

© 2018 Soha Rawas and Ahmed Zekri. This open access article is distributed under a Creative Commons Attribution (CC-

BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Location-Aware Energy-Efficient Workload Allocation in Geo

Distributed Cloud Environment

1
Soha Rawas and

1,2
Ahmed Zekri

1Department of Mathematics and Computer Science, Faculty of Science, Beirut Arab University, Lebanon
2Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Egypt

Article history

Received: 16-11-2017
Revised: 02-02-2018
Accepted: 13-03-2018

Corresponding Author:
Soha Rawas
Department of Mathematics
and Computer Science, Faculty
of Science, Beirut Arab
University, Lebanon
Email: rawassoha@gmail.com

Abstract: The proliferation of cloud computing relied on the virtualization

of the compute and storage resources and provisioning them dynamically

according to users’ needs on a pay-per-use model. Massive cloud providers

have geo-distributed cloud data centers to ensure service reliability,

availability and satisfy user’s need. Therefore, cloud management systems

are necessary to increase the profit of cloud providers and to improve the

quality-of service demanded by users. This paper focuses on an energy-

efficient method to solve the problem of allocating data-intensive

workloads in geographically distributed data centers. The workload’s tasks

are characterized by large data transfer times than their execution times.

The problem formulated as a nonlinear programming optimization problem.

Then, to find an optimal solution to the problem, meta-heuristic genetic

algorithm is proposed. The designed heuristic takes into account the cost of

the data transfer time from the storage location to the compute servers as

well as the workload makespan on the available hosts. Extensive

simulations using the CloudSim simulator are conducted to evaluate the

efficacy of the proposed allocation method and how it performs with

respect to other methods in the literature. Our results show significant

enhancements in energy consumption while respecting the user’s QoS.

Keywords: Green Computing, Energy Efficiency, Geo-Distributed Data

Centers, Genetic Algorithm

Introduction

Throughout its history, computer systems have evolved

in a spiral way of integration and distribution. They

experienced a transition from centralized, massive, shared

mainframes in the 1970s to decentralized, handy, personal

PCs in the 1990s. In 2010, nevertheless, they moved into

consolidated and shared virtualized computing, networking

and storage resources invisible to the users, or the so-called

cloud computing systems (Fox et al., 2009).

Cloud computing has developed into a widespread

computing paradigm which provides systems with

cheaper and accessible resources. It also provides

researchers with a new method to set up their required

computing systems and carry out their scientific as well

as business applications without purchasing

infrastructure or software at all (Fox et al., 2009).

However, using cloud services allow for a more flexible

and pay-as-yougo pattern. Moreover, it becomes like

conventional utilities in everyday life (e.g., water,

electricity, gas and telephony) (Buyya et al., 2009).

The extensive growth of cloud systems has led to the

construction of geo-distributed Data Centers (DCs)

worldwide with thousands of computing, networking and

storage nodes. Consequently, this led to a drastic

increase in the DCs energy consumption, that directly

affect cloud providers profit and leads to serious

environmental issues (high carbon emission) that affect

cloud computing sustainability.

According to a study by the Uptime Institute and

McKinsey (2008), server clusters in DCs contribute to

30% of the world’s CO2 emissions and will surpass

those of the airline industry by 2020. Other recent

studies by Greenpeace indicate that IT carbon footprints

occupy 2% of the global greenhouse gas emissions

(Sverdlik, 2011; Cook, 2012), which equates the CO2

emissions by the aviation industry (Gartner, 2007),

leading to the drastic greenhouse effect. Koomey

expected in (2007) that energy consumptions in DCs

would continue to increase rapidly unless advanced

energy efficient mechanisms are established and applied.

The most recent studies by Greenpeace estimate the

Soha Rawas and Ahmed Zekri / Journal of Computer Science 2018, 14 (3): 334.350

DOI: 10.3844/jcssp.2018.334.350

335

number of currently online people to be around 2.5

billion. They believe that this number is expected to

increase by 60% in the next 5 years. That means about

80% of the planet adult population will be connected

(Cook, 2014; Cook and Pomerantz, 2015). Thus,

achieving power-efficiency in today’s Internet and cloud

servers is a fundamental concern.

To tackle the issue of high-energy usage, eliminating

electricity ineffectiveness and waste in the way it is carried

to computing resources is a must. It is also important to

consider how these resources are used to serve the user

applications workloads. Energy-aware software

management techniques have the potential to reduce energy

consumption in cloud DCs between 30 and 90% (CGS,

2015). These techniques cover resource virtualization,

process and data migrations, resource consolidations and

user applications scheduling techniques.
Cloud service providers distribute their DCs in

different geographical regions to ensure availability and
disaster recovery. Managing data movement between the
computing and storage nodes is crucial for delivering
good quality of service. Therefore, selecting proper DCs
to store applications data and keeping it near to the
processing nodes recently attracted researchers’ attention.

The allocation of tasks (called cloudlets (A Cloudlet
is defined as an application task running on a cloud
environment. It is characterized by a set of attributes
such as: length, type, storage, memory requirements,
among others) mapping in cloudSim terminology) within
a batch of data-intensive workload to Virtual Machines
(VMs) in a distributed cloud environment, which
respond to thousands of user’s requests during a short
period of time, is a challenging problem. Therefore, a
proper allocation method allocates the workload tasks to
geographically distributed cloud DCs taking into account
the cost of the network delay can substantially reduce the
overall execution time of the workload’ last (or the
makespan) and optimize the utilization of the VMs
compute resources. Consequently, an improvement of
the overall system performance, as well as the user's
QoS, is expected.

This paper studies the problem of how to consider the
delay factor when designing an energy efficient task
allocation algorithm in a geo-distributed cloud
environment. The goal of the proposed method is to
minimize the total execution cost of data-intensive
workloads in geographically distributed compute
resources owned by one cloud service provider such as
Google and Amazon. It aims to increase the QoS and
hence customer satisfaction, as well as to reduce the data
centers’ energy consumption using the Dynamic Voltage
and Frequency Scaling (DVFS) technique. The proposed
allocation method evaluated using a multicloud
framework developed on the CloudSim (Calheiros et al.,
2011) simulator. The reason for evaluating the proposed
method on a simulator rather than real cloud is that our
method requires different scenarios with various

infrastructure properties to evaluate its efficacy in terms
of QoS and energy efficiency. Our contribution in this
study can be summarized as follows:

• The problem of allocating data-intensive bagof-tasks

BoT workloads is formulated as a nonlinear

optimization problem taking into consideration the

network’s delay times to minimize the makespan of

the workload, i.e., enhance the users QoS

• A meta-heuristic genetic algorithm is designed to

solve the proposed optimization problem on

geographically distributed data centers

• Extensive simulations using CloudSim tool are

conducted to validate the proposed algorithm using

both real and synthetic workload traces. The

simulation results showed the superiority of the

LAEE algorithm in enhancing the user’s QoS as

well as reducing the energy consumption of the data

centers compared to other competing algorithms

The organization of this paper is as follows. Section 2

gives some of the related works. Section 3 presents the

assumptions of the cloud system model. Section 4

presents our mathematical formulation. Section 5

presents the proposed genetic algorithm to find a

nearoptimal solution to the formulated optimization

problem. Section 6 details the results obtained using a

simulation toolkit and conclude the paper in Section 7.

Related Works

The proliferation of cloud computing has led to the

establishment of distributed systems to ensure

availability and improve the processing of user requests.

