

 © 2018 Jalal Kiswani, Muhanna Muhanna and Abdallah Qusef. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Smart-EIS: An End to End Enterprise Information Systems

Framework

1
Jalal Kiswani,

2
Muhanna Muhanna and

3
Abdallah Qusef

1Department of Computer Science and Engineering, University of Nevada, Reno, USA
2Department of Creative Media, Luminus Technical University, Amman, Jordan
3Department of Software Engineering, Princess Sumaya University for Technology, Amman, Jordan

Article history

Received: 29-08-2018
Revised: 19-11-2018
Accepted: 22-12-2018

Corresponding author:
Abdallah Qusef
Department of Software
Engineering, Princess Sumaya
University for Technology,
Amman, Jordan
Email: a.qusef@psut.edu.jo

Abstract: Enterprise Information Systems (EIS) are widely and extensively

used in many domains such as banking, telecommunication, e-commerce

and government. Although several research studies and investigations were

performed that explore the importance of EIS, only a few studies have

focused on effective and efficient end-to-end approaches to developing

such systems. In this article, a proposed software development framework

(Smart-EIS) is presented. The primary objective of Smart-EIS is making

the development of high-quality EIS more effective and efficient. In

particular, it aims to reduce the development cost and to provide built-in

transparent quality, security, performance and user-experience features. A

comprehensive review of the traditional EIS is presented. This includes a

discussion of the characteristics and patterns of such systems, the layered

architectural patterns and the main components of these systems. The

working methodology for the work discussed in this article depends on

dynamically construct the common and general aspects of EIS at runtime.

The methodology starts with extracting metadata models from the

traditional architectural and components patterns. Based on these metadata,

APIs have been designed and implemented. These libraries were then

composed to make the full and complete proposed framework. In terms of

validation and evaluation, the proposed framework -including its APIs- has

been implemented as open-source projects, used to build a simple human

resource management system, then utilized to re-build a student

information system. Results of validation and evaluation have been

presented and discussed, which show promising potential.

Keywords: Enterprise Information Systems, Rapid Application

Development, Dynamic GUI Generation, Dynamic Software Artifacts

Generation

Introduction

Enterprise Information Systems (EIS) are important

assets for organizations of all levels. EIS implementation

aims to automate as much as possible from an

organization internal processes, to get the results faster

and reduce the operational overhead. Consequently, it

reduces cost and increases profit. In fact, not having a

proper EIS in place for some domain, such as banking,

telecommunications and e-commerce, shall produce risks

that threat an organizations existence Tamm et al. (2011)

Da Xu (2011). However, even though implementing EIS

can support organizations achieving their goals, it

requires large investments in terms of cost, time and

resources. Since the required large number of functional

requirements, base of software artifacts and complex

hard ware infrastructure, are all factors of increasing that

investments. Other challenges include, the availability of

the skilled and experienced resources, requirements

customization and integration with other systems. In this

article, we present an approach that can significantly

reduce the cost of EIS systems development, increasing

their overall quality and maintainability using metadata-

driven development and runtime code generation.

Furthermore, we present Smart-EIS framework as the

proposed approach’s implementation. In particular, it

Jalal Kiswani et al. / Journal of Computer Science 2018, 14 (12): 1638.1659

DOI: 10.3844/jcssp.2018.1638.1659

1639

includes the architecture, design and implementation of

(Smart-EIS). Motivated by (i) building on main author’s

experience in the domain of enterprise information

systems, (ii) helping in minimizing the need of specialized

experts in building such systems, (iii) and supporting the

open-source community, we propose our work starting

with a philosophical research question: Is there an

approach to making the development of high-quality

enterprise information systems rapid and cost-effective?

The remaining part of this article is organized as

follows: Section 2 presents a comprehensive review of the

main concepts and disciplines that the work of this

research is based on. Section 3 includes the major work

done related to our work. Section 4 presents the

methodology of this work, in terms of processes, scope,

technology and tools, naming convention and constraints.

Moreover, it describes the design aspects of the proposed

framework. Section 5 presents the scope, implementation

aspects of the APIs of Smart-EIS through a working

example. It also presents how Smart-EIS has been put

into practice through a case study, where it was

implemented in a current student information system, to

be analyzed for several quantitative metrics. Section 6 and

7 present the validation and evaluation and the results

discussion. Section 8 concludes this article and identifies

several future work directions.

