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Abstract: The proliferation of cloud computing relied on the virtualization 

of the compute and storage resources and provisioning them dynamically 

according to users’ needs on a pay-per-use model. Massive cloud providers 

have geo-distributed cloud data centers to ensure service reliability, 

availability and satisfy user’s need. Therefore, cloud management systems 

are necessary to increase the profit of cloud providers and to improve the 

quality-of service demanded by users. This paper focuses on an energy-

efficient method to solve the problem of allocating data-intensive 

workloads in geographically distributed data centers. The workload’s tasks 

are characterized by large data transfer times than their execution times. 

The problem formulated as a nonlinear programming optimization problem. 

Then, to find an optimal solution to the problem, meta-heuristic genetic 

algorithm is proposed. The designed heuristic takes into account the cost of 

the data transfer time from the storage location to the compute servers as 

well as the workload makespan on the available hosts. Extensive 

simulations using the CloudSim simulator are conducted to evaluate the 

efficacy of the proposed allocation method and how it performs with 

respect to other methods in the literature. Our results show significant 

enhancements in energy consumption while respecting the user’s QoS. 

 

Keywords: Green Computing, Energy Efficiency, Geo-Distributed Data 

Centers, Genetic Algorithm 

 

Introduction 

Throughout its history, computer systems have evolved 

in a spiral way of integration and distribution. They 

experienced a transition from centralized, massive, shared 

mainframes in the 1970s to decentralized, handy, personal 

PCs in the 1990s. In 2010, nevertheless, they moved into 

consolidated and shared virtualized computing, networking 

and storage resources invisible to the users, or the so-called 

cloud computing systems (Fox et al., 2009). 

Cloud computing has developed into a widespread 

computing paradigm which provides systems with 

cheaper and accessible resources. It also provides 

researchers with a new method to set up their required 

computing systems and carry out their scientific as well 

as business applications without purchasing 

infrastructure or software at all (Fox et al., 2009). 

However, using cloud services allow for a more flexible 

and pay-as-yougo pattern. Moreover, it becomes like 

conventional utilities in everyday life (e.g., water, 

electricity, gas and telephony) (Buyya et al., 2009). 

The extensive growth of cloud systems has led to the 

construction of geo-distributed Data Centers (DCs) 

worldwide with thousands of computing, networking and 

storage nodes. Consequently, this led to a drastic 

increase in the DCs energy consumption, that directly 

affect cloud providers profit and leads to serious 

environmental issues (high carbon emission) that affect 

cloud computing sustainability. 

According to a study by the Uptime Institute and 

McKinsey (2008), server clusters in DCs contribute to 

30% of the world’s CO2 emissions and will surpass 

those of the airline industry by 2020. Other recent 

studies by Greenpeace indicate that IT carbon footprints 

occupy 2% of the global greenhouse gas emissions 

(Sverdlik, 2011; Cook, 2012), which equates the CO2 

emissions by the aviation industry (Gartner, 2007), 

leading to the drastic greenhouse effect. Koomey 

expected in (2007) that energy consumptions in DCs 

would continue to increase rapidly unless advanced 

energy efficient mechanisms are established and applied. 

The most recent studies by Greenpeace estimate the 
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number of currently online people to be around 2.5 

billion. They believe that this number is expected to 

increase by 60% in the next 5 years. That means about 

80% of the planet adult population will be connected 

(Cook, 2014; Cook and Pomerantz, 2015). Thus, 

achieving power-efficiency in today’s Internet and cloud 

servers is a fundamental concern. 

To tackle the issue of high-energy usage, eliminating 

electricity ineffectiveness and waste in the way it is carried 

to computing resources is a must. It is also important to 

consider how these resources are used to serve the user 

applications workloads. Energy-aware software 

management techniques have the potential to reduce energy 

consumption in cloud DCs between 30 and 90% (CGS, 

2015). These techniques cover resource virtualization, 

process and data migrations, resource consolidations and 

user applications scheduling techniques. 
Cloud service providers distribute their DCs in 

different geographical regions to ensure availability and 
disaster recovery. Managing data movement between the 
computing and storage nodes is crucial for delivering 
good quality of service. Therefore, selecting proper DCs 
to store applications data and keeping it near to the 
processing nodes recently attracted researchers’ attention. 

The allocation of tasks (called cloudlets (A Cloudlet 
is defined as an application task running on a cloud 
environment. It is characterized by a set of attributes 
such as: length, type, storage, memory requirements, 
among others) mapping in cloudSim terminology) within 
a batch of data-intensive workload to Virtual Machines 
(VMs) in a distributed cloud environment, which 
respond to thousands of user’s requests during a short 
period of time, is a challenging problem. Therefore, a 
proper allocation method allocates the workload tasks to 
geographically distributed cloud DCs taking into account 
the cost of the network delay can substantially reduce the 
overall execution time of the workload’ last (or the 
makespan) and optimize the utilization of the VMs 
compute resources. Consequently, an improvement of 
the overall system performance, as well as the user's 
QoS, is expected. 

This paper studies the problem of how to consider the 
delay factor when designing an energy efficient task 
allocation algorithm in a geo-distributed cloud 
environment. The goal of the proposed method is to 
minimize the total execution cost of data-intensive 
workloads in geographically distributed compute 
resources owned by one cloud service provider such as 
Google and Amazon. It aims to increase the QoS and 
hence customer satisfaction, as well as to reduce the data 
centers’ energy consumption using the Dynamic Voltage 
and Frequency Scaling (DVFS) technique. The proposed 
allocation method evaluated using a multicloud 
framework developed on the CloudSim (Calheiros et al., 
2011) simulator. The reason for evaluating the proposed 
method on a simulator rather than real cloud is that our 
method requires different scenarios with various 

infrastructure properties to evaluate its efficacy in terms 
of QoS and energy efficiency. Our contribution in this 
study can be summarized as follows: 
 

• The problem of allocating data-intensive bagof-tasks 

BoT workloads is formulated as a nonlinear 

optimization problem taking into consideration the 

network’s delay times to minimize the makespan of 

the workload, i.e., enhance the users QoS 

• A meta-heuristic genetic algorithm is designed to 

solve the proposed optimization problem on 

geographically distributed data centers 

• Extensive simulations using CloudSim tool are 

conducted to validate the proposed algorithm using 

both real and synthetic workload traces. The 

simulation results showed the superiority of the 

LAEE algorithm in enhancing the user’s QoS as 

well as reducing the energy consumption of the data 

centers compared to other competing algorithms 

 

The organization of this paper is as follows. Section 2 

gives some of the related works. Section 3 presents the 

assumptions of the cloud system model. Section 4 

presents our mathematical formulation. Section 5 

presents the proposed genetic algorithm to find a 

nearoptimal solution to the formulated optimization 

problem. Section 6 details the results obtained using a 

simulation toolkit and conclude the paper in Section 7. 