Therefore, the mapping process of cloud user’s

workloads to resources of globally distributed DCs has

become an issue. This problem attracts researchers to

optimize the workload allocation process with many

objectives in mind such as makespan minimization, load

balancing, cost reduction and energy enhancement, as

well as network bandwidth improvement.
Banerjee et al. (2015), proposed a new greedy

cloudlet allocation method to improve the makespan of
VMs through load balancing. The proposed model
improves VMs and hosts load balancing with QoS
intention through minimizing the VMs and hosts
Makespan as well as the cloudlets completion time. The
model achieved a load balancing through distributing the
predictable load to VMs based on their capacity to
enhance system utilization. Dong et al. (2015), the task
mapping was formulated as an integer programming
optimization problem which is solved using a greedy
algorithm. The proposed Most-Efficient-Server-First
(MESF) scheduling scheme schedules tasks to most
energy efficient servers to minimize DC energy
consumption. The proposed model considers the average

Soha Rawas and Ahmed Zekri / Journal of Computer Science 2018, 14 (3): 334.350

DOI: 10.3844/jcssp.2018.334.350

336

queuing delay of tasks build up on some of the servers.
However, simulation results showed that MESF operates
poorly in case of independent and identical distributed
task arrivals that follow an exponential distribution.

The Conductance cloudlets allocation policy
proposed by Chatterjee et al. (2014), considering VMs
capacity as a pipe by finding the conductance of each
VM through the ratio of its processing speed to the sum
of the processing speed of all available VMs. The
proposed algorithm did not take into account the
cloudlets length, which leads to VMs load balancing
problem. Huai et al. (2013) studied the task scheduling
problem in heterogeneous servers’ environment to
reduce the energy consumption. The authors proposed
the Benefit-driven Scheduling (BS) method that maps
tasks to the most suitable server type. For homogeneous
systems, the paper proposed two allocation task
scheduling using two different heuristic algorithms
named Power Best First (PBF) and Load Balancing
(LB). The proposed methods applied and tested on a
Dynamic Voltage and Frequency Scaling (DVFS)
homogeneous and heterogeneous server-based
environment to study the effect of suitable working
frequency in achieving power saving. The results
showed around 13% power saving.

All the above works targeted the minimization of
energy consumption and improving the QoS. However,
they do not consider the problem of transmission delay
and cost in selecting the most suitable computing
resources for workload execution.

Kliazovich et al. (2013) investigated the role of the
network fabric and proposed an energy efficient task
scheduler with traffic load balancing, the e-STAB
scheduler. The proposed method consolidated jobs to a
minimum number of activated servers in order to
minimize network congestion and delay. Their method
studied the problem of network delay and energy
efficiency inside one DC. Liu et al. (2013) proposed an
energy efficient, profit and cost aware task scheduling
and resource allocation in a multielectricity-market
environment to maximize the net profit of cloud
provider. The model incorporates the multi-electricity
market, SLA and net profit as a multi-objective task-
scheduling framework. The problem was formulated as a
constrained optimization problem. The results showed
the proposed method improved the net profit due to
energy efficient using of computing resources.

This paper studies a new approach targeting data-
intensive workload allocation in geographically
distributed DCs. It incorporates the delay incurred due to
the network link capacity in mapping the workload
which leads to further reduction in the DC energy
consumption. Also, the paper proposes a data location-
aware algorithm to the task allocation problem that takes
into consideration the communication costs between the
distributed storage servers and computes servers when
allocating the workload tasks/cloudlets to the Virtual
Machines (VMs). Simulations on real workload traces

show that the proposed work minimized the workload
Makespan while reduced the DC energy consumption
compared with other approaches.

Cloud System Model

This section defines the problem under investigation

and describes the cloud system architecture used in this

study. Our model targets geodistributed cloud

environment for running dataintensive applications.

Some Definitions

Cloud-computing environment is a parallel and

distributed system working at the same time to satisfy

the users’ needs (Buyya et al., 2009). It is the delivery of

on-demand computing resources, everything from

applications to data centers infrastructure, over the

internet on a payper-use basis. A cloud broker is a third

party that acts as an intermediary between the customers

of cloud services and the service provider. Most of the

cloud providers have DCs distributed over different sites

interconnected via Wide Area Network (WAN). The

mapping process of the user’s workloads to the cloud

computing resources (i.e. the VMs running on the data

center servers) is called task allocation.

Target Application

This paper studies data-intensive applications where
large data transfer times compared with their processing
times characterizes them. This type of application may
arise in for example distributed database query
processing. Usually, the application data files reside on
one or more servers of data centers and the computing
phase might be done at another data center. Therefore,
data are required to move from the storage site to the
computing site to process user’s query request and
deliver information quickly and efficiently.

It is clear that the overhead of data transfer can
dramatically degrade the performance of the application
especially if the network traffic is not optimized.
Therefore, efficient task allocation methods that move
data to process efficiently are mandatory to enhance the
overall completion time of data-intensive workloads.

Co-locating data and computation on the same DC to
serve data-intensive applications would evidently lead to
ideal performance. Nevertheless, this is not always
possible. Another motivating scenario when a private
and secured data of a company located on their local
storage nodes. However, the company has limited
computational resources and facing a deadline constraint.
In this case, the company may leverage its resources by
moving from their private computation resources to
public cloud so that they can meet their deadline. In this
particular scenario, an application provider aims are to
serve the users’ request with a good quality of service
and within a deadline time determined in advance.
Assume that requesting the service is through a given

Soha Rawas and Ahmed Zekri / Journal of Computer Science 2018, 14 (3): 334.350

DOI: 10.3844/jcssp.2018.334.350

337

broker of the service provider. The broker responsibility
is to accept the users’ requests, creating a task for each
request and then allocates the tasks to the computing
resources or virtual machines run specifically for this
application. However, moving data to distant computational
resources might become a bottleneck due to the data size
and network bandwidth. Moreover, addressing computation
separately from data movement would lead to performance
degradation and SLA violations.

Specifically, this paper targets to schedule deadline
constrained data-intensive workload applications. The
user primarily transfers the data files to the local storage
infrastructure of the cloud. The workload is consists of a
set of parallel tasks; each one can run separately on a
computing node. Additionally, each task is associated
with a data file, residing within the broker storage node.
Finally, all the workload tasks must finish within the
deadline constraint.

System Model

Geographically distributed cloud environments, such
as Amazon and Google, provide data storage clouds,
such as Amazon S3, for data storage and compute
clouds, such as Amazon EC2, as services. However,
storing the application’s data in different storage
nodes/servers than the running application’s processes will
definitely incur high data transmission due to the cost of
moving data back and forth over network interconnection
links (Piao and Yan, 2010). Our objective in this study is
to minimize the submitted workload makespan to improve
the users QoS while reducing the energy consumption of
the compute resources.

Throughout this paper, a task will be considered as
the smallest unit work in a user’s submitted data-

intensive application. An application may consist of one
or more tasks. The set of parallel tasks referred as a BoT.
Each task has a length measured in Millions of
Instructions (MI). Although it is difficult to predict the
number of instructions executed by each task, however,
in the literature different smart models are constructed

for this purpose (Kumar and Singh, 2018; Ha et al.,
2018; Toosi et al., 2018; Al-Dulaimy et al., 2016) such
as the prediction model developed by the authors in
(Ha et al., 2018) to describe the requirements of tasks
and to estimate the cost of running that task on an
arbitrary resource using baseline measurements from a

reference machine.
Tasks are allocated to a set of running VMs which is

initialized in advance. This is due to the overhead of

setting up and creating a new VM. The pre-allocation of

the VMs, as done in Azure cloud environment

(https://docs.microsoft.com/enus/azure/guidance/guidanc

e-compute-multipledatacenters; Mazumdar et al., 2016),

achieves high availability across regions.