Background

This section provides a brief, yet comprehensive,

description of the main concepts and literature that this

work is based on. In particular, it reviews the current

literature in the main requirements for developing EIS

and components of information systems.

Information Systems (IS) is a particular type of

software application in which data is the essential

component of the system Stair and Reynolds (2017)

Sommerville (2015). In traditional IS applications,

relational Database Management System (DBMS) is used

as the main repository of data. The design and architecture

process of small to medium IS is straightforward, especially

with the availability and maturity of design patterns and

best practices Jin et al. (2016) Tabatabaie et al. (2009)

Fowler and Beck (1999) Wolfgang (1994).

Most IS consisting of three categories of low-level

software components, user interface, business logic and

data access. In this paper, user-interface components are

referred as views. In general, information systems may be

designed based on the organization of these components

into a one-tier, two-tier, three-tier or n-tier architecture

Fowler (2002) Cervantes and Kazman (2016).

Requirements for Smart EIS

This section discusses the main requirements for

building and developing Smart EIS.

Development of EIS applications requires longtime,

significant efforts and special expertise Stair and

Reynolds (2017). This is a result of several challenges

categorized as (i) complex business rules, (ii) particular

quality attributes, (iii) technical requirements.

Firstly, most EIS includes special business

requirements and application and logic. In particular,

they include:

1. Complex business rules; such as the validation rules

required for making financial wire-transfers
2. Dynamic requirements that may change frequently;

where EIS should be responsive and elastic to
market need and regulation changes, such as
changing the regulations by governments or central
authorities, or a change of management personnel
Stair and Reynolds (2017)

3. Various types of end-users front-end technologies;

where enabling software applications to different

front-end technologies has almost become

mandatory with the trends of web and mobile

platforms, to allow external access and provide

online services for the clients

4. Various data-sources; enterprise organizations are

most likely to have multiple applications running

concurrently. For example, it is more likely that any

financial organization runs an Enterprise Resource

Planning system (ERP), a core-banking system and

an e-channels for online services in parallel. In this

case, reducing data redundancy is significant and the

data interchange between applications is required.

Consequently, applications become dependent on

various data-sources (i.e., the primary application

data source and other applications data sources)

Royce (1987), which increase the complexity of

managing and supporting them

Secondly, EIS requires special quality attributes (i.e.,

non-functional requirements) to be taken into

consideration. In particular, availability, fault-tolerance,

reliability, integrity, scalability and security Sommerville

(2015) Bass et al. (2012). Therefore, complex hardware

environments and data centers are common situations in

enterprise-level organizations. In fact, they invest in

advanced computer hardware equipments such as blade-

servers, storage area networks, load-balancers,

traditional and web applications firewalls. This result in

a complex hardware environment De Alwis and Sillito

(2009). Furthermore, the organization may also utilize

cloud-computing by building private or hybrid cloud

infrastructure The Economist (2008).

Thirdly, most modern EIS shall include special

technical requirements, such as:

1. Localization and internationalization; with the

current globalization phenomena, in which clients in

Jalal Kiswani et al. / Journal of Computer Science 2018, 14 (12): 1638.1659

DOI: 10.3844/jcssp.2018.1638.1659

1640

different countries, languages and cultures may use

the services provided from an organization, the

requirement enabling applications to support

localization is significant. In particular, localization

shall be done on three levels: User-interface, input

fields and reports become mandatory. Furthermore,

localization is important for scalability, international

exposure Valipour et al. (2009) and economies of

scale Sullivan (2003)

2. Dynamic validation rules; in enterprise level

mission critical industries such banking and

governments, the requirements and regulations

may change frequently and in many times, these

changes become effective immediately, which

consequently, may require immediate changes in

the business rules and validation of the system.

Thus, an efficient way to update the validation

rules dynamically without changing the source

code is significant. In fact, this will mitigate

against the high-cost and risk required by going

through the software development lifecycle

(SDLC) Sommerville (2015) Bianco et al. (2007)

3. Unified technical logging; In the case of failures or

bugs, due to the complexity of EIS, the debugging

process is more complicated than debugging small-

medium applications. Thus, the need to have

technical and tracing information will make it

relatively easier to support and troubleshoot such

errors. Consequently, a standard logging mechanism

to record and enable tracing of issues should be

unified across the entire application

4. Unified exception handling; during applications

runtime, many issues are out of developer’s control,

such as a network or input/output failures. Handling

of such issues should be performed in a consistent

approach Borger and Schulte (2000)

5. Software infrastructure. Manual building of large

systems is considered long-term and prone to

errors Royce (1987). In addition, testing all of the

functionality and application’s requirements

manually on every build is not practical Do et al.

