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Abstract: Classifying and making decisions are tasks performed by any 

human being in their daily lives. Learning algorithms have been widely 

studied as tools to aid information management, with an objective to 

maximize the generalization capacity. Learning algorithms can be used 

individually or as a committee of machines (ensembles). An ensemble uses 

the solutions provided by several machines, making different combinations 

with them to reach a final decision, such as multi-layer algorithm stacking. 

When combining combination methods, one arrives at a three-layered 

architecture, which is the focus of this article. The objective of this work was 

to evaluate the influence of adding one more layer in the stacking meta-

learning algorithm in other to obtain accuracy, area under ROC and time in 

relation to the lower layers, under the influence of the experiment, database 

and level factors. It was possible to conclude that, statistically, classifiers of 

the extra layer presented, in a general way, better performance in terms of 

accuracy and area. However, time grew sharply at each top layer added.  
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Introduction  

Machine learning is a data analysis method 
intensively developed in the last decades that automates 

the construction of analytical models. One of its main 
sub domains is supervised learning, which task is to infer 
a function to precisely assign unmarked instances (test 
set) to different predefined classes (Homayouni et al., 
2010). In the machine learning terminology, 
classification is considered a supervised learning 

instance (Alpaydin, 1998), whose objective is to create a 
mapping between a set of input variables and the output 
variable through observations of the training data. 

An algorithm that implements classification is known 

as classifier. Classifiers are an invaluable tool for many 

tasks, such as medical or genomic predictions, spam 

detection, face recognition and finance (Bost et al., 

2014). In addition, they can help people explore the 

knowledge within the data sets and then use it for 

decision-making (Ballard and Wenjia, 2016). 

Numerous classifiers exist in the literature, 

Delgado et al. (2014) described in their work 179 

classifiers divided into 17 families. Among the classifier 

families are those based on probabilities, decision trees, 

rules-based and others. 

The success of learning and acquiring knowledge 

from the data analyzed depends on several factors, 

including data quality (Sluban and Lavrac, 2015). 

However, inconsistencies arise naturally when using real 

data (da Costa and Abe, 2000). Similarly, Xindong and 

Zhu (2008) stated that data obtained from real-world 

problems are never perfect and undergo changes that 

may hinder the system’s performance. 

Several studies revealed that there is no general 

classifier that is suitable for any database, as indicated in 

the "No Free Lunch" theorem (Wolpert and Macready, 

1997). How to build a more reliable ranking system and 

how to increase ranking accuracy are two major issues 

that motivate researches in this field (Chen and Wong, 

2010). Possible solutions to these problems are ensemble 

methods, which use meta-classifiers to combine several 

classifiers together (Polikar, 2006). 

Numerous ensemble techniques have been proposed 

in the literature, such as Boosting (Freund and Schapire, 

1996), Bagging (Breiman, 1996) and Stacking (Wolpert, 

1992). Additionally, they use a variety of combination 

methods, including majority voting (Dorigo et al., 2006), 

the weighted majority (Kuncheva, 2004), the fuzzy 

integral (Cho and Kim, 1995), among others. 

While Bagging and Boosting use a linear 

combination of the same classifiers, Stacking uses a 

different classifier in a layer called Meta-classifier, 

whose task is to combine the predictions of different 
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base classifiers in order to reduce the generalization error 

(Kadkhodaei and Moghadam, 2016). 

The Stacking method offers certain benefits 

compared to Bagging and Boosting, including the ability 

to combine different classifiers with simplicity and 

having a final performance similar to the best classifier 

of the committee (Menahem et al., 2009). However, in 

multi-class problems, Stacking may perform worse than 

other meta-approaches. 

Thus, this study proposes an optimization in the use 

of Stacking by inserting one more level (level-2) in its 

original structure, so that the final prediction is 

composed of two ensembles (level-1), instead of isolated 

base classifiers (level-0). The approach adopted, called 

Grouping Ensembles Stacking (GES), uses a multilevel 

strategy to combine groups of classifiers by Stacking.  