As depicted in Fig. 1, the cloud system model

considered in this study has a set of DCs distributed

across different geographical sites. A broker accepts the

requests of users and places their data files on some

Storage Node (SN) on a different DC. We assume the

links between the SN and the VMs on the DCs are set up

to move the user's data files to and from the DCs hosting

the VMs.

Problem Formulation

This section presents our mathematical formulation
of the task allocation problem of data-intensive
workloads as a nonlinear optimization problem. Our
main objective is to minimize the workload makespan by
reducing the network delay due to the transfer of tasks’
data transmission and to minimize the power
consumption of servers which is expected to reduce the
DCs energy consumption, as is shown in the
experimental results section.

Model Assumptions

Before proceeding with the problem formulation, the

following assumptions are taken into consideration:

• The workload consists of a set of independent tasks

(called bag-of-tasks or BoT). Therefore, there are no

dependencies between the tasks.

• Each task has a prior known length measured in

Millions of Instructions (MI).

• The VMs are already initialized and running on

servers of specified DCs.

• The BoT workload is submitted to a broker together

with the task’s associated data files associated which

are stored in a specified storage node/server.

• There are dedicated network links between the

storage node and the distributed data centers where

the VMs reside on.

• The available VMs have different computing power

(MIPS)

• The space-shared policy is a VMM allocation policy

that allocates one or more Pe to a VM and doesn't

allow sharing of PEs. If there is no free Pes to the

VM, allocation fails. Free PEs are not allocated to

VMs.

• A task is allocated and executed in only one VM

(computing resource).

Model Formulation

Table 1 defines the different parameters used in our
formulation. Given a set of n tasks, T = {t1, t2, …,tn}, a
set of m files, F={f1, f2, …,fm}, associated with the tasks
T such that n = m, a set of data centers D = {dc1, dc2, …,
dcs} distributed in different sites such that each site
might host more than one DC. The following equations
define how the computing and transfer times are
estimated and used in calculating the makespan of the
total workload.

Soha Rawas and Ahmed Zekri / Journal of Computer Science 2018, 14 (3): 334.350

DOI: 10.3844/jcssp.2018.334.350

338

Fig. 1: Cloud provider environment

Table 1: Symbols used in LAEE problem

Notation Description

T Independent set of tasks in a workload called a bag-of-tasks (BoT)

ti A single task (cloudlet) submitted by a user, ti ∈ T
F The set of input and output files associated with tasks T

fi A data file associated with a task j, f ∈ F
D A set of geographically distributed data centers

dcd A data center at a given location s.t. dcd ∈ D
R Set of k compute resources, i.e., VMs

d

jr Compute resource j on dcd s. t. rj ∈ R and dcd ∈ D

(,)di jExecTime t r Execution time of task ti on compute resource rj hosted in data center dcd

(,)di jTranTime t r Transfer time associated with task ti to be executed on compute resource rj on dcd

()
i

InputSize f the input file size associated with task ti

()
i

OutputSize f the output file size associated with task ti

Tt A set of tasks running on a compute resource d

jr s.t. Tt ⊂ T

Length(ti) Length of a task ti (measured in million instructions)

()djmips r Available mips for compute resource rj at dcd

()djpe r The number of processing elements assigned to compute resource d

jr at dcd

Available (LinkBw(dcd)) available link bandwidth capacity between the broker (storage node) and data center d hosting

 resource d

jr due to interaction of different file transfers on the same link

delay(dcd) The link delay time to transfer data to data center d hosting resource d

jr

DeadlineT The deadline time constraints for a BoT T given by the SLA between the provider and user

The computation time of task ti on compute resource
d

jr is defined as (Banerjee et al., 2015):

()
(,)

() * ()

d i
i j d d

j j

Length t
ExecTime t r

mips r pe r
= (1)

We assumed in (1) that a task can run on all the

available cores or processing elements (Pes) owned by

the VM (i.e., rj).

The transfer time to move the input and output files

associated with task ti to the compute resource rj on the

data center dcd can be estimated as:

(,)

() ()
2

(())

* ()

d

i j

i i

d

d

TranTime t r

InputSize f OutputSize f

Available LinkBw dc

delay dc

+

= + (2)

Cloud users

Broker

DC2

DC1

DC3

DC4

Storage Node (SN)

Soha Rawas and Ahmed Zekri / Journal of Computer Science 2018, 14 (3): 334.350

DOI: 10.3844/jcssp.2018.334.350

339

In Equation (2), InputSize (fi) and OutputSize (fi) are

the input file and output file sizes associated with task ti,

the Available(LinkBw(dcd)) is the available link

bandwidth between the Storage Node (SN), where files

reside in and the compute resource d

jr located on data

center dcd due to interaction of different file transfers on

the same link. The delay(dcd) is the delay time of the

network link used to move the input and output data files

associated with task ti on compute resource d

jr .

The total execution time of a task ti, including both

computing and communication time, (i.e., the turnaround

time) to be processed on compute resource rj is given as:

(,)

(,) (,)

(,) (,)

(,),

d

i j

d d

i j i j

d

j

d d

i j i j

d

i j

CompletionTime t r

TranTime t r ExecTime t r

if there are available resources r

CompletionTime t r TranTime t r

ExecTime t r otherwise

 +

= ∈
 +
+

 (3)

In Equation (3), we assumed that the VMScheduler (In

CloudSim, VmScheduler is an abstract class that represents

the policy used by a Virtual Machine Manager (VMM) to

share processing power among VMs running in a host) used

in our CloudSim simulations would follow the space-shared

policy to execute the BoT workload in case of unavailable

resources in d

jr . Noting that CompletionTime (,)dx jt r is the

completion time of the recently ended task, where x is the

index of the recent ended task.

Given the completion time of a task in Equation (3)

above, the makespan for executing the set of t tasks, Tt =

{t1, t2,…, tt}, on a virtual machine d

jr s. t. Tt ⊂T, will be

the completion time of the last executed task tt, as shown

in Equation (4) and Fig. 2:

(,) (,)d d

t j t jMakespan T r CompletionTime t r= (4)

Figure 2 shows a possible situation when t tasks are

assigned to one virtual machine d

jr .

Now, our objective is to allocate the BoT workload

consisting of tasks T to the set of available computing

resources R running on the set of data centers D so that

the total makespan time is minimum. Equations (5), (6)

and (7) define the formulated optimization problem:

()()1

1

minimize(max) ,

t

d

j k t j
d S

T T

Makespan T r
≤ ≤

≤ ≤

⊂

 (5)

Such that:

(,)
T

Makespan T D Deadline≤ (6)

The constraint in Equation (6) ensures that

completion time of the whole workload should not

exceed the deadline time constraints given by the SLA

agreement between the provider and the workload users.

Noting that the violation of the deadline constraint can

lead to undesired consequences for the user as well as

the cloud provider.

Example

This example demonstrates how our proposed model

can be used to allocate a small Bot workload with four

tasks {C1, C2, C3, C4} so that the makespan is the

minimum between all possible allocations. We assume

two different geographical distributed environments,

{dc1, dc2}. Each data center has one compute resource

(VM). Figure 2 shows a sketch of the model using the

numbers mentioned above. The values of the different

parameters associated with the workload tasks and the

cloud system are given in Table 2.