(2006). In fact, leaving them untested will also be

a critical problem since the quality and

consistency of applications are not guaranteed.

Thus, test and build automation, standard project

structure, contentious integration and continuous

delivery are significant to boost developers

productivity and increase applications quality and

stability Kiswani et al. (2017a)

6. Standard architectures and best-practices; such

techniques of using standard architectural styles and

patterns Cervantes and Kazman (2016), are

significant to ensure long-term stability and

maintainability. Furthermore, being up-to-date with

the latest and mature standards and best practices

will reduce the risk of being outdated or using old

techniques that may affect the overall performance

and requirements of the applications Capilla et al.

(2016) Fowler and Beck (1999)

On the other hand, ensuring that EIS applications

deliver the promised agreed quality attributes at

production is important Bass et al. (2012), which include

the application benchmarking and tuning in production

environments Dearie (2007). Caching implementation is

commons to reducing network traffic and data-sources

access by saving the state of some application’s

components or data on different tiers or layers of

applications. Also, utilizing clustering is also frequent in

enterprise organizations. In particular, deploying

applications on multiple nodes on a network. However,

clustering requires a particular –and most likely

complex- configurations on both software and hardware

levels Schlossnagle (2006).

In addition, in modern applications, some new

business requirements have started to be mandatory in

every EIS Da Xu (2011) Dearie (2007), such as:

1. Workflow: extracting the business rules and making

them configurable without the changing the source

code and going through the SDLC again. In

particular, implementing a workflow engine such as

JBoss jBPM (https://www.jbpm.org)

2. Audit-trail: auditing is a critical process which

involves almost all business-critical operations in

any enterprise-level organization. Providing the

required information for auditing business audits for

all transactions is required on the application to

ensure the system is used based on the organization

internal rules and regulations and compliance to the

external regulators

3. Runtime-implementation toolkits: Which is the

ability to modify the application user-interface at

runtime, by adding, modifying or removing input

fields, change the look and feel, or change

application configuration without the need of

application restart or re-deploy

Traditional Components of Information System

Applications

This section briefly discusses the main components that

are available in most information systems applications

based on Service-Oriented Architecture (SOA).

As seen in Fig. 1, applications may be composed of

multiple sub-systems, which are called modules Bass et al.

(2012). For example, an enterprise resource planning

system may consist of general-ledger, purchasing and

human resources modules.

Jalal Kiswani et al. / Journal of Computer Science 2018, 14 (12): 1638.1659

DOI: 10.3844/jcssp.2018.1638.1659

1641

Fig. 1: An IS application structure

Fig. 2: Components of a module in an information system application

Modules may consist of several components, including

user-interface components (views), service-facade, services,

reports and database-schema, as shown in Fig. 2. Views are

organized and structured using menus, which could be

rendered as trees, traditional drop-down menus, expand-

collapse, or any other formats McGovern et al. (2003).

Every module has its services and coarse-grained service

facade on module level. Moreover, every module uses its

database tables and schema, along with the operational

business reports, that most-likely will be embedded in the

system, which could be printed out or exported using UI

components (e.g., student transcript, salary slip, etc.).

Related Work

This section discusses the related work to the

framework presented in this research. It is organized

chronologically in terms of the publication date from the

oldest to the newest. However, the section follows the

literature review to summarize the literature concerning

software architecture in general and enterprise

architecture. In particular. It covers what have been found

and what have been reported to the best of our knowledge

in the core disciplines related to enterprise software

architecture, best practices and trends, as well as dynamic

functionality and components generation. Most of the

related work studies and investigations have explored only

the theoretical definitions of software architecture, issues,

requirements and importance. Moreover, we believe that

the amount of research done on dynamic software

functionality, software components and software

architecture styles for end-to-end design and development

is humble in the count and needs a broader exploration.