This study was elaborated to contribute to the 

researches related to the performance of multilevel 

Stacking in supervised learning problems. This 

research has an empirical-analytical content and has 

as main objective to verify, through Stacking, the 

potential of ensemble committees in unbalanced 

datasets when comparing its average performance 

with lower level classifiers, that generates the 

knowledge of the level-2 meta-classifier. 

This paper is organized as follows: Section 2 presents 

related works published and Section 3 discusses the 

design and operation of GES. Section 4 shows details 

about the experiments and algorithms used. Section 5 

and 6 describe the statistical analysis and results. Section 

7 and 8 discuss the significance of these findings, 

conclusion and future directions of this research. 

Related Works 

The number of publications on ensemble 

techniques has grown exponentially since its inception 

(Woźniak et al., 2014). The main idea of combining 

classifiers is to build a set that will be more effective 

than any of its individual members operating in isolation. 

Many ensemble algorithms have been proposed in the 

literature. Among them, Stacking is one of the most 

representative methods (Tang et al., 2010). 

Recent studies with Stacking involve choosing the 

algorithm and the characteristics to be used in this 

meta-classifier (Ledezma et al., 2010). The idea of the 

Stacking algorithm was first introduced by Wolpert 

(1992) in the neural networks context and then 

generalized by Breiman (1996). LeBlanc and Tibshirani 

(1996) found that Stacking with a non-negative weight 

restriction may be an efficient way to obtain a better 

predictive model. Merz (1999) presents the SCANN 

algorithm, which uses the correspondence analysis to 

detect correlations between the base classifiers. It 

selects uncorrelated dimensions as the input variables 

of the meta-classifier and a closer neighbor method is 

then used in its learning. 

Ting and Witten (1999) used probability distributions 

for the outputs of each class returned by the base classifiers 

as input characteristics of the meta-classifier, the authors 

proposed the use of Multi-response Linear Regression 

(MLR) technique as a meta-algorithm. Todorovski and 

Džeroski (2000) propose a Stacking algorithm called Meta-

Decision Trees (MDT) that replaces the class value 

predictions in the leaves by the predictive probabilities 

returned by the base classifiers. Seewald and Fürnkranz 

(2001) present an algorithm called Grading that 

constructs a meta-classifier for each base classifier, 

where the purpose of each meta-classifier is to determine 

which base classifier can return a better result. The final 

prediction is determined by the sum of the correct 

predictive probabilities returned by the base classifiers. 

In empirical tests, Stacking displayed significant 

performance degradation for data sets of several classes. To 

solve this problem, Seewald (2002) introduced an 

alternative algorithm called StackingC. Based on Stacking 

with MLR, this algorithm reduces the number of 

probabilities returned by the base classifiers to overcome 

the weakness of stacking in multi-class problems. 

Sill et al. (2009) presented a linear technique named 

Featured-Weighted Linear Stacking (FWLS), where the 

weights associated with the models are parameterized as 

linear functions of the meta-characteristics. Abawajy and 

Kelarev (2012) worked with multi-level ensembles in a 

systematic investigation, applying the cardiac autonomic 

progression classification in patients with diabetes. 

Stacking efficiency is directly dependent on the 

number of classes of the problem (Jurek et al., 2014). 

A new approach called Troika was proposed by 

Menahem et al. (2009) to address multi-class problems. 

It is based on the four-layer architecture, where the last 

layer contained only one model: The super classifier, that 

outputs a vector of probabilities as a final decision of 

ensemble. Troika performed better than Stacking and 

StackingC in terms of classification accuracy (Jurek et al., 

2014). This paper, differing from Troika’s approach, will 

analyze the effects of an additional layer in the original 

Stacking algorithm, using only three levels (level-0, level-

1 and level-2) and with only 2 meta-classifiers at level-1. 

While many Stacking algorithms have been proposed 

to improve performance in various classification 

problems, there is no guarantee that this meta-algorithm 

will outperform all base classifier. 