As Fig. 3 shows, a broker needs to find the best

virtual machines in the available data centers to allocate

the incoming workload so that total makespan of the

workload is minimum and does not exceed the deadline

time constraints determined in the SLA agreement

between the provider and workload users.

Fig. 2: Scheduling t tasks to d

jr

Fig. 3: Cloud service provider environment model

Queue of waiting tasks Completed tasks

tt ti+1 ti ti-1 ti-2 t1
d

jr

dc1 dc2

VM1 VM2

Broker

Incoming workload

C4 C3 C2 C1

Soha Rawas and Ahmed Zekri / Journal of Computer Science 2018, 14 (3): 334.350

DOI: 10.3844/jcssp.2018.334.350

340

The objective is to find an optimal allocation to the

workload {C1, C2, C3, C4} with a minimal makespan

among all possible allocations. Table 3 shows the

calculated makespan for all possible cloudlets allocation

in this example (16 in this example). We show the

estimated transfer and execution times according to

Equations (1-3) for the scenario “the 4 cloudlets are

allocated to VM1 on dc1”. Since there is one processing

core, the first cloudlet arrives will be assigned the

physical core while the rest of cloudlets will be waiting

in a queue as shown in Fig. 4. Using the formulation

discussed in section 4 the output will be as follows:

() ()

()

()

()

9 9 9

1

3

1

1

1

1

(1) 3*10 3*10 / 10*10

 2*50*10 0.7

(1) 1000 / 1000*1 1

(1) 0.7 1 1.7

(2) 1.7 0.7 2000 /1000*1 4.4

(3) 3.4 0.7 3000 /1000*1 8.

VM

VM

VM

VM

VM

TranTime C

ExecTime C

CompletionTime C

CompletionTime C

CompletionTime C

−

= +

+ =

= =

= + =

= + + =

= + + =

()1

1

(4) 8.1 0.7 4000 /1000*1 12.8
VM

CompletionTime C = + + = (7)

Therefore, the makespan of the workload consisting of

the 4 cloudlets is equal to 12.8 with Makespan of 11.8.

Fig. 4: Data center task scheduler model

Table 2: The specifications of the cloud model discussed in the above example

Entity type Parameter Name Value

Cloudlets Cloudlet length (MI) C1 1000
 C2 2000
 C3 3000
 C4 4000
 Input/Output file size (GB) C1,C2,C3,C4 3
VMs CPU(MIPS) VM1 1000
 VM2 2000
 Number of cores (PE) VM1, VM2 1
Data centre Delay (milliseconds) (between broker and DC) Dc1 50
 Dc2 100
 Bandwidth (Gbp/s) Dc1 and Dc2 10

Table 3: Different allocations of the given BoT workload with the Makespan of each

Scenario number Cloudlets/VMs Makespan

1 {C1,C2,C3,C4;VM1} 12.8
2 {C1;VM1}, {C2,C3,C4;VM2} 10.4

3 {C1,C2:VM1},{C3,C4:VM2} 5.1

4 {C1,C2,C3;VM1},{C4;VM2} 8.1
5 {C2;VM1}, {C1,C3,C4;VM2} 6.4
6 {C2,C3;VM1},{C1,C4;VM2} 6.4
7 {C2,C3,C4;VM1},{C1;VM2} 11.1
8 {C3;VM1}, {C1,C2,C4;VM2} 5.9
9 {C3,C4;VM1},{C1,C2;VM2} 8.4
10 {C1,C3,C4;VM1},{C2;VM2} 10.1
11 {C4;VM1}, {C1,C2,C3;VM2} 5.4
12 {C1,C4;VM1},{C2,C3;VM2} 6.4
13 {C1,C2,C4;VM1},{C3;VM2} 9.1
14 {C1,C2,C3,C4;VM2} 8.2
15 {C2,C4;VM1},{C1,C3;VM2} 7.4
16 {C1,C3;VM1},{C2,C4;VM2} 5.4

C4 C3 C2 C1
BoT

Queue Q of cloudlets

Task scheduler Computer resources

VM1

VM2

Soha Rawas and Ahmed Zekri / Journal of Computer Science 2018, 14 (3): 334.350

DOI: 10.3844/jcssp.2018.334.350

341

The optimal solution in the example refers to Scenario 3

since the makespan will be 5.1, the 6 minimal among all

possible 16 allocations in Table 3. In general, if we need to

allocate a workload of t tasks to r compute resources we

need to explore a total of
0

!

!()!

t

i

t

i t i
=

−

∑ possible allocations

since the task allocation problem is a Nphard problem.

DVFS and Power Consumption Model

Dynamic Voltage and Frequency Scaling (DVFS) is an

effective technique to reduce servers’ power consumption

through scaling the CPUs frequency proportionally to their

loads (Maiti and Sudeep, 2017). Although DVFS can

significantly achieve power efficiency in computing

resources, it also reduces the computing performance (Huai

et al., 2013). However, since the paper targets to schedule

non compute-intensive workload application, DVFS

technique will be a useful approach to achieve power

efficiency (Maiti and Sudeep, 2017). Consequently, this

paper, incorporate DVFS mechanism with the proposed

model (presented in section 4.1) targeting to minimize the

energy wasting which becomes one of the key challenges

that affect the cloud sustainability. DVFS is supported by

most modern CPUs to scale down its frequency and voltage

when it is not fully utilized (Huai et al., 2013). The

quadratic relation between the frequency adjustment and the

CPU dynamic power consumption is shown in the

following (Huai et al., 2013):

2

CPU DynamicP ACV f
−

= (8)

where, A, C, V and f are the switching activity, the
physical capacitance, the supply voltage and the clock
frequency respectively. Voltage V can be expressed as a
linear function of frequency such that, V = af and a is
constant. Therefore, Equation (9) express the new form
of dynamic CPU power:

3

CPU DynamicP f
−

= β (9)

Developing an energy-aware task allocation algorithm

requires measuring the dynamic power consumption
resulted from running the tasks on the compute resources
(VMs). To derive a power consumption model, real time
server power consumption monitoring is needed. However,
this is out of the scope of this paper. Instead, we used the
cubic frequency-power approximation model (Huai et al.,
2013). In this study, we only consider the power consumed
by CPU; therefore, Equation (10) is used to find the total
power consumption of a server:

CPU Static CPU DynamicPower P P
− −

= + (10)

where, PCPU-Static is the static power consumption
denoted as γ and PCPU-Dynamic calculated as in Equation
(9). Therefore, using Equations (9 and 10), the cubic

power consumption model that computes the total power
consumption of a server is as follows:

3
Power f= γ + β (11)

Equation (10) shows clearly that frequency f is the
only variable value that effects the servers’ power
consumption where γ and β are constants and varies
among different servers.

Consequently, the power consumption of a server hk

holding number of computer resources d

jr on data centre

dcd is denoted as
,

()
k d

Power h , nothing that each host can

hold more than one rj. Let’s consider PowerTD as the total

power consumed by R computer resources to process T

request of tasks. Therefore, the target is to minimize the

total value of Power as follows:

1 1

minimize ()

D R

d

j

d j

Power r

= =

∑∑ (12)

where, Power d

jr is the power consumption of the rj on

dcd calculated using Equation (8).