Winston Royce was the first to introduce the

discipline of software architecture Royce (1987). In

particular, in 1970, he published an article about managing

the development of large software systems. In his article,

he referred to his experience working with large software

Application

Module 1 Module 2 Module 3

SOA-engine

Module

Views Services Service-facade

Database-schema Reports

Jalal Kiswani et al. / Journal of Computer Science 2018, 14 (12): 1638.1659

DOI: 10.3844/jcssp.2018.1638.1659

1642

projects in the air crafting and flights management.

Moreover, he described the importance of software

architecture and design phases during the software project

life cycle. Also, he discusses how it is essential to

document the architecture and design decisions, to be able

to produce a higher-level of quality and deliver software

based on requirements and constraints.

In an introductory article to a particular issue on

software architecture Garlan and Perry (1995), the

authors explained how the software architecture was

starting to be a necessary discipline in software

engineering. They explored several definitions of

software architecture and introduced an evolved one.

Furthermore, they described the benefits and importance

of software architecture. In particular, they explored the

significance of software frameworks in being reusable

components with high functionality and how they can

make the development of related systems more cost-

effective. Moreover, they explained how software

frameworks could: (i) Help in understanding the system;

by giving stakeholders the ability to see the big picture in

terms of what can or cannot be done, (ii) support

reusable functionality and components, as well as

relatively large frameworks to reduce the development

cost and efforts, (iii), respond to changes; by adding,

removing or modifying existing components, (iv) make

the system analysis more understood and more practical,

(v) and help in software management during

development, implementation and operation.

In his Ph.D. dissertation Johnson (2002) published in

2002, the author studied the enterprise software systems

of companies in the Swedish electricity industry. He

reported that applying software architecture analysis in

the context of enterprise organization is far from being

straightforward. In fact, he identified a need for a better

exploration of architectural integration styles. He

proposed a modified process for architectural analysis

and presented an evaluation of some analysis methods.

Da Xu (2011) explored the new trends required in most

of EIS, such as business process management, workflow

management, enterprise application integration, SOA,

among others. He continued his investigation with other

researchers and published the results Niu et al. (2013). In

this article, they discussed enterprise architecture, but

this time with a focus on the evaluation of selecting one

enterprise architecture over another, on a scenario-based

approach. Moreover, the authors discussed how different

software architecture styles are used extensively, while

there are no standards or best practices on how to

evaluate whether the architecture has been correctly

designed or not. He and Da Xu (2014) continued the

study and reported their findings. They surveyed

different architecture styles and technologies used for the

integration of distributed enterprise applications. In

particular, they presented the advantages and

disadvantages of each style along with identifying

research trends and needs in that research area. In terms of

future perspectives, they identified four trends including

(i) Quality-of-Service (QoS) for effective integration as

web services, SOA and ESA are increasingly used in

integrating applications, (ii) data mining is increasingly

developed and deployed for information system

integration as data use is increasing exponentially in

applications, (iii) integrating web technologies with social

networking is expected to grow and (iv) it is expected to

see an increase in terms of integrating industry

applications with services running on networked,

resource-limited mobile devices and smart embedded

devices using SOA approaches. The article is concluded

with identifying several research challenges in this area,

such as user interface integration, reliability, performance

management, security risk management, among others.
In 2011, a group of researchers identified the benefits

of enterprise architecture to organizations Tamm et al.

(2011). In particular, they reviewed the current literature

on such benefits and consolidated the fragmented

knowledge into a model of benefits that is presented in

the article. The model proposes that the impact of

enterprise architecture leads to four benefits for

organizations, namely: Organizational alignment,

information availability, resource portfolio optimization

and resource complementarity.

In terms of frameworks and in 2004, a patent has

been published (US Patent No. 20040133445A1,

2004) in which the authors introduced a generic

framework and method to structure, develop and

deploy software components to build a multi-tiered

enterprise software application. Their high-level

framework was based on four sub-components: A

client framework, a database framework, a business

framework and an external framework to interact with

other software processes outside the system.

In 2015, a patent was published (US Patent No.

8996606, 2015) that investigates the dynamic generation

of various software components. The patent is based on

creating a dynamic decision table for the remote rules

engine. This is one of the well-established research

studies and patents that was too specific for a small part

of the enterprise applications. Moreover, some other

research investigations explored creating applications

and graphical user interfaces from metadata and models,

such as the one presented in Kulkarni and his colleagues

work Kulkarni et al. (2002). In that research, the authors

presented their work of a set of notations to specify

different layers of software architecture. Also, they

presented a method of transforming a specification into an

implementation. They supported their proposed method

with some case studies in constructing medium and large-

scale enterprise applications. However, utilizing a

metadata-driven approach for building such applications

Jalal Kiswani et al. / Journal of Computer Science 2018, 14 (12): 1638.1659

DOI: 10.3844/jcssp.2018.1638.1659

1643

can reduce the risks dramatically. In fact, it can enable

higher quality and consistency Kiswani et al. (2017b).