Materials and Methods 

Among the most important concepts in a learning 

algorithm are preprocessing, representation and 

evaluation (Domingos, 2012). The next subsections 

discuss, respectively, each of these aspects in the GES.  
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Preprocessing 

The preprocessing step is fundamental. If there is 

too much irrelevant and redundant information or 

noisy and unreliable data, the acquisition of 

knowledge during the training phase becomes harder. 

Preprocessing filtering steps may greatly optimize the 

classifiers' training time. 

As preprocessing works to improve data quality, 

naturally it has a positive impact on the generalization 

performance of a machine learning algorithm 

(Kotsiantis et al., 2007). In this approach, a filter was 

used to replace null values, another to remove duplicate 

lines and a third one to generate randomness in the database 

instances, thus ensuring representativeness in the data. 

Representation 

Wolpert (1992) proposed the generalization 

framework by Stacking, which uses a layered 

architecture. Level-0 classifiers, also known as base 

classifiers, receive the original dataset as input, each 

providing a forecast. A meta-classifier at level-1 uses 

the predictions from the previous layer to produce the 

final prediction. Stacking's unique architecture 

focuses on two layers. 

Unlike Stacking, this study consists of adding a layer 

in the part that composes the learning, where a level-2 

meta-learner makes a final decision based on the 

predictions of lower levels meta-learners. For simplicity, 

the classifiers were grouped in pairs at all levels, 

whenever heterogeneous classifiers are used. 

To increase diversity of ensembles, level-1 meta-

learners are trained in different ways, where one of them 

is composed of base classifiers based on probabilities 

and the other by base classifiers based on decision trees. 

These categories were chosen considering that these 

families are common in the literature and simple to 

represent. This methodology is expected to result in a 

general improvement of accuracy and AUC by 

increasing the diversity among classifiers. Details on the 

mode of implementation, database and features used are 

described in the Experiments section. 

Evaluation 

It is necessary to qualify the result produced by a 

given classifier in order to estimate its performance 

when applied to future classifications. In cases where the 

amount of available data is small, the use of the k-fold 

cross-validation technique is recommended for this 

qualification (Prati et al., 2008). This technique 

evaluates the generalization ability of a model using a set 

of data as input. In the literature, cross validations of 5 

and 10 folders are commonly used (McLachlan et al., 

2005). The present research used 5-fold cross-validation, 

for reasons of processing and time. 

Experiments 

For the experiments, several algorithms 

implemented in the Waikato Environment for 

Knowledge Analysis (WEKA) were used. This tool 

includes all the filters and algorithms used to generate 

the base classifiers, meta-classifiers and ensemble 

generation algorithms (Witten et al., 2016). 

Both the base classifiers and the meta-classifiers 

followed WEKA's standard parameters except for 

heterogeneous classifiers, where different classifiers 

must be selected in a distinct way. The databases, 

classifiers used and other details are described in the 

following subsections. 

Databases 

For the GES experiments, five different UCI 

public repository databases (Blake and Merz, 1998) 

were used, arranged according to Table 1. The use of 

bases with variations in the number of attributes, 

instances and number of output classes (case of the 

Vehicle database, with four output classes) were 

prioritized. Such databases have been diversely used 

in researches in this field. 

Base Classifiers 

Several base classifiers available from WEKA 

(Witten et al., 2016) were tested and Bayes Net 

classifiers (Friedman et al., 1997) and/or Naive Bayes (John 

and Langley, 1995) were chosen as probabilistic models. In 

tree-based models, Decision Stump classifiers (Iba and 

Langley, 1992) and J48 (Quinlan, 1993) were used. 

Each base classifier used was trained with a sample 

replica of each database. All selected classifiers had a 

good average performance compared to other classifiers 

not mentioned. 

 
Table 1: Description of the databases used 

Database Abbreviation Attributes Instances Output classes 

Breast Cancer BC 10 286 2 

Diabetes DB 8 768 2 

Horse Colic HC 368 27 2 

Ionosphere IS 35 351 2 

Vehicle VH 19 846 4 
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Meta-Classifiers 

Meta-learning improves predictive performance by 
combining different modes of learning, each with 
different representations and heuristics. By combining 
different concepts learned, it is expected that meta-
classifiers will achieve better accuracy than their 
individual classifiers (Prodromidis et al., 2000). 