LAEE Model

The objective of the energy efficient LAEE workload
allocation model is to minimize the workload makespan
and attain maximum energy efficiency when mapping a
set of tasks T to the set of available resources R without
violation of the Deadline constraint DTT given by the
SLA between the provider and cloud user. This could be
achieved through considering the objectives described in
Sections 4.2 and 4.4. Therefore, the objective of the
proposed model is as follows:

minimize((,),)
TD

Makespan T D Power (13)

subject to Equation 6 constraint that ensures that the

completion time for a BoT T on a set of available Resources

R should not exceed the deadline time constraints DTT

given by the SLA between the provider and user:

(,)
T

Makespan T D Deadline≤

The LAEE Workload-Allocation Algorithm

Genetic Algorithms (GA) are adaptive heuristic
random optimization algorithm that works via the

process of natural selection and evolution (Golberg,
1989). In this section, we propose the Location-Aware
and Energy-Efficient (LAEE) workload allocation
genetic algorithm to solve the formulated non-linear
optimization problem given in Equations (5-13). The
task allocation problem we target in this study is NP-

hard (Nemhauser and Wolsey, 1988). Therefore, our
proposed algorithm will try to find a near-optimal
solution heuristically based on genetic programming.

Soha Rawas and Ahmed Zekri / Journal of Computer Science 2018, 14 (3): 334.350

DOI: 10.3844/jcssp.2018.334.350

342

Given a BoT workload n tasks T = {t1, t2, …,tn}, a set
of associated m files F = {f1, f2, ..., fm}, a set of data centers
D = {dc1, dc2, …, dcs} located in different geographic
locations and a set of compute resources R = {r1, r2, …,
rk} hosted on the data centers D. The building blocks o the
genetic LAEE algorithm are described as follows.

Encoding

This is the representation step of the optimization
problem in terms of genetic terminology. A chromosome in
the GA consists of n genes corresponding to the n tasks of
the workload T. That is, each gene represents the mapping
of a task ti to a specific Virtual Machine (VM), or compute
resource rj. The value of a gene is a positive integer
representing the VM number where the task is allocated.
Table 4 shows an example of mapping 15 tasks to 4 VMs
and its corresponding chromosome consisting of 15 genes.

Initial Population

A population is a set of solutions to the original
optimization problem, i.e., a set of possible allocations of
T to R. An initial population is a set of chromosomes
(solutions) that are randomly created as a starting step
towards finding an optimized solution. Each
chromosome in the population represents a candidate
solution to the problem and it is called an individual. The
fitness function is calculated to the individual. Then, a
number of fittest individuals are selected to mate and
produce a next enhanced population (or generation). To
generate efficient and robust genetics search space
diversity is taken into account through generating the
initial population that gives the genetic better possibility to
find a good and near-optimal solution (Yin et al., 2017).

Fitness Function

Selecting a suitable fitness function is significant to
design a successful Genetic Algorithm. Since the goal is
to minimize the makespan of the workload T, the fitness
function is chosen to be the objective function of the
formulated optimization problem given in Equation (5).

Selection

The selection method dictates how to choose the
individuals in a population and use them to produce a
new generation so that a better solution is obtained.
There are various strategies to select the best individual
such as Boltzmann strategy, rank based selection,
roulette wheel and tournament selection (Golberg, 1989).
This paper uses the roulette wheel based on a rank given
to each individual according to its fitness value.

Crossover

This is the method of selecting two parents
(individuals) to produce next-generation individuals. We
used the mostly used random point crossover technique
since it helps to exchange VMs assignment between
corresponding tasks (Yin et al., 2017). Figure 5 shows a

simple example of randomly selected crossover point on
both selected parents and the newly generated individuals
(children) that outline the newly produced generation.

Mutation

Mutation maintains genetic diversity in the

subsequent generations. It avoids generating uniform

populations. The mutation operator is used to modify the

genes of a randomly selected chromosome according to a

mutation probability.

LAEE-GA

In this study, a modified version of GA is proposed to
solve the LAEE optimization problem (Equations 5-13).
Based on the basic operations discussed above, the
LAEE genetic algorithm (Algorithm 1) starts by creating
initial random population (line 2) using encoded binary
(0, 1). The main important part of the proposed
algorithm is fitness function evaluation that reflects the
main objective of the proposed model in minimizing the
workload makespan (line 3). Line 3 evaluates the fitness
function of each individual using Equation 5. Then
genetic operators applied through crossover and
mutation operations to the selected parents (line 4-10).
After each iteration, new population is created using
fittest individuals. After a number of iterations, the
algorithm retrieves the individual with the highest fitness
from the last population as a near-optimal solution to the
proposed problem line (9).

The LAEE genetic allocation algorithm designed to
solve the problem of data-intensive workload allocation and
to attain a trade-off between energy efficiency and QoS.
Most of the modern computers integrated with an effective
dynamic DVFS mechanism (Maiti and Sudeep, 2017).
Accordingly, Algorithm 1 executed in cloud DVFS
environment, i.e. we assume that the power consumption of
active servers will scales linearly with its CPU utilization.
Reducing CPU frequency minimizes the CPU power
consumption (as Equation 11 depicts). However, this could
not lead to energy saving since reducing frequency implies
that more time will be taken to handle the given workload
(Huai et al., 2013). Nevertheless, the LAEE allocation
algorithm that targets to minimize the workload makespan
shows its contribution on energy saving (as shown in
Section 6.3.2) compared to other competitive algorithms
that employ a DVFS mechanism.

Fig. 5: Random crossover point

Parent 1: 0010 0010 1000…1000

Parent 2: 0010 0010 10000…0010

Child 1: 0010 0010 1000…1000 0001 1000 0100

Child 2: 1000 0100 0010…0010 0100 0001 0100

0100 0001 0100

0001 1000 0100

Soha Rawas and Ahmed Zekri / Journal of Computer Science 2018, 14 (3): 334.350

DOI: 10.3844/jcssp.2018.334.350

343

Table 4: Tasks as a chromosome represent the allocation of the tasks to the available VMs

Task# 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

VM# 3 4 1 2 4 1 3 3 1 4 2 1 3 2 1
Binary represent of genes 1 10 1000 100 1 1000 10 10 1000 1 100 1000 10 100 1000

Algorithm 1: LAEE

Input: T = {t1, t2, …,tn}, a set of workload tasks

R = {r1, r2… rk}, a set of distributed compute resources

i.e. VMs.

D = {dc1, dc2, …, dcs}, a set of s data centers.

Population, generation size, DeadlineT, maximum

number of generations.

Output: allocating tasks T to R.

Processing:

1: Begin

2: Initialize population (Select first generation from a

pool of genes that can randomly allocate the set of

tasks T to the compute resources R)

3: Calculate the fitness value for each individual in the

 initial population

4. Find the top two fittest individuals and consider them

elite and pass them to next generation without any

changes.

5. Do

 5.1. Using random Roulette Wheel method to

 select two parents

 5.2. Perform crossover between the two parents

 5.3. Pass the individuals to the next generation

6. Until the new generation size = the initial population size

7. Replace current generation with the newly created

 generation.

8. Apply mutation to the genes with some probability and

 place the resulting chromosomes in the new population

9. Go to step 3 until the maximum number of generations is

 reached or if the value of the calculated fitness function is

less than or equal to DeadlineT (Equation (6)).

10. End

Performance Evaluation

This section validates the performance of the

proposed LAEE algorithm through extensive simulation

experiments conducted using the CloudSim 3.0.3

simulator. The performance results of the proposed

LAEE algorithm are analyzed and compared to the

benchmark task allocation algorithms, namely, Round

Robin (RR) and Shortest Job First (SJF, it sort the BoT

in increasing order to task’s length that measured in MI).