Related Works 

The proliferation of cloud computing has led to the 

establishment of distributed systems to ensure 

availability and improve the processing of user requests. 

Therefore, the mapping process of cloud user’s 

workloads to resources of globally distributed DCs has 

become an issue. This problem attracts researchers to 

optimize the workload allocation process with many 

objectives in mind such as makespan minimization, load 

balancing, cost reduction and energy enhancement, as 

well as network bandwidth improvement. 
Banerjee et al. (2015), proposed a new greedy 

cloudlet allocation method to improve the makespan of 
VMs through load balancing. The proposed model 
improves VMs and hosts load balancing with QoS 
intention through minimizing the VMs and hosts 
Makespan as well as the cloudlets completion time. The 
model achieved a load balancing through distributing the 
predictable load to VMs based on their capacity to 
enhance system utilization. Dong et al. (2015), the task 
mapping was formulated as an integer programming 
optimization problem which is solved using a greedy 
algorithm. The proposed Most-Efficient-Server-First 
(MESF) scheduling scheme schedules tasks to most 
energy efficient servers to minimize DC energy 
consumption. The proposed model considers the average 
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queuing delay of tasks build up on some of the servers. 
However, simulation results showed that MESF operates 
poorly in case of independent and identical distributed 
task arrivals that follow an exponential distribution.  

The Conductance cloudlets allocation policy 
proposed by Chatterjee et al. (2014), considering VMs 
capacity as a pipe by finding the conductance of each 
VM through the ratio of its processing speed to the sum 
of the processing speed of all available VMs. The 
proposed algorithm did not take into account the 
cloudlets length, which leads to VMs load balancing 
problem. Huai et al. (2013) studied the task scheduling 
problem in heterogeneous servers’ environment to 
reduce the energy consumption. The authors proposed 
the Benefit-driven Scheduling (BS) method that maps 
tasks to the most suitable server type. For homogeneous 
systems, the paper proposed two allocation task 
scheduling using two different heuristic algorithms 
named Power Best First (PBF) and Load Balancing 
(LB). The proposed methods applied and tested on a 
Dynamic Voltage and Frequency Scaling (DVFS) 
homogeneous and heterogeneous server-based 
environment to study the effect of suitable working 
frequency in achieving power saving. The results 
showed around 13% power saving. 

All the above works targeted the minimization of 
energy consumption and improving the QoS. However, 
they do not consider the problem of transmission delay 
and cost in selecting the most suitable computing 
resources for workload execution. 

Kliazovich et al. (2013) investigated the role of the 
network fabric and proposed an energy efficient task 
scheduler with traffic load balancing, the e-STAB 
scheduler. The proposed method consolidated jobs to a 
minimum number of activated servers in order to 
minimize network congestion and delay. Their method 
studied the problem of network delay and energy 
efficiency inside one DC. Liu et al. (2013) proposed an 
energy efficient, profit and cost aware task scheduling 
and resource allocation in a multielectricity-market 
environment to maximize the net profit of cloud 
provider. The model incorporates the multi-electricity 
market, SLA and net profit as a multi-objective task-
scheduling framework. The problem was formulated as a 
constrained optimization problem. The results showed 
the proposed method improved the net profit due to 
energy efficient using of computing resources. 

This paper studies a new approach targeting data-
intensive workload allocation in geographically 
distributed DCs. It incorporates the delay incurred due to 
the network link capacity in mapping the workload 
which leads to further reduction in the DC energy 
consumption. Also, the paper proposes a data location-
aware algorithm to the task allocation problem that takes 
into consideration the communication costs between the 
distributed storage servers and computes servers when 
allocating the workload tasks/cloudlets to the Virtual 
Machines (VMs). Simulations on real workload traces 

show that the proposed work minimized the workload 
Makespan while reduced the DC energy consumption 
compared with other approaches. 

Cloud System Model 

This section defines the problem under investigation 

and describes the cloud system architecture used in this 

study. Our model targets geodistributed cloud 

environment for running dataintensive applications. 

Some Definitions 

Cloud-computing environment is a parallel and 

distributed system working at the same time to satisfy 

the users’ needs (Buyya et al., 2009). It is the delivery of 

on-demand computing resources, everything from 

applications to data centers infrastructure, over the 

internet on a payper-use basis. A cloud broker is a third 

party that acts as an intermediary between the customers 

of cloud services and the service provider. Most of the 

cloud providers have DCs distributed over different sites 

interconnected via Wide Area Network (WAN). The 

mapping process of the user’s workloads to the cloud 

computing resources (i.e. the VMs running on the data 

center servers) is called task allocation. 

Target Application 

This paper studies data-intensive applications where 
large data transfer times compared with their processing 
times characterizes them. This type of application may 
arise in for example distributed database query 
processing. Usually, the application data files reside on 
one or more servers of data centers and the computing 
phase might be done at another data center. Therefore, 
data are required to move from the storage site to the 
computing site to process user’s query request and 
deliver information quickly and efficiently.  

It is clear that the overhead of data transfer can 
dramatically degrade the performance of the application 
especially if the network traffic is not optimized. 
Therefore, efficient task allocation methods that move 
data to process efficiently are mandatory to enhance the 
overall completion time of data-intensive workloads.  

Co-locating data and computation on the same DC to 
serve data-intensive applications would evidently lead to 
ideal performance. Nevertheless, this is not always 
possible. Another motivating scenario when a private 
and secured data of a company located on their local 
storage nodes. However, the company has limited 
computational resources and facing a deadline constraint. 
In this case, the company may leverage its resources by 
moving from their private computation resources to 
public cloud so that they can meet their deadline. In this 
particular scenario, an application provider aims are to 
serve the users’ request with a good quality of service 
and within a deadline time determined in advance. 
Assume that requesting the service is through a given 
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broker of the service provider. The broker responsibility 
is to accept the users’ requests, creating a task for each 
request and then allocates the tasks to the computing 
resources or virtual machines run specifically for this 
application. However, moving data to distant computational 
resources might become a bottleneck due to the data size 
and network bandwidth. Moreover, addressing computation 
separately from data movement would lead to performance 
degradation and SLA violations. 