To the best of our knowledge, no research found

that was detailed enough or implemented to cover

building an end-to-end framework directed toward

enterprise information applications and dynamic

components generation.

Although Rajan’s and his co-inventors patent (US

Patent No. 20040133445A1, 2004) seems close to our

work from the higher-level, it does not include details

nor clear specifications (e.g., UML, models, diagrams...

etc.) on implementation aspects in general or end-to-end

in particular. Also, the authors believe that it is somehow

stale for modern software application practices.

Furthermore and to the best of the author’s

knowledge, most of the research studies related to

software framework discuss frameworks as a process

rather than a higher-level of software abstraction for

building reusable functionalities for making the

development of software systems relatively faster.

However, in this literature review, interesting results

were found about components and SOA of enterprise

systems, in which they have been reused in the work

presented in this work.

Methodology

The approach followed in this work began with

analyzing the enterprise applications structure from

top to bottom. The rationale behind that was

extracting the main characteristics and attributes of

every component on every level. Then design for a

metadata model to define these characteristics as an

Entity-Relationship (ER) model is proposed. The

proposal is supported with designing and implementing

a fully-working framework and a set of APIs’ and

tools, to utilize the metadata, towards an effective

development of enterprise information systems

dynamically on the fly during the runtime.

Evaluating Smart-EIS was challenging, because of

the need to implement it on an enterprise level software

system, which is most likely consists of a considerable

number of database tables, user-interface views and

complex business rules. Therefore, we decided to base

our evaluation of Smart-EIS on UMS (now known as

Solid-SIS) (http://solidsis.com/). UMS is a university

management system as well as a student information

system that has been developed by Solid-Soft

(http://www.solid-soft.net). It is currently implemented

in more than 20 academic institutions in the Middle East.

Proposed Framework

This section introduces the proposed work; it provides

a detailed explanation and a discussion of the framework

architecture, design, implementation and usage.

Scope

The scope of this work is to design and architect a

software framework towards making developing

Enterprise level Information Systems (EIS) more

effective, secure and reliable. Smart-EIS includes

management of domain-specific functionalities with

its database schema and data-sources. However, EIS

are most likely requires integration with third-party

applications, either to expose functionality or to be

integrable and interoperable Bass et al. (2012), in

what so-called Enterprise Application Integration

(EAI). This requirement can become complicated

when there is a need for integration with different

systems as well as different protocols and techniques.

This is where the Enterprise Service Bus (ESB)

becomes useful. Moreover, ESB can also be used with

SOA rules engine (e.g., jBPM) to automate the

business process at the runtime. Although important, the

concepts of EAI, ESB and SOA rules engine require

detailed and comprehensive studies and research work

that we believe to be beyond the scope of this work.

On the other hand, there are a variety of front-end

technologies used in enterprise applications, such as

desktop, web and mobile. In this work, desktop front-

end is selected for implementation and prototyping.

Due to the main author’s experience in this field.

However, we believe that the work presented in this

article can also be implemented as monolithic or cloud

native web, cloud, mobile, or IoT front-ends.

Technology and Tools

In Smart-EIS, yED graph-editor was used for

diagramming metadata modeling

(https://www.yworks.com). In addition, Visual-Paradigm

community edition (https://www.visual-paradigm.com)

was used for UML class and sequence diagramming. For

the development technology, Java

(https://www.java.com) was mainly selected because it is

standard, open-source and platform independent. Last

but not least, MySQL was used as the database

management system (https://dev.mysql.coml).

It is worth mentioning that although the authors

have used Java technology for the implementation and

MySQL as a DBMS to evaluate Smart-EIS

framework, the proposed design and architecture can

be implemented in any other programming language,

since it is based on standard design pattrns and

architectural styles.

Naming Convention

For the sake of readability and consistency, we used a

unified naming and coding convention for every part of

Smart-EIS, such as metadata models, database objects

(tables and fields), XML and source code.

