Technology,

Gaithersburg, MD, United States.

OpenNebula, 2010. OpenNebula Software.

http://www.opennebula.org

Prathibha, S., B. Latha and G. Sumathi, 2014.

Monitoring the performance analysis of executing

workflow applications with different resource types

in a cloud environment. Proceedings of the 1st

International Symposium on Big Data and Cloud

Computing Challenges, (CCC’14), pp: 27-28.

Samarsinh, P.J. and P.R. Deshpande, 2014. Load

balancing in cloud computing. Int. J. Sci. Res., 3:

2282-2285.

James Kok Konjaang / Journal of Computer Science 2018, 14 (5): 623.638

DOI: 10.3844/jcssp.2018.623.638

638

Santhosh, B. and D. Manjaiah, 2014. An improved task
scheduling algorithm based on max-min for cloud
computing. Proceedings of the International
Conference on Advances in Computer and
Communication Engineering, Apr. 21-22,
Department of CSE and ISE, Vemana Institute of
Technology, Bengaluru, India, pp: 84-88.

Saraswathi, A., Y. Kalaashri and S. Padmavathi, 2015.
Dynamic resource allocation scheme in cloud
computing. Proc. Comput. Sci., 47: 30-36.

 DOI: 10.1016/j.procs.2015.03.180
Sharma, N. and S. Tyagi, 2017. A comparative analysis

of min-min and max-min algorithms based on the
makespan parameter. Int. J. Adv. Res. Comput. Sci.,
8: 1038-1041.

Sharma, S. and D. Pariha, 2014. A review on resource
allocation in cloud computing. Int. J. Adv. Res.
Ideas Innovat. Technol., 1: 1-7.

Silva, R.F.D., W. Chen, G. Juve, K. Vahi and E.
Deelman, 2014. Community resources for enabling
research in distributed scientific workflows.
Proceedings of the 10th International Conference on
e-Science, Oct. 20-24, IEEE Xplore Press,
Washington, DC, USA, pp: 177-184.

 DOI: 10.1109/eScience.2014.4

Talia, D., 2013. Workflow systems for science: Concepts

and tools. ISRN Softw. Eng., 2013: 1-15.

 DOI: 10.1155/2013/404525

Thomas, A.G. Krishnalal and V.P.J. Raj, 2014. Credit

based scheduling algorithm in cloud computing

environment. Proceedings of the International

Conference on Information and Communication

Technologies, Dec. 3-5, Bolgatty, Island Resort,

Kochi, India.

Wei, G., A.V. Vasilakos, Y. Zheng and N. Xiong, 2010.

A game-theoretic method of fair resource allocation

for cloud computing services. J. Supercomput., 54:

252-269. DOI: 10.1007/s11227-009-0318-1