Specifically, this paper targets to schedule deadline 
constrained data-intensive workload applications. The 
user primarily transfers the data files to the local storage 
infrastructure of the cloud. The workload is consists of a 
set of parallel tasks; each one can run separately on a 
computing node. Additionally, each task is associated 
with a data file, residing within the broker storage node. 
Finally, all the workload tasks must finish within the 
deadline constraint. 

System Model 

Geographically distributed cloud environments, such 
as Amazon and Google, provide data storage clouds, 
such as Amazon S3, for data storage and compute 
clouds, such as Amazon EC2, as services. However, 
storing the application’s data in different storage 
nodes/servers than the running application’s processes will 
definitely incur high data transmission due to the cost of 
moving data back and forth over network interconnection 
links (Piao and Yan, 2010). Our objective in this study is 
to minimize the submitted workload makespan to improve 
the users QoS while reducing the energy consumption of 
the compute resources.  

Throughout this paper, a task will be considered as 
the smallest unit work in a user’s submitted data-

intensive application. An application may consist of one 
or more tasks. The set of parallel tasks referred as a BoT. 
Each task has a length measured in Millions of 
Instructions (MI). Although it is difficult to predict the 
number of instructions executed by each task, however, 
in the literature different smart models are constructed 

for this purpose (Kumar and Singh, 2018; Ha et al., 
2018; Toosi et al., 2018; Al-Dulaimy et al., 2016) such 
as the prediction model developed by the authors in 
(Ha et al., 2018) to describe the requirements of tasks 
and to estimate the cost of running that task on an 
arbitrary resource using baseline measurements from a 

reference machine. 
Tasks are allocated to a set of running VMs which is 

initialized in advance. This is due to the overhead of 

setting up and creating a new VM. The pre-allocation of 

the VMs, as done in Azure cloud environment 

(https://docs.microsoft.com/enus/azure/guidance/guidanc

e-compute-multipledatacenters; Mazumdar et al., 2016), 

achieves high availability across regions.  

As depicted in Fig. 1, the cloud system model 

considered in this study has a set of DCs distributed 

across different geographical sites. A broker accepts the 

requests of users and places their data files on some 

Storage Node (SN) on a different DC. We assume the 

links between the SN and the VMs on the DCs are set up 

to move the user's data files to and from the DCs hosting 

the VMs. 

Problem Formulation 

This section presents our mathematical formulation 
of the task allocation problem of data-intensive 
workloads as a nonlinear optimization problem. Our 
main objective is to minimize the workload makespan by 
reducing the network delay due to the transfer of tasks’ 
data transmission and to minimize the power 
consumption of servers which is expected to reduce the 
DCs energy consumption, as is shown in the 
experimental results section. 

Model Assumptions 

Before proceeding with the problem formulation, the 

following assumptions are taken into consideration: 

 

• The workload consists of a set of independent tasks 

(called bag-of-tasks or BoT). Therefore, there are no 

dependencies between the tasks. 

• Each task has a prior known length measured in 

Millions of Instructions (MI). 

• The VMs are already initialized and running on 

servers of specified DCs. 

• The BoT workload is submitted to a broker together 

with the task’s associated data files associated which 

are stored in a specified storage node/server. 

• There are dedicated network links between the 

storage node and the distributed data centers where 

the VMs reside on. 

• The available VMs have different computing power 

(MIPS) 

• The space-shared policy is a VMM allocation policy 

that allocates one or more Pe to a VM and doesn't 

allow sharing of PEs. If there is no free Pes to the 

VM, allocation fails. Free PEs are not allocated to 

VMs. 

• A task is allocated and executed in only one VM 

(computing resource). 

 

Model Formulation 

Table 1 defines the different parameters used in our 
formulation. Given a set of n tasks, T = {t1, t2, …,tn}, a 
set of m files, F={f1, f2, …,fm}, associated with the tasks 
T such that n = m, a set of data centers D = {dc1, dc2, …, 
dcs} distributed in different sites such that each site 
might host more than one DC. The following equations 
define how the computing and transfer times are 
estimated and used in calculating the makespan of the 
total workload. 
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Fig. 1: Cloud provider environment 
 

Table 1: Symbols used in LAEE problem 

Notation Description 

T Independent set of tasks in a workload called a bag-of-tasks (BoT) 

ti  A single task (cloudlet) submitted by a user, ti ∈ T  
F The set of input and output files associated with tasks T 

fi A data file associated with  a task j, f ∈ F  
D A set of geographically  distributed data centers 

dcd A data center at a given location s.t. dcd ∈ D 
R Set of k compute resources, i.e., VMs 

d

jr  Compute resource j on dcd s. t. rj ∈ R and dcd ∈ D  

( , )di jExecTime t r  Execution time of task ti on compute resource rj hosted in data center dcd 

( , )di jTranTime t r  Transfer time associated with task ti to be executed on compute resource rj on dcd 

( )
i

InputSize f  the input file size associated  with task ti 

( )
i

OutputSize f  the output file size associated with task ti 

Tt A set of tasks running on a compute resource d

jr s.t. Tt ⊂ T 

Length(ti) Length of a task ti (measured in million instructions) 

( )djmips r  Available mips for compute resource rj at dcd 

( )djpe r  The number of processing elements assigned to compute resource d

jr  at dcd 

Available (LinkBw(dcd)) available link bandwidth capacity between the broker (storage node) and data center d hosting  

 resource d

jr due to interaction of different file transfers on the same link 

delay(dcd) The link delay time to transfer data to data center d hosting resource d

jr  

DeadlineT The deadline time constraints for a BoT T given by the SLA between the provider and user 

 

The computation time of task ti on compute resource 
d

jr  is defined as (Banerjee et al., 2015): 

 

( )
( , )

( ) * ( )

d i
i j d d

j j

Length t
ExecTime t r

mips r pe r
=  (1) 

 
We assumed in (1) that a task can run on all the 

available cores or processing elements (Pes) owned by 

the VM (i.e., rj). 