Meta-Classifiers composed of homogeneous 
classifiers are type I and the ones composed of 
heterogeneous classifiers are type II. Since level-2 meta-
learner necessarily combines two different classifiers, it 
is type II and the use of StackingC was chosen. In this 
research, five different level-1 meta-classifiers were used 
and are described below. 

Bagging (type I) 

Voting scheme in which n models of the same type 
are built. The class chosen is the one with majority 
voting between the models’ predictions (Breiman, 1996). 

AdaBoosting (type I) 

An implementation of boosting. It works similarly to 
Bagging, but the boosting is interactive and each 
classifier has individual weights for its predictions. 
Base classifiers focus on difficult-to-classify 
examples (Freund and Schapire, 1996). 

Dagging (type I) 

A meta-classifier similar to Bagging, which provides 
disjoint subsets of training data for the chosen base 
classifier to make a final decision (Ting and Witten, 1997). 

MultiScheme (type II) 

Selects a classifier among others using cross-

validation in training data or performance in training 

data. Performance is measured based on the correct 

percentage (Witten et al., 2016). 

StackingC (type II) 

An efficient version of Stacking, especially for better 

performance in multiclass data sets (Seewald, 2002). 

Development 

The Java language, using the WEKA software API, 

was used to perform this work. Java language was 

opted for reasons of portability (Windows/Linux), 

gratuity, familiarity with the language and easiness in 

documentation. 

Experiment Architecture 

The final decision of the ensembles committee is 

taken by the level-2 meta-classifier, whose learning is 

based on the predictions of two meta-classifiers level-

1, which in turn have their knowledge formed by the 

predictions of probabilistic base classifiers or based 

on decision trees. 

Meta-classifiers type I (level-1) are formed by 

BayesNet classifiers, if it is Bayesian and by classifiers 

J48, if it is based on decision trees. These classifiers 

were chosen based on their good performance in their 

respective families. The complete representation of the 

architecture used can be verified in Fig. 1. 

 

 
 

Fig. 1: Architecture representation 
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Thus, since only one level-2 meta-classifier was 

analyzed (StackingC) and the base classifiers selected 

depend exclusively on the meta-classifier of the level 

above and its type, there is a total of 25 different 

experiments to be considered in the statistical 

analysis, one for each possible pair of level-1 meta-

classifiers. 

Statistical Analysis 

In this research it was established that the 

measures of performance (dependent variables) that 

are most important for determining the quality of a 

classifier are: (1) Training time, (2) accuracy and (3) 

area under ROC. Among the control factors, the ones 

that most affect the dependent variables are: (1) The 

database used, (2) the level of the classifier and (3) 

the experiment. 

The data obtained from each experiment were 

analyzed using IBM SPSS Statistics program (Field, 

2013). Simultaneous analysis of the groups was 

conducted by an analysis of variance (ANOVA three-

way) for each dependent variable considering 5 

databases ×25 experiments ×3 levels. To locate the 

differences found, the Tukey test was conducted with a 

level of significance of 5% (p<0.05). 

Results 

A profile of the factor level was determined with the 

mean values of the following dependent variables: 

Accuracy, area under ROC and training time (in 

seconds) at each level, according to Table 2. It is 

observed initially that the accuracy and average area of 

level-2 presented better results than any other level. 

Furthermore, the base classifiers achieved a better 

average performance than the level-1 meta-classifiers in 

all performance measures. 

For a deeper analysis, the results will be individually 

discussed by dependent variable through analysis of 

variance (ANOVA).  

Accuracy factor 

The three-way ANOVA results, that is, databases, 

experiments and levels, did not show significant 

interaction (p>0.9999). Additionally, there was no 

interaction between level versus experiment (p = 0.37) 

and base versus experiment (p>0.9999). On the other 

hand, according to Fig. 2, there was interaction between 

database versus level (p<0.0001). 