Also, we compared our algorithm with another

geneticbased task allocation algorithm (Kumar et al.,

2015), which we will name it (GGA) for ease of

reference. Since the objective is to enhance the QoS of

the workload, four time-based metrics, namely,

workload makespan, VM makespan, host makespan, task

execution time are measured in the comparison study.

We also show how our allocation algorithm succeeded to

reduce the total energy consumption when employing

the DVFS strategy to adjust the hosts’ frequencies based

on their CPU utilization.

Simulation Setup

We conducted experiments on Intel(R) core(TM) i7

Processor running at 3.4GHz with Windows 7 Operating

system and using NetBeans IDE 8.0.2 and JDK 1.8. We

generated a number of simulations by varying the

number of hosts or Physical Machines (PMs) and their

specifications, the number of compute resources (VMs)

and their configurations, the number of geographically

distributed data centers and the network’s links delay costs

to the Storage Node (SN) where the data files initially

reside and the requirements of the workload tasks.

Our simulations tackle two different scenarios. The

first uses synthetic traces, which randomly models the

cloud computing environment to measure the

effectiveness of the proposed method using the

timebased metrics. The second scenario uses the

benchmark Planetlab workload traces (PLT, 2016). The

specifications of the hosts used to measure the power

consumption due to using our proposed algorithm are HP

ProLiant ML110 G4 (1 × [Xeon 3040 1860 MHz, 2

cores], 4GB) and HP ProLiant ML110 G5 (1 × [Xeon

3075 2660 MHz, 2 cores], 4GB) (SPEC, 2016).

We extended the CloudSim environment to

implement three different matrices that represent the

links bandwidths, the links delays and the computed

cloudlets (tasks) execution times. The bandwidth matrix

represents the bandwidth link capacity between the SN

data center (broker side) and the data centers hosting the

VMs. The links’ delay matrix stores the values of the

average communication delay measured between the SN

data center and the different data centers hosting the

VMs (i.e. as if we are modeling Google cloud computing

environment with distributed data centers in America,

Asia and Europe). Although the distance is not an ideal

estimator for network latency, it is sufficient to

determine the relative rank in latency from end-user to

data centers as indicated in (Fan et al., 2016). Moreover,

we use the WAN Latency Estimator

(http://wintelguy.com/wanlat.html) to estimate the

network latency in milliseconds used in our simulations.

The estimated execution cost of each the workload tasks

(cloudlets) allocated to a specific VM on a DC is

calculated and stored in a temporary matrix based on our

modeling in Equations (1-3).

Soha Rawas and Ahmed Zekri / Journal of Computer Science 2018, 14 (3): 334.350

DOI: 10.3844/jcssp.2018.334.350

344

Table 5 shows the values of the different parameters

used in the genetic operations of our proposed

metaheuristic algorithm, LAEE.

Experimental Results

Scenario 1

This scenario uses synthetic data that randomly

model the cloud-computing environment. Table 6 shows

the ranges of values for the parameters used to model the

cloudlets/tasks, the data centers, the hosts and the virtual

machines (compute resources).

We compared the performance of our workload

allocation algorithm LAEE with RR, SJF and GGA

algorithms. Note that, the plotted results of LAEE and

GGA algorithms are the average output of 20

independent executions.

Workload Makespan

 Figure 6 shows the workload Makespan compared to

the three task-allocation algorithms RR, SJF and GGA.

As the result shows, the improvement rate of the BoT

Makespan ranges between 15% over GGA method and

about 28% over RR and SJF policies. This improvement

has a direct effect on the cloud QoS since it reflects the

cloud user requested services completion time.

VM Makespan

 Figure 7 and 8 shows the makespan of the compute

resources (VMs) and it compares with the other

algorithms. Actually, this performance metric is an

indicator of the success of an allocation algorithm to

distribute the workload tasks on the available VMs so that

the utilization of the VM is reduced. Figure 7 shows that

LAEE algorithm has approximately a uniform VM

Makespan among all available VMs compared to RR and

SJF, which reflects the distribution and load balancing of

the workload on available VMs. Also, Fig. 8 shows how

our proposed LAEE algorithm proves its efficiency in VM

Makespan reduction over a randomly selected 4 VMs.

Host Makespan

 Figure 9 and 10 shows the measurement of the host

makespan among the four algorithms. Figure 9 shows

the rate of improvement in the host's Makespan for

randomly selected hosts. Figure 10 reveals that there is

an 8% improvement on host makespan compared to

GGA and a 25% improvement compared to RR and SJF.

The achieved results reflect the importance of the

proposed method on load balancing. This improvement

has a direct outcome on the cloud QoS and a great effect

on improving cloud energy consumption.

Table 5: Genetic parameters settings

Parameter Value

Population size 100.00
Number of generations 100.00
Crossover rate 0.80
Mutation rate 0.15

Table 6: Cloudsim parameter settings
Entity type Parameter Value

Cloudlet Cloudlet length (MI) 200-4000
 Input/Output file size (MB) 3000-8000

 Number of cloudlets 500

Data center Number of distributed 2
 Data Centers (DC)

 Type of data centers Heterogeneous

 Link delay (milliseconds) 10-100
 between SN (broker) and DCs

 Bandwidth (Gbp/s) 1-10

Host Number of hosts 8
 dc1 hosts’ names h0, h1, h2, h3

 dc2 hosts’ names h00, h01, h02, h03

 Number of Cores 1-4
 MIPS/CPU 2000-4000

 RAM (GB) 16
VM Total number of VMs 24

 CPU (MIPS) 100-700

 Number of cores per VM 1

Table 7: Cloudsim parameter settings

Cloud resources Small Medium Large

Number of cloudlets 500 1000 1500
Number of VMs 30 100 160
Number of distributed DCs 5 7 10

Task Execution Time

 Figure 11 represent the task execution time

improvements on a randomly selected bunches of

tasks/cloudlets from a 500 cloudlets. However, Fig. 12

reflects the 500 cloudlets task execution time enhancement

compared to RR and SJF benchmark methods.

Workload Size

 As the number of cloudlets and compute resources

increase the improvement rate of LAEE algorithm

increases, this is expected from the nature of meta-

heuristic approaches. Consequently, a genetic-based

algorithm, like ours, is expected to reach a near-

optimal satisfactory solution to the optimization

problem provided the search space is large (Chu and

Beasley, 1997). Figure 13 shows the LAEE algorithm

improvement in getting a minimal makespan to the

BoT workload when the workload size (number of

tasks) is between 500 and 1500 while the number of

VMs ranged between 30 and 160 and the data centers

distributed among 5 to 10 geographical different

locations. Table 7 shows the ranges of values for the

parameters used in this experiment, where the sizes

are categorized into small, medium and large classes.