The transfer time to move the input and output files 

associated with task ti to the compute resource rj on the 

data center dcd can be estimated as: 

 

( , )

( ) ( )
2

( ( ))

* ( )

d

i j

i i

d

d

TranTime t r

InputSize f OutputSize f

Available LinkBw dc

delay dc

+

= +  (2) 

Cloud users 

Broker 

DC2 

DC1 

DC3 

DC4 

Storage Node (SN) 
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In Equation (2), InputSize (fi) and OutputSize (fi) are 

the input file and output file sizes associated with task ti, 

the Available(LinkBw(dcd)) is the available link 

bandwidth between the Storage Node (SN), where files 

reside in and the compute resource d

jr  located on data 

center dcd due to interaction of different file transfers on 

the same link. The delay(dcd) is the delay time of the 

network link used to move the input and output data files 

associated with task ti on compute resource d

jr . 

The total execution time of a task ti, including both 

computing and communication time, (i.e., the turnaround 

time) to be processed on compute resource rj is given as: 

 

( , )

( , ) ( , )

( , ) ( , )

( , ),

d

i j

d d

i j i j

d

j

d d

i j i j

d

i j

CompletionTime t r

TranTime t r ExecTime t r

if there are available resources r

CompletionTime t r TranTime t r

ExecTime t r otherwise



 +


= ∈
 +
+

 (3) 

 

In Equation (3), we assumed that the VMScheduler (In 

CloudSim, VmScheduler is an abstract class that represents 

the policy used by a Virtual Machine Manager (VMM) to 

share processing power among VMs running in a host) used 

in our CloudSim simulations would follow the space-shared 

policy to execute the BoT workload in case of unavailable 

resources in d

jr . Noting that CompletionTime ( , )dx jt r  is the 

completion time of the recently ended task, where x is the 

index of the recent ended task. 

Given the completion time of a task in Equation (3) 

above, the makespan for executing the set of t tasks, Tt = 

{t1, t2,…, tt}, on a virtual machine d

jr s. t. Tt ⊂T, will be 

the completion time of the last executed task tt, as shown 

in Equation (4) and Fig. 2: 

 

( , ) ( , )d d

t j t jMakespan T r CompletionTime t r=  (4) 

 

Figure 2 shows a possible situation when t tasks are 

assigned to one virtual machine d

jr . 

Now, our objective is to allocate the BoT workload 

consisting of tasks T to the set of available computing 

resources R running on the set of data centers D so that 

the total makespan time is minimum. Equations (5), (6) 

and (7) define the formulated optimization problem: 

 

( )( )1

1

minimize(max ) ,

t

d

j k t j
d S

T T

Makespan T r
≤ ≤

≤ ≤

⊂

 (5) 

 

Such that: 

( , )
T

Makespan T D Deadline≤  (6) 

 

The constraint in Equation (6) ensures that 

completion time of the whole workload should not 

exceed the deadline time constraints given by the SLA 

agreement between the provider and the workload users. 

Noting that the violation of the deadline constraint can 

lead to undesired consequences for the user as well as 

the cloud provider. 

Example 

This example demonstrates how our proposed model 

can be used to allocate a small Bot workload with four 

tasks {C1, C2, C3, C4} so that the makespan is the 

minimum between all possible allocations. We assume 

two different geographical distributed environments, 

{dc1, dc2}. Each data center has one compute resource 

(VM). Figure 2 shows a sketch of the model using the 

numbers mentioned above. The values of the different 

parameters associated with the workload tasks and the 

cloud system are given in Table 2. 

As Fig. 3 shows, a broker needs to find the best 

virtual machines in the available data centers to allocate 

the incoming workload so that total makespan of the 

workload is minimum and does not exceed the deadline 

time constraints determined in the SLA agreement 

between the provider and workload users. 

 

 

 
 

Fig. 2: Scheduling t tasks to d

jr  

 
 

 
 
Fig. 3: Cloud service provider environment model 

Queue of waiting tasks Completed tasks 

tt ti+1 ti ti-1 ti-2 t1 
d

jr  

dc1                                     dc2 

VM1                                   VM2 

Broker 

Incoming workload 

C4             C3          C2           C1 
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The objective is to find an optimal allocation to the 

workload {C1, C2, C3, C4} with a minimal makespan 

among all possible allocations. Table 3 shows the 

calculated makespan for all possible cloudlets allocation 

in this example (16 in this example). We show the 

estimated transfer and execution times according to 

Equations (1-3) for the scenario “the 4 cloudlets are 

allocated to VM1 on dc1”. Since there is one processing 

core, the first cloudlet arrives will be assigned the 

physical core while the rest of cloudlets will be waiting 

in a queue as shown in Fig. 4. Using the formulation 

discussed in section 4 the output will be as follows: 
 

( ) ( )

( )

( )

( )

9 9 9

1

3

1

1

1

1

( 1 ) 3*10 3*10 / 10*10  

 2*50*10 0.7

( 1 ) 1000 / 1000*1 1

( 1 )  0.7 1 1.7

( 2 ) 1.7 0.7 2000 /1000*1 4.4

( 3 ) 3.4 0.7 3000 /1000*1 8.

VM

VM

VM

VM

VM

TranTime C

ExecTime C

CompletionTime C

CompletionTime C

CompletionTime C

−

= +

+ =

= =

= + =

= + + =

= + + =

( )1

1

( 4 ) 8.1 0.7 4000 /1000*1 12.8
VM

CompletionTime C = + + =  (7) 

 

Therefore, the makespan of the workload consisting of 

the 4 cloudlets is equal to 12.8 with Makespan of 11.8. 