Jalal Kiswani et al. / Journal of Computer Science 2018, 14 (12): 1638.1659

DOI: 10.3844/jcssp.2018.1638.1659

1644

In Database naming conventions, table names are

plural with an underscore between words and prefixed

with the module abbreviation. The prefix makes it easier

to group the tables in DBMS clients by the module,

especially with the large number of tables in EIS. For

example, the name of a students table in a registration

module shall be reg students.

Field names should be singular, prefixed with the

table abbreviation and separated by spaces. The prefix

is used for the join statements with other related

tables. The student first name field, for example,

should be std first name.

Moreover, every table should have a unique auto-

increment primary key that is invisible to the

application’s end users. The main advantage of this key

is to make sure that it is not affected by the business

changes. For example, assume that the student id number

shall be unique as per the university regulations, the

system has been designed based on this rule and every

relationship with every detailed table has been

configured on this primary key. If this university’s

regulations change over time to make the primary key

unique per year only, the whole system and constraints

will become invalid. Furthermore, using a hidden auto-

increment key will reduce the development cost by

making it easier for database and application developers

to create join and DML SQL statements on single fields

instead of multiple keys in case of compound keys.

Even though most of the above discussed

conventions can be implemented on most of the current

DBMS, some features should be handled in particular

approaches in some DBMS. For example, Oracle DBMS

does not provide an auto-increment feature out of the

box; however, this can be achieved using an Oracle

sequence object.

For metadata, ER-Models supported by normal

readable words for more clarity with the capitalization of

the first letter only.

For the source code, we used the standard Java

coding convention Oracle (1999).

Proposed Metadata Models

The proposed conceptual ER-model for EIS is
shown in Fig. 3. The application consists of many
modules. Each module, in turn, consists of user
interface views, a database schema, reports and
module-specific services. Furthermore, the application
consists of SOA-engine to manage the services
orchestration in building high-level processes.

All these components have special characteristics

and attributes in which will be represented in the

following section as metadata models. These metadata

models utilized later to be the base for the framework

and its APIs.

General Metadata

Some metadata entities and attributes are common
across all the components. To avoid duplicating them,
we have put them as separate re-usable entities models
that can be referenced by other models. The description
of this metadata is not duplicated in following diagrams
unless they were important to mention. If it is mentioned
in next diagram, it will be highlighted in a green color, to
distinguish them from entity attributes. Figure 4 shows
the diagram of the general metadata attributes, Table 1
provides a brief description of these attributes and Table
2 describes the attributes of the class-definition that is
related to the metadata.

Application Metadata

This subsection includes the high-level attributes and
entities of the enterprise application. As seen in Fig. 5
the application consists of the general metadata
described in the previous subsection. In addition, the
application metadata have default language for an
application, default database schema and other fields
described in Table 3 to 5.

Fig. 3: Common components of the enterprise-information system

Enterprise-Information System Components

1- Application

1.1- Sub-systems (modules) 1.2- services-orchestration (process-workflow)

1.1.1- UI-views 1.1.2- Database-schema 1.1.3-Reports
1.2.1-
Services

Jalal Kiswani et al. / Journal of Computer Science 2018, 14 (12): 1638.1659

DOI: 10.3844/jcssp.2018.1638.1659

1645

Fig. 4: General metadata

Fig. 5: Attributes and entities of the application metadata model

General-metadata

id name
index

class-def general binding-property

full-qualified-name security-privilige-id description class-code

parameters

id
name type default-value

Application-metadata model

1. application

name

default-lang

default-schema

default-theme
ui-component

1.1 module

name

language

reports

1.1.1 menu
default-schema

theme

name url

name menu-item parameters

name ui-view

binding-class

Jalal Kiswani et al. / Journal of Computer Science 2018, 14 (12): 1638.1659

DOI: 10.3844/jcssp.2018.1638.1659

1646

Table 1: Description of the general metadata

Name Description Related model

Id Unique id for the component N/A
Name Name of the component N/A
Description Component description N/A
Index Order of the component N/A
Binding-class The code-class that is component is bounded to Class-definition N/A
Binding-property The name of the bounded property in the binding-class N/A
Security-privilege-id The id of the security privilege N/A

Table 2: Description of the class-definition components

Name Description Related model

Full-qualified-name The class name to be loaded at runtime N/A
Class-code The source code of the class if it was written in dynamic N/A
 languages (e.g. groovy, Scala or JavaScript)