Soha Rawas and Ahmed Zekri / Journal of Computer Science 2018, 14 (3): 334.350

DOI: 10.3844/jcssp.2018.334.350

345

Fig. 6: Comparison graph of BoT Makespan among RR, GGA and SJF versus proposed LAEE algorithm

Fig. 7: Comparison graph of VM Makespan among RR, GGA, and SJF versus proposed LAEE algorithm

Fig. 8: Comparison graph of VM Makespan for randomly selected 4 VMs among RR, GGA and SJF versus proposed LAEE algorithm

Fig. 9: Comparison graph of Host Makespan among RR, GGA and SJF versus proposed LAEE algorithm

1110.02

850.2
812.2

690.2

Allocation policies

LAEE

GGA

RR

SJF

M
ak

es
p

an

VM id

LAEE GGA RR SJF 800

600

400

200

0

V
M

 M
ak

es
p
an

VM11 VM15 VM18 VM23

LAEE GGA RR SJF

1500

1000

500

0

H
o
st

 M
ak

es
p
an

h0 h1 h2 h3 h00 h01 h02 h03

Host id

Soha Rawas and Ahmed Zekri / Journal of Computer Science 2018, 14 (3): 334.350

DOI: 10.3844/jcssp.2018.334.350

346

Fig. 10: Comparison graph of average host Makespan among RR, GGA and SJF versus proposed LAEE algorithm

Fig. 11: Comparison graph of Task Execution Time for randomly selected 10 cloudlets among RR, GGA and SJF versus

proposed LAEE algorithm

Fig. 12: Comparison graph of Task Execution Time for 500 coudlets among RR and SJF versus the proposed LAEE algorithm

Deadline and SLA Violation

 SLA violation due to deadline constraint can reduce
user satisfaction and degrade cloud providers’ QoS.

This is beside the penalty ratio that paid by cloud
provider for consumers’ compensations if the given
deadline is missed. Literature and researchers reveal

that poor cloud experience and delay for each one-

second result in 16% degradation in customer
satisfaction and more than 22% drop in cloud services

sales (Bilal et al., 2018; Cheng et al., 2016).

The previous set of experiments and results show the

importance of LAEE algorithm in meetings its target

through minimizing the whole workload makespan to

meet users’ deadline constraint. Using different

800

600

400

200

0

LAEE GGA RR SJF

Task allocation policies

A
v
er

ag
e

h
o
st

 M
ak

es
p
an

45

40

35

30

25

20

15

10

5

0

T
as

k
 e

x
ec

u
ti
o
n
 t
im

e

LAEE

GGA

RR

SJF

100 102 104 106 108 110

Task id

Soha Rawas and Ahmed Zekri / Journal of Computer Science 2018, 14 (3): 334.350

DOI: 10.3844/jcssp.2018.334.350

347

configurations and cloud resources (as shown in Table

7), Fig. 14 compares the actual workload makespan with

users’ time constraint. It clearly displays that LAEE

algorithm guarantees least number of SLA violations.

For the first two sets of the experiment (Small and

Medium), the SLA violation due to deadline constraint

using LAEE algorithm is less 60% compared to other

competing algorithms. However, in a Large set

experiment, the SLA violation using LAEE algorithm is

less than 0.5% compared to actual time constraint and

less 80% compared to other algorithms. This is due to

the nature of meta-heuristics GA algorithms that operates

in a high performance using large search space to find a

near-optimal solution (Fong et al., 2018).

Scenario 2

This test scenario is mainly provided to show the
effectiveness of our proposed algorithm in reducing the
total power consumption of the provider’s data centers.
We employed the DVFS techniques incorporated in the
CloudSim simulator to benefit from any low utilization
of the hosts to reduce the working frequency which
contributed in reducing the energy consumption. This
secondary objective (reduce energy consumption) is

helpful in producing green computing while it directly
leverages the revenue of cloud providers.

The experiment runs real Planetlab workload traces

(PLT, 2016). The selected workload is made up of

302,976 Cloudlets with different cloudlets lengths. There

are 800 heterogeneous hosts varies between HP ProLiant

ML110 G4 (1 x [Xeon 3040 1860 MHz, 2 cores], 4GB)

and HP ProLiant ML110 G5 (1 x [Xeon 3075 2660

MHz, 2 cores], 4GB) to run 1052 heterogeneous VMs

with Amazon specifications.
The aim of this experiment is to find the effect of

energy efficient task allocation on other management
methods. The DVFS technique (Maiti and Sudeep, 2017)
is used to adjust the hosts' CPU frequency according to
their CPU utilization from executing the allocated tasks to
it. In CloudSim, the frequency dynamically adjusted based
on the CPU utilization percentage (Calheiros et al., 2011).

Figure 15 shows the energy consumption
improvements of the used data centers when
incorporating the DVFS technique in the proposed
LAEE task allocation algorithm, rather than just using
non-power aware allocation algorithms with DVFS
technique. As shown in Fig. 15, the average power
saving improvement rate due to using our LAEE
algorithm is about 8% over the using the GGA, RR and
SJF allocation algorithms.

Fig. 13: BoT Makespan in different number of cloudlets and VMs

Fig. 14: BoT SLA deadline violation in different number of cloudlets and VMs

2000

1500

1000

500

0

LAEE GGA SJF RR

Small Medium Large

of cloud resources

B
o
T
 M

ak
es

p
an

Cloud resources

SLA violation

Small Medium Large

%
 o

f
S
L
A

 v
io

la
ti
o
n

LAEE

GGA

SJF

RR

80%

60%

40%

20%

0%

Soha Rawas and Ahmed Zekri / Journal of Computer Science 2018, 14 (3): 334.350

DOI: 10.3844/jcssp.2018.334.350

348

Fig. 15: Comparison graph of DC Energy Consumption among RR, GGA, and SJF versus proposed LAEE algorithm

It is worth to say that, although reducing CPU
frequency minimizes the CPU power consumption (as
Equation 11 depicts). However, this could not lead to
energy saving since reducing frequency implies that
more time will be taken to handle the given workload
(Huai et al., 2013). Nevertheless, the LAEE allocation
algorithm that targets to minimize the workload
makespan shows its contribution on energy saving
through effective load balancing (as shown in Section
6.3.1 – Fig. 7) that leads to makespan as well as energy
minimization compared to other competitive algorithms
that employ a DVFS mechanism.

Conclusion

This paper investigated the problem of dataintensive

workload allocation in geo-distributed cloud environment.

The problem formulated as a nonlinear programming

optimization problem. Since this problem is known to be

NP-hard, a meta-heuristic genetic algorithm is employed

to find an optimized solution to the problem. The

proposed algorithm considers both the task execution time

as well as the cost of the data files transfer time from the

storage location to the compute servers.
Extensive simulations are conducted using both

synthetic and real traces on the known CloudSim cloud
simulation package to prove the effectiveness of our
proposed method. The results show the superiority of our
algorithm over known allocation algorithms in minimizing
the total makespan of a bag-of-tasks workload when
executed on geo-distributed compute resources.

The DVFS technique is combined to our algorithm to
show the effectiveness of our proposed algorithm in
reducing the total energy consumption of the providers’

data centers, which consequently contributed in maximizing
the profit while keeping the users QoS improved.

Competing Interests

The authors declare that they have no competing

interests.

Acknowledgements

The authors wish to thanks Beirut Arab University

for supporting this work.

Author’s Contributions

Soha Rawas: Contributed to the LAEE concept.

Wrote the initial draft and conducted the experiments.

Ahmed Zekri: Contributed to the LAEE concept.
Designed the paper structure and gave the feedbacks to

all its versions. Discussed and enhanced the manuscript,

revised the model and formulation, added sections to

manuscript.

Ethics

We testify that this research paper is original and

contains unpublished material.

References

Al-Dulaimy, A., A. Zekri, W. Itani and R. Zantout, 2016.

Towards solving the problem of virtual machine

placement in cloud computing: A job classification

approach. J. Comput. Sci., 12: 113-127. DOI:

10.3844/jcssp.2016.113.127.

Banerjee, S., M. Adhikari, S. Kar and U. Biswas, 2015.

Development and analysis of a new cloudlet

allocation strategy for QoS improvement in cloud.

Arabian J. Sci. Eng., 40: 1409-1425.

Bilal, K., O. Khalid, A. Erbad and U.K. Samee, 2018.