 
 

Fig. 4: Data center task scheduler model 
 
Table 2: The specifications of the cloud model discussed in the above example 

Entity type Parameter Name Value 

Cloudlets Cloudlet length (MI) C1 1000 
  C2 2000 
  C3 3000 
  C4 4000 
 Input/Output file size (GB) C1,C2,C3,C4 3 
VMs CPU(MIPS) VM1 1000 
  VM2 2000 
 Number of cores (PE) VM1, VM2 1 
Data centre Delay (milliseconds) (between broker and DC) Dc1 50 
  Dc2 100 
 Bandwidth (Gbp/s) Dc1 and Dc2 10 

 
Table 3: Different allocations of the given BoT workload with the Makespan of each 

Scenario number Cloudlets/VMs Makespan 

1 {C1,C2,C3,C4;VM1} 12.8 
2 {C1;VM1}, {C2,C3,C4;VM2} 10.4 

3 {C1,C2:VM1},{C3,C4:VM2} 5.1 

4 {C1,C2,C3;VM1},{C4;VM2} 8.1 
5 {C2;VM1}, {C1,C3,C4;VM2} 6.4 
6 {C2,C3;VM1},{C1,C4;VM2} 6.4 
7 {C2,C3,C4;VM1},{C1;VM2} 11.1 
8 {C3;VM1}, {C1,C2,C4;VM2} 5.9 
9 {C3,C4;VM1},{C1,C2;VM2} 8.4 
10 {C1,C3,C4;VM1},{C2;VM2} 10.1 
11 {C4;VM1}, {C1,C2,C3;VM2} 5.4 
12 {C1,C4;VM1},{C2,C3;VM2} 6.4 
13 {C1,C2,C4;VM1},{C3;VM2} 9.1 
14 {C1,C2,C3,C4;VM2} 8.2 
15 {C2,C4;VM1},{C1,C3;VM2} 7.4 
16 {C1,C3;VM1},{C2,C4;VM2} 5.4 

C4        C3       C2        C1 
BoT 

Queue Q of cloudlets 

Task scheduler Computer resources 

VM1 

VM2 
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The optimal solution in the example refers to Scenario 3 

since the makespan will be 5.1, the 6 minimal among all 

possible 16 allocations in Table 3. In general, if we need to 

allocate a workload of t tasks to r compute resources we 

need to explore a total of 
0

!

!( )!

t

i

t

i t i
=

−

∑  possible allocations 

since the task allocation problem is a Nphard problem. 

DVFS and Power Consumption Model 

Dynamic Voltage and Frequency Scaling (DVFS) is an 

effective technique to reduce servers’ power consumption 

through scaling the CPUs frequency proportionally to their 

loads (Maiti and Sudeep, 2017). Although DVFS can 

significantly achieve power efficiency in computing 

resources, it also reduces the computing performance (Huai 

et al., 2013). However, since the paper targets to schedule 

non compute-intensive workload application, DVFS 

technique will be a useful approach to achieve power 

efficiency (Maiti and Sudeep, 2017). Consequently, this 

paper, incorporate DVFS mechanism with the proposed 

model (presented in section 4.1) targeting to minimize the 

energy wasting which becomes one of the key challenges 

that affect the cloud sustainability. DVFS is supported by 

most modern CPUs to scale down its frequency and voltage 

when it is not fully utilized (Huai et al., 2013). The 

quadratic relation between the frequency adjustment and the 

CPU dynamic power consumption is shown in the 

following (Huai et al., 2013): 
 

2

CPU DynamicP ACV f
−

=  (8) 

 
where, A, C, V and f are the switching activity, the 
physical capacitance, the supply voltage and the clock 
frequency respectively. Voltage V can be expressed as a 
linear function of frequency such that, V = af and a is 
constant. Therefore, Equation (9) express the new form 
of dynamic CPU power: 
 

3

CPU DynamicP f
−

= β  (9) 

 
Developing an energy-aware task allocation algorithm 

requires measuring the dynamic power consumption 
resulted from running the tasks on the compute resources 
(VMs). To derive a power consumption model, real time 
server power consumption monitoring is needed. However, 
this is out of the scope of this paper. Instead, we used the 
cubic frequency-power approximation model (Huai et al., 
2013). In this study, we only consider the power consumed 
by CPU; therefore, Equation (10) is used to find the total 
power consumption of a server: 
 

CPU Static CPU DynamicPower P P
− −

= +  (10) 

 
where, PCPU-Static is the static power consumption 
denoted as γ and PCPU-Dynamic calculated as in Equation 
(9). Therefore, using Equations (9 and 10), the cubic 

power consumption model that computes the total power 
consumption of a server is as follows: 
 

3
Power f= γ + β  (11) 
 

Equation (10) shows clearly that frequency f is the 
only variable value that effects the servers’ power 
consumption where γ and β are constants and varies 
among different servers. 

Consequently, the power consumption of a server hk 

holding number of computer resources d

jr  on data centre 

dcd is denoted as 
,

( )
k d

Power h , nothing that each host can 

hold more than one rj. Let’s consider PowerTD as the total 

power consumed by R computer resources to process T 

request of tasks. Therefore, the target is to minimize the 

total value of Power as follows:  
 

1 1

minimize ( )

D R

d

j

d j

Power r

= =

∑∑  (12) 

 

where, Power d

jr  is the power consumption of the rj on 

dcd calculated using Equation (8). 

LAEE Model 

The objective of the energy efficient LAEE workload 
allocation model is to minimize the workload makespan 
and attain maximum energy efficiency when mapping a 
set of tasks T to the set of available resources R without 
violation of the Deadline constraint DTT given by the 
SLA between the provider and cloud user. This could be 
achieved through considering the objectives described in 
Sections 4.2 and 4.4. Therefore, the objective of the 
proposed model is as follows: 
 

minimize( ( , ), )
TD

Makespan T D Power  (13) 

 
subject to Equation 6 constraint that ensures that the 

completion time for a BoT T on a set of available Resources 

R should not exceed the deadline time constraints DTT 

given by the SLA between the provider and user: 
 

( , )
T

Makespan T D Deadline≤  

 

The LAEE Workload-Allocation Algorithm 

Genetic Algorithms (GA) are adaptive heuristic 
random optimization algorithm that works via the 

process of natural selection and evolution (Golberg, 
1989). In this section, we propose the Location-Aware 
and Energy-Efficient (LAEE) workload allocation 
genetic algorithm to solve the formulated non-linear 
optimization problem given in Equations (5-13). The 
task allocation problem we target in this study is NP-

hard (Nemhauser and Wolsey, 1988). Therefore, our 
proposed algorithm will try to find a near-optimal 
solution heuristically based on genetic programming. 
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Given a BoT workload n tasks T = {t1, t2, …,tn}, a set 
of associated m files F = {f1, f2, ..., fm}, a set of data centers 
D = {dc1, dc2, …, dcs} located in different geographic 
locations and a set of compute resources R = {r1, r2, …, 
rk} hosted on the data centers D. The building blocks o the 
genetic LAEE algorithm are described as follows. 