Table 3: Description of the attributes of the application-level metadata

Name Description Related model

Default-language The default language of the application, this will be the language international N/A
 short code (e.g., EN), country code can be added later as well for more flexibility.
Default-schema The default database schema for the application to, this can be overridden on N/A
 the module level
Default-theme The name of the default application theme, this can be overridden on the application level UI. theme
Default-language The default language of the application, this will be the language international short code N/A
 (e.g., EN), country code can be added later as well for more flexibility.
Default-schema The default database schema for the application to, this can be overridden on N/A
 the module level
Default-theme The name of the default application theme, this can be overridden on the application level UI. theme

Table 4: Description of the attributes of the module metadata

Name Description Related model

Language The language of this module N/A
Theme The theme of this module N/A
Splash-image The URL of theme splash image which will be shown during theme loading N/A
Home-image The URL of the home image, which will be shown in the application’s main window N/A

Table 5: Description of the attributes of the module metadata

Name Description Related model

URL The URL for the report N/A

Table 6: Attributes of the UI-view

Name Description Related model

UI-static-view The model of static UI-views N/A
UI-dynamic-views The model of dynamic views which is generated at runtime N/A

Table 7: Attributes of the UI-static-views

Name Description Related model

View-URL This contains the relative or absolute URL for the view, it could also N/A
 be used for URL of internal classes packaged as API’s or libraries
Class-definition The view-executable code If the view is configured at runtime N/A
UI-inputs List of UI-input components in this view which can be configured at UI-input
 runtime to change the application behavior

Menu-items will be discussed in details in the next
subsection.

User-Interface Metadata

As depicted in Fig. 6 and described in Table 6, a
user interface view can be either static or dynamic.
Static pages are either written as a static code or using
scripting languages.

In a static code, pages can be accessed using a URL
(i.e., the URL can link to external and internal resources
as well) whereas static pages written in scripting
languages can be executed at runtime. On the other hand,
dynamic views can be built on the fly for various types
of components. They can be used to build views for
managing database tables, services, or processes, which
are all discussed in detail in the following subsections. In

Jalal Kiswani et al. / Journal of Computer Science 2018, 14 (12): 1638.1659

DOI: 10.3844/jcssp.2018.1638.1659

1647

the case of building views for managing database tables,
the framework will be able to dynamically build a full
CRUD operation for the master and details tables by
providing the required table-meta id to the model.
Moreover, the framework will be able to build the view
dynamically based on the metadata available at runtime.

The same concept applies to the services and processes
dynamic screens, where the name of the required
component is provided to the framework, which uses
the metadata, in turn, to render the user interface view.
Table 7 to 10 provide a description for each of the
attributes of the user interface metadata.

Fig. 6: User interface metadata

ui-view

user interface metadata

dynamic-view static-view

dynamic-view
static-view

service-view

workflow-view

table-meta-view

workflow

view-id

class-def

service
details-table-meta

foriegn-key-field
master-table-meta

view-name view-url

ui-components

id

ui-input

name

ui-type

class-def

ui-component

ui-class

height

width

display-name

icon

visible

default-value

enabled

data-type

updatable

min-length

max-length

max-value

min-value

pattern

validator

regex

required

validation-model

Jalal Kiswani et al. / Journal of Computer Science 2018, 14 (12): 1638.1659

DOI: 10.3844/jcssp.2018.1638.1659

1648

Fig. 7: Metadata of the database schema

Table 8: Attributes of the UI-Input

Name Description Related model

UI-type The data type of input value to be able to create the appropriate N/A
 UI-component with the appropriate masking
Visible Whether visible or hidden N/A
Icon The icon of the input N/A
Width UI-proposed width N/A
Height UI-height N/A
Validation-model The validation model of this input UI-validation N/A

Table 9: Attributes of the UI-validation

Name Description Related model

Data-type The data type of the component N/A
Default-value The default value of the component N/A
Enabled Whether enabled by default or not N/A
Required Required or optional N/A
RegEx The regular expression used for validation N/A
Validatordefinition If programming validator is set N/A
Pattern The pattern used to format the component N/A
Min-value Allowed minimum value N/A
Max-value Allowed maximum value N/A
Min-length Allowed minimum –length N/A
Max-length Allowed maximum length N/A

Updatable