Potentials, trends and prospects in edge

technologies: Fog, cloudlet, mobile edge and micro

data centers. Comput. Networks, 130: 94-120

Buyya, R., C.S. Yeo, S. Venugopal, J. Broberg and I.

Brandic, 2009. Cloud computing and emerging IT

platforms: Vision, hype and reality for delivering

computing as the 5th utility. Future Generation

Comput. Syst., 25: 599-616.

1200

1000

800

600

400

200

0

LAEE

GGA

SJF

RR

DC energy consumption

E
n
er

g
y
 c

o
n
su

m
p
ti
o
n
 (
K

W
H

)

DVFS

Soha Rawas and Ahmed Zekri / Journal of Computer Science 2018, 14 (3): 334.350

DOI: 10.3844/jcssp.2018.334.350

349

Calheiros, R.N., R. Ranjan, A. Beloglazov, C.A.F.D.

Rose and R. Buyya, 2011. CloudSim: A toolkit for

modeling and simulation of cloud computing

environments and evaluation of resource

provisioning algorithms. Software Practice

Experience, 41: 23-50. DOI: 10.1002/spe.995

CGS, 2015. Cluster green software.

http://www.clustergreensoftware.nl/english/

Chatterjee, T., V.K. Ojha, M. Adhikari, S. Banerjee and

U. Biswas et al., 2014. Design and implementation

of an improved datacenter broker policy to improve

the QoS of a cloud. Proceedings of the 5th

International Conference on Innovations in Bio-

Inspired Computing and Applications, (ICA’ 14),

Springer International Publishing, pp: 281-290.

Cheng, H.K., Z. Li and A. Naranjo, 2016. Research

note—Cloud computing spot pricing dynamics:

Latency and limits to arbitrage. Inform. Syst. Res.,

27: 145-165. DOI: 10.1287/isre.2015.0608

Chu, P.C. and J.E. Beasley, 1997. A genetic algorithm

for the generalised assignment problem. Comput.

Operations Res., 24: 17-23.

 DOI: 10.1016/S0305-0548(96)00032-9

Cook, G. and D. Pomerantz, 2015. Clicking clean: A

guide to building the green internet.

Cook, G., 2012. How clean is your cloud. Catalysing an

Energy Revolution.

Cook, G., 2014. Clicking clean: How companies are

creating the green companies? Greenpeace Int.

Tech. Rep.

Dong, Z., N. Liu and R. Rojas-Cessa, 2015. Greedy

scheduling of tasks with time constraints for energy-

efficient cloud-computing data centers. J. Cloud

Comput., 4: 5-5.

Fan, Y., H. Ding, L. Wang and X. Yuan, 2016. Green

latency-aware data placement in data centers. Comput

Netw. 110: 46-57. DOI: 10.1016/j.comnet.2016.09.015

Fong, S., D. Suash and X.S. Yang, 2018. How meta-

heuristic algorithms contribute to deep learning in

the hype of big data analytics. Proceedings of the

Progress in Intelligent Computing Techniques:

Theory, Practice and Applications, (TPA’ 18),

Springer, Singapore, pp: 3-25.

Fox, A., R. Griffith, A. Joseph, R. Katz and A.

Konwinski et al., 2009. Above the clouds: A

Berkeley view of cloud computing. PhD thesis

University of California, Berkeley.

Gartner, I., 2007. Gartner estimates ICT industry

accounts for 2 percent of global CO2 emissions.

Golberg, D.E., 1989. Genetic Algorithms in Search,

Optimization and Machine Learning. 1st Edn.,

Addison-Wesley, Boston, ISBN-10: 0201015765,

pp: 412.

Ha, M.T., M. Turilli, A. Merzky and S. Jha, 2018.

Towards general distributed resource selection.

http://wintelguy.com/wanlat.html

https://docs.microsoft.com/enus/azure/guidance/guidanc

e-compute-multipledatacenters

Huai, W., Z. Qian, X. Li, G. Luo and S. Lu, 2013.

Energy aware task scheduling in data centers.

JoWUA, 4: 18-38.

Kliazovich, D., S.T. Arzo, F. Granelli, P. Bouvry and

S.U. Khan, 2013. e-STAB: Energy-efficient

scheduling for cloud computing applications with

traffic load balancing. Proceedings of the IEEE

International Conference on and IEEE Cyber,

Physical and Social Computing Green Computing

and Communications (GreenCom), Aug. 20-23,

IEEE Xplore Press, Beijing, China, pp: 7-13.

 DOI: 10.1109/GreenCom-iThings-

CPSCom.2013.28

Koomey, J.G., 2007. Estimating total power

consumption by servers in the US and the world.

Kumar, D., B. Sahoo, B. Mondal and T. Mandal, 2015.

A genetic algorithmic approach for energy efficient

task consolidation in cloud computing. Int. J.

Comput. Applic.

Kumar, J. and A.K. Singh, 2018. Workload prediction in

cloud using artificial neural network and adaptive

differential evolution. Future Generation Comput.

Syst., 81: 41-52. DOI: 10.1016/j.future.2017.10.047

Liu, S., S. Ren, G. Quan, M. Zhao and S. Ren, 2013.

Profit aware load balancing for distributed cloud

data centers. Proceedings of the IEEE 27th

International Symposium on Parallel and Distributed

Processing, May 20-24, IEEE Xplore Press, Boston,

pp: 611-622. DOI: 10.1109/IPDPS.2013.60

Maiti, S. and P. Sudeep, 2017. DELCA: DVFS efficient

low cost multicore architecture. Proceedings of the

on Great Lakes Symposium on VLSI, May 10-12,

Banff, Alberta, pp: 107-112.
 DOI: 10.1145/3060403.3060422
Mazumdar, P., S. Agarwal and A. Banerjee, 2016. Pro

SQL Server on Microsoft Azure. 1st Edn., Apress,
Berkeley, ISBN-10: 1484220838, pp: 211.

McKinsey, C., 2008. Revolutionizing data center
efficiency. McKinsey Company.

Nemhauser, G.L. and L.A. Wolsey, 1988. Integer
programming and combinatorial optimization.
COAL Bull., 20: 8-12.

Piao, J.T. and J. Yan, 2010. A network-aware virtual

machine placement and migration approach in cloud

computing. Proceedings of the 9th International

Conference on Grid and Cooperative Computing,

Nov. 1-15, IEEE Xplore Press, Nanjing, pp: 87-92.

DOI: 10.1109/GCC.2010.29

PLT, 2016. Planet lab traces. https://www.planet-lab.org

SPEC, 2016. Standard performance evaluation

corporation. SPEC. http://www.spec.org

Soha Rawas and Ahmed Zekri / Journal of Computer Science 2018, 14 (3): 334.350

DOI: 10.3844/jcssp.2018.334.350

350

Sverdlik, Y., 2011. Growth in data center electricity use

2005 to 2010. Analytics Press, Tech. Rep.

Toosi, A.N., R.O. Sinnott and B. Rajkumar, 2018. Resource

provisioning for data-intensive applications with

deadline constraints on hybrid clouds using Aneka.

Future Generation Comput. Syst., 79: 765-775.

DOI: 10.1016/j.future.2017.05.042

Yin, Z.Y., Y.F. Jin, S.L. Shen and H.W. Huang, 2017.

An efficient optimization method for identifying

parameters of soft structured clay by an enhanced

genetic algorithm and elastic–viscoplastic model.

Acta Geotechnica, 12: 849-867.

 DOI: 10.1007/s11440-016-0486-0