Encoding  

This is the representation step of the optimization 
problem in terms of genetic terminology. A chromosome in 
the GA consists of n genes corresponding to the n tasks of 
the workload T. That is, each gene represents the mapping 
of a task ti to a specific Virtual Machine (VM), or compute 
resource rj. The value of a gene is a positive integer 
representing the VM number where the task is allocated. 
Table 4 shows an example of mapping 15 tasks to 4 VMs 
and its corresponding chromosome consisting of 15 genes. 

Initial Population 

A population is a set of solutions to the original 
optimization problem, i.e., a set of possible allocations of 
T to R. An initial population is a set of chromosomes 
(solutions) that are randomly created as a starting step 
towards finding an optimized solution. Each 
chromosome in the population represents a candidate 
solution to the problem and it is called an individual. The 
fitness function is calculated to the individual. Then, a 
number of fittest individuals are selected to mate and 
produce a next enhanced population (or generation). To 
generate efficient and robust genetics search space 
diversity is taken into account through generating the 
initial population that gives the genetic better possibility to 
find a good and near-optimal solution (Yin et al., 2017). 

Fitness Function 

Selecting a suitable fitness function is significant to 
design a successful Genetic Algorithm. Since the goal is 
to minimize the makespan of the workload T, the fitness 
function is chosen to be the objective function of the 
formulated optimization problem given in Equation (5). 

Selection 

The selection method dictates how to choose the 
individuals in a population and use them to produce a 
new generation so that a better solution is obtained. 
There are various strategies to select the best individual 
such as Boltzmann strategy, rank based selection, 
roulette wheel and tournament selection (Golberg, 1989). 
This paper uses the roulette wheel based on a rank given 
to each individual according to its fitness value. 

Crossover 

This is the method of selecting two parents 
(individuals) to produce next-generation individuals. We 
used the mostly used random point crossover technique 
since it helps to exchange VMs assignment between 
corresponding tasks (Yin et al., 2017). Figure 5 shows a 

simple example of randomly selected crossover point on 
both selected parents and the newly generated individuals 
(children) that outline the newly produced generation. 

Mutation 

Mutation maintains genetic diversity in the 

subsequent generations. It avoids generating uniform 

populations. The mutation operator is used to modify the 

genes of a randomly selected chromosome according to a 

mutation probability. 

LAEE-GA 

In this study, a modified version of GA is proposed to 
solve the LAEE optimization problem (Equations 5-13). 
Based on the basic operations discussed above, the 
LAEE genetic algorithm (Algorithm 1) starts by creating 
initial random population (line 2) using encoded binary 
(0, 1). The main important part of the proposed 
algorithm is fitness function evaluation that reflects the 
main objective of the proposed model in minimizing the 
workload makespan (line 3). Line 3 evaluates the fitness 
function of each individual using Equation 5. Then 
genetic operators applied through crossover and 
mutation operations to the selected parents (line 4-10). 
After each iteration, new population is created using 
fittest individuals. After a number of iterations, the 
algorithm retrieves the individual with the highest fitness 
from the last population as a near-optimal solution to the 
proposed problem line (9). 

The LAEE genetic allocation algorithm designed to 
solve the problem of data-intensive workload allocation and 
to attain a trade-off between energy efficiency and QoS. 
Most of the modern computers integrated with an effective 
dynamic DVFS mechanism (Maiti and Sudeep, 2017). 
Accordingly, Algorithm 1 executed in cloud DVFS 
environment, i.e. we assume that the power consumption of 
active servers will scales linearly with its CPU utilization. 
Reducing CPU frequency minimizes the CPU power 
consumption (as Equation 11 depicts). However, this could 
not lead to energy saving since reducing frequency implies 
that more time will be taken to handle the given workload 
(Huai et al., 2013). Nevertheless, the LAEE allocation 
algorithm that targets to minimize the workload makespan 
shows its contribution on energy saving (as shown in 
Section 6.3.2) compared to other competitive algorithms 
that employ a DVFS mechanism. 
 

                 

 

 

 
Fig. 5: Random crossover point 

Parent 1: 0010 0010 1000…1000 
 

Parent 2: 0010 0010 10000…0010 
 

Child 1: 0010 0010 1000…1000 0001 1000 0100 
 

Child 2: 1000 0100 0010…0010 0100 0001 0100 

0100 0001 0100 
 
0001 1000 0100 
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Table 4: Tasks as a chromosome represent the allocation of the tasks to the available VMs 

Task# 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

VM# 3 4 1 2 4 1 3 3 1 4 2 1 3 2 1 
Binary represent of genes 1 10 1000 100 1 1000 10 10 1000 1 100 1000 10 100 1000 

 

Algorithm 1: LAEE 

Input: T = {t1, t2, …,tn}, a set of workload tasks 

R = {r1, r2… rk}, a set of distributed compute resources 

i.e. VMs. 

D = {dc1, dc2, …, dcs}, a set of s data centers. 

Population, generation size, DeadlineT, maximum 

number of generations. 

Output: allocating tasks T to R. 

Processing: 

1: Begin 

2: Initialize population (Select first generation from a  

pool of genes that can randomly allocate the set of 

tasks T to the compute resources R) 

3: Calculate the fitness value for each individual in the 

 initial population 

4. Find the top two fittest individuals and consider them 

elite and pass them to next generation without any 

changes. 

5. Do 

 5.1. Using random Roulette Wheel method to 

 select two parents 

 5.2. Perform crossover between the two parents 

 5.3. Pass the individuals to the next generation 

6. Until the new generation size = the initial population size  

7. Replace current generation with the newly created 

 generation. 

8. Apply mutation to the genes with some probability and 

 place the resulting chromosomes in the new population 

9. Go to step 3 until the maximum number of generations is 

 reached or if the value of the calculated fitness function is 

less than or equal to DeadlineT (Equation (6)). 

10. End 

Performance Evaluation 

This section validates the performance of the 

proposed LAEE algorithm through extensive simulation 

experiments conducted using the CloudSim 3.0.3 

simulator. The performance results of the proposed 

LAEE algorithm are analyzed and compared to the 

benchmark task allocation algorithms, namely, Round 

Robin (RR) and Shortest Job First (SJF, it sort the BoT 

in increasing order to task’s length that measured in MI). 

Also, we compared our algorithm with another 

geneticbased task allocation algorithm (Kumar et al., 

2015), which we will name it (GGA) for ease of 

reference. Since the objective is to enhance the QoS of 

the workload, four time-based metrics, namely, 

workload makespan, VM makespan, host makespan, task 

execution time are measured in the comparison study. 