Once observed the interaction between database 

versus level, the respective main effects were ignored 

(base and level). Therefore, the main effect is 

highlighted only in the experiment factor (p = 0.036) 

(Fig. 3). 

Area Under ROC  

The ANOVA (Three-way) results also did not 

show a significant interaction (p>0.9999) for this 

dependent variable. There was also no interaction 

between base versus level (p = 0.525) and base versus 

experiment (p>0.9999). In contrast, according to Fig. 4, 

interaction between level versus experiment (p<0.001) 

occurred. 

 

 

 
Fig. 2: Interaction between database versus level in accuracy 
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Fig. 3: Experiment factor in the accuracy factor 

 

 
 

Fig. 4: Interaction between level versus experiment in the area under ROC factor 

 

 
 

Fig. 5: Database factor in the area under ROC factor 
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Fig. 6: Interaction of levels on databases in the time factor 

 

 
 

Fig. 7: Interaction of experiments on levels in the time factor 
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was verified, the main effects of these two factors will 

not be discussed separately. 

The 25 experiments were compared to verify their 

accuracy. In general, interestingly, experiments with 

heterogeneous level-1 meta-classifiers, especially 

Stacking, performed worse than homogeneous ones (Fig. 

3). This may be explained by the limited number of 

level-1 heterogeneous classifiers (2) when compared to 

WEKA’s standard number for homogeneous classifiers 

(10). Thus, this result corroborates with the literature 

(Jurek et al., 2014), in which a very small number of 

classifiers (heterogeneous classifiers grouped in pairs, 

determined by the research) in an ensemble has a worse 

average performance than those with several components 

(homogeneous classifiers that followed WEKA’s 

standard parameters, in which 10 machines are created). 

Area under ROC Factor 

There was no significant interaction between 

database, experiment and level. Similar to the accuracy 

topic, this result suggests that the level used does not 

produce significant changes (increase or decrease) in the 

area with the experiments performed in the databases. 

This time, the significant interaction occurred only 

between level and experiment. That is, both the level and 

the experiment influenced the area average. It can be seen 

from Fig. 4 that with respect to the area, level-2 showed a 

better result than the other levels in all experiments, while 

level-1 performed worse than level-0 in some experiments, 

especially those with a level-1, type II meta-classifier. 

The results of this study evidenced main effects of 

the database, experiment and level factors, separately, on 

area under ROC factor. Since an interaction between 

level and experiment was verified, only the database 

variable was analyzed. Interestingly, the performance of 

the Vehicle base in the area factor was not greatly 

influenced by the fact that the base is multi-class. The 

percentage difference between the lowest performance 

(BS) and the best performance (IS) concerning the area 

was higher than 38%. 

Time Factor 

There was a significant interaction between database, 

experiment and level with respect to time, as well as all 

possible interactions between them. This means that 

training time is highly correlated with these variables. As 

expected, level-2 exceeded the time of the other levels in 

all analyzes, since it requires that all classifiers that form 

its knowledge have already been trained. The result was 

the same for level-1 in relation to level-0 (Fig. 6 and 7). 

The present research is limited to the use of 

heterogeneous classifiers - not limited to Stacking - in 

solving prediction problems in supervised learning. A 

study of which classifiers to use at higher levels than the 

base classifiers, as well as other preprocessing activities 

would be ways to optimize the time factor in the training 

of level-2 meta-classifiers, which proved to be the 

biggest issue in the present research. 

Conclusion 

This study contributes to the research related to the 

performance of multi-level ensemble for prediction in 

classification problems. The use of a meta-classifier that 

groups two ensembles in a general way promoted an 

optimization of the models in terms of accuracy and area 

under ROC, although the training time was much higher 

in level-2 in relation to the other levels. These results 

coincide with much of the work related to ensembles 

with more than two layers. 

In conclusion, for future work other performance 

measures, such as diversity calculations, should be 

researched for a more thorough analysis of this topic, 

which could aid the judgment of the most appropriate 

meta-classifiers and classifiers for each situation. 
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