We also show how our allocation algorithm succeeded to 

reduce the total energy consumption when employing 

the DVFS strategy to adjust the hosts’ frequencies based 

on their CPU utilization. 

Simulation Setup 

We conducted experiments on Intel(R) core(TM) i7 

Processor running at 3.4GHz with Windows 7 Operating 

system and using NetBeans IDE 8.0.2 and JDK 1.8. We 

generated a number of simulations by varying the 

number of hosts or Physical Machines (PMs) and their 

specifications, the number of compute resources (VMs) 

and their configurations, the number of geographically 

distributed data centers and the network’s links delay costs 

to the Storage Node (SN) where the data files initially 

reside and the requirements of the workload tasks. 

Our simulations tackle two different scenarios. The 

first uses synthetic traces, which randomly models the 

cloud computing environment to measure the 

effectiveness of the proposed method using the 

timebased metrics. The second scenario uses the 

benchmark Planetlab workload traces (PLT, 2016). The 

specifications of the hosts used to measure the power 

consumption due to using our proposed algorithm are HP 

ProLiant ML110 G4 (1 × [Xeon 3040 1860 MHz, 2 

cores], 4GB) and HP ProLiant ML110 G5 (1 × [Xeon 

3075 2660 MHz, 2 cores], 4GB) (SPEC, 2016). 

We extended the CloudSim environment to 

implement three different matrices that represent the 

links bandwidths, the links delays and the computed 

cloudlets (tasks) execution times. The bandwidth matrix 

represents the bandwidth link capacity between the SN 

data center (broker side) and the data centers hosting the 

VMs. The links’ delay matrix stores the values of the 

average communication delay measured between the SN 

data center and the different data centers hosting the 

VMs (i.e. as if we are modeling Google cloud computing 

environment with distributed data centers in America, 

Asia and Europe). Although the distance is not an ideal 

estimator for network latency, it is sufficient to 

determine the relative rank in latency from end-user to 

data centers as indicated in (Fan et al., 2016). Moreover, 

we use the WAN Latency Estimator 

(http://wintelguy.com/wanlat.html) to estimate the 

network latency in milliseconds used in our simulations. 

The estimated execution cost of each the workload tasks 

(cloudlets) allocated to a specific VM on a DC is 

calculated and stored in a temporary matrix based on our 

modeling in Equations (1-3). 
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Table 5 shows the values of the different parameters 

used in the genetic operations of our proposed 

metaheuristic algorithm, LAEE. 

Experimental Results 

Scenario 1 

This scenario uses synthetic data that randomly 

model the cloud-computing environment. Table 6 shows 

the ranges of values for the parameters used to model the 

cloudlets/tasks, the data centers, the hosts and the virtual 

machines (compute resources). 

We compared the performance of our workload 

allocation algorithm LAEE with RR, SJF and GGA 

algorithms. Note that, the plotted results of LAEE and 

GGA algorithms are the average output of 20 

independent executions. 

Workload Makespan 

 Figure 6 shows the workload Makespan compared to 

the three task-allocation algorithms RR, SJF and GGA. 

As the result shows, the improvement rate of the BoT 

Makespan ranges between 15% over GGA method and 

about 28% over RR and SJF policies. This improvement 

has a direct effect on the cloud QoS since it reflects the 

cloud user requested services completion time. 

VM Makespan 

 Figure 7 and 8 shows the makespan of the compute 

resources (VMs) and it compares with the other 

algorithms. Actually, this performance metric is an 

indicator of the success of an allocation algorithm to 

distribute the workload tasks on the available VMs so that 

the utilization of the VM is reduced. Figure 7 shows that 

LAEE algorithm has approximately a uniform VM 

Makespan among all available VMs compared to RR and 

SJF, which reflects the distribution and load balancing of 

the workload on available VMs. Also, Fig. 8 shows how 

our proposed LAEE algorithm proves its efficiency in VM 

Makespan reduction over a randomly selected 4 VMs. 

Host Makespan 

 Figure 9 and 10 shows the measurement of the host 

makespan among the four algorithms. Figure 9 shows 

the rate of improvement in the host's Makespan for 

randomly selected hosts. Figure 10 reveals that there is 

an 8% improvement on host makespan compared to 

GGA and a 25% improvement compared to RR and SJF. 

The achieved results reflect the importance of the 

proposed method on load balancing. This improvement 

has a direct outcome on the cloud QoS and a great effect 

on improving cloud energy consumption. 

Table 5: Genetic parameters settings 

Parameter Value 

Population size 100.00 
Number of generations 100.00 
Crossover rate 0.80 
Mutation rate 0.15 

 
Table 6: Cloudsim parameter settings 
Entity type Parameter Value 

Cloudlet Cloudlet length (MI) 200-4000 
 Input/Output file size (MB) 3000-8000 

 Number of cloudlets 500 

Data center Number of distributed  2 
 Data Centers (DC)  

 Type of data centers Heterogeneous 

 Link delay (milliseconds) 10-100 
 between SN (broker) and DCs 

 Bandwidth (Gbp/s) 1-10 

Host Number of hosts 8 
 dc1 hosts’ names h0, h1, h2, h3 

 dc2 hosts’ names h00, h01, h02, h03 

 Number of Cores 1-4 
 MIPS/CPU 2000-4000 

 RAM (GB) 16 
VM Total number of VMs 24 

 CPU (MIPS) 100-700 

 Number of cores per VM 1   

 
Table 7: Cloudsim parameter settings 

Cloud resources Small Medium Large 

Number of cloudlets 500 1000 1500 
Number of VMs 30 100 160 
Number of distributed DCs 5 7 10 

 

Task Execution Time 

 Figure 11 represent the task execution time 

improvements on a randomly selected bunches of 

tasks/cloudlets from a 500 cloudlets. However, Fig. 12 

reflects the 500 cloudlets task execution time enhancement 

compared to RR and SJF benchmark methods. 

Workload Size 

 As the number of cloudlets and compute resources 

increase the improvement rate of LAEE algorithm 

increases, this is expected from the nature of meta-

heuristic approaches. Consequently, a genetic-based 

algorithm, like ours, is expected to reach a near-

optimal satisfactory solution to the optimization 

problem provided the search space is large (Chu and 

Beasley, 1997). Figure 13 shows the LAEE algorithm 

improvement in getting a minimal makespan to the 

BoT workload when the workload size (number of 

tasks) is between 500 and 1500 while the number of 

VMs ranged between 30 and 160 and the data centers 

distributed among 5 to 10 geographical different 

locations. Table 7 shows the ranges of values for the 

parameters used in this experiment, where the sizes 

are categorized into small, medium and large classes. 
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Fig. 6: Comparison graph of BoT Makespan among RR, GGA and SJF versus proposed LAEE algorithm 
 

 
 

Fig. 7: Comparison graph of VM Makespan among RR, GGA, and SJF versus proposed LAEE algorithm 

 

 
 

 
 

Fig. 8: Comparison graph of VM Makespan for randomly selected 4 VMs among RR, GGA and SJF versus proposed LAEE algorithm 
 

 
 
 

 

Fig. 9: Comparison graph of Host Makespan among RR, GGA and SJF versus proposed LAEE algorithm 
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Fig. 10: Comparison graph of average host Makespan among RR, GGA and SJF versus proposed LAEE algorithm 

 

 
 

 

 
Fig. 11: Comparison graph of Task Execution Time for randomly selected 10 cloudlets among RR, GGA and SJF versus 

proposed LAEE algorithm 
 

 
 
Fig. 12: Comparison graph of Task Execution Time for 500 coudlets among RR and SJF versus the proposed LAEE algorithm 
 

Deadline and SLA Violation 

 SLA violation due to deadline constraint can reduce 
user satisfaction and degrade cloud providers’ QoS. 

This is beside the penalty ratio that paid by cloud 
provider for consumers’ compensations if the given 
deadline is missed. Literature and researchers reveal 

that poor cloud experience and delay for each one-

second result in 16% degradation in customer 
satisfaction and more than 22% drop in cloud services 

sales (Bilal et al., 2018; Cheng et al., 2016). 

The previous set of experiments and results show the 

importance of LAEE algorithm in meetings its target 

through minimizing the whole workload makespan to 

meet users’ deadline constraint. Using different 
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configurations and cloud resources (as shown in Table 

7), Fig. 14 compares the actual workload makespan with 

users’ time constraint. It clearly displays that LAEE 

algorithm guarantees least number of SLA violations. 

For the first two sets of the experiment (Small and 

Medium), the SLA violation due to deadline constraint 

using LAEE algorithm is less 60% compared to other 

competing algorithms. However, in a Large set 

experiment, the SLA violation using LAEE algorithm is 

less than 0.5% compared to actual time constraint and 

less 80% compared to other algorithms. This is due to 

the nature of meta-heuristics GA algorithms that operates 

in a high performance using large search space to find a 

near-optimal solution (Fong et al., 2018). 

Scenario 2 

This test scenario is mainly provided to show the 
effectiveness of our proposed algorithm in reducing the 
total power consumption of the provider’s data centers. 
We employed the DVFS techniques incorporated in the 
CloudSim simulator to benefit from any low utilization 
of the hosts to reduce the working frequency which 
contributed in reducing the energy consumption. This 
secondary objective (reduce energy consumption) is 

helpful in producing green computing while it directly 
leverages the revenue of cloud providers. 

The experiment runs real Planetlab workload traces 

(PLT, 2016). The selected workload is made up of 

302,976 Cloudlets with different cloudlets lengths. There 

are 800 heterogeneous hosts varies between HP ProLiant 

ML110 G4 (1 x [Xeon 3040 1860 MHz, 2 cores], 4GB) 

and HP ProLiant ML110 G5 (1 x [Xeon 3075 2660 

MHz, 2 cores], 4GB) to run 1052 heterogeneous VMs 

with Amazon specifications. 
The aim of this experiment is to find the effect of 

energy efficient task allocation on other management 
methods. The DVFS technique (Maiti and Sudeep, 2017) 
is used to adjust the hosts' CPU frequency according to 
their CPU utilization from executing the allocated tasks to 
it. In CloudSim, the frequency dynamically adjusted based 
on the CPU utilization percentage (Calheiros et al., 2011). 

Figure 15 shows the energy consumption 
improvements of the used data centers when 
incorporating the DVFS technique in the proposed 
LAEE task allocation algorithm, rather than just using 
non-power aware allocation algorithms with DVFS 
technique. As shown in Fig. 15, the average power 
saving improvement rate due to using our LAEE 
algorithm is about 8% over the using the GGA, RR and 
SJF allocation algorithms. 

 

 
 
 
 

Fig. 13: BoT Makespan in different number of cloudlets and VMs 
 

 

 
 

 
Fig. 14: BoT SLA deadline violation in different number of cloudlets and VMs 
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Fig. 15: Comparison graph of DC Energy Consumption among RR, GGA, and SJF versus proposed LAEE algorithm 
 

It is worth to say that, although reducing CPU 
frequency minimizes the CPU power consumption (as 
Equation 11 depicts). However, this could not lead to 
energy saving since reducing frequency implies that 
more time will be taken to handle the given workload 
(Huai et al., 2013). Nevertheless, the LAEE allocation 
algorithm that targets to minimize the workload 
makespan shows its contribution on energy saving 
through effective load balancing (as shown in Section 
6.3.1 – Fig. 7) that leads to makespan as well as energy 
minimization compared to other competitive algorithms 
that employ a DVFS mechanism. 

Conclusion 

This paper investigated the problem of dataintensive 

workload allocation in geo-distributed cloud environment. 

The problem formulated as a nonlinear programming 

optimization problem. Since this problem is known to be 

NP-hard, a meta-heuristic genetic algorithm is employed 

to find an optimized solution to the problem. The 

proposed algorithm considers both the task execution time 

as well as the cost of the data files transfer time from the 

storage location to the compute servers. 
Extensive simulations are conducted using both 

synthetic and real traces on the known CloudSim cloud 
simulation package to prove the effectiveness of our 
proposed method. The results show the superiority of our 
algorithm over known allocation algorithms in minimizing 
the total makespan of a bag-of-tasks workload when 
executed on geo-distributed compute resources. 

The DVFS technique is combined to our algorithm to 
show the effectiveness of our proposed algorithm in 
reducing the total energy consumption of the providers’ 

data centers, which consequently contributed in maximizing 
the profit while keeping the users QoS improved. 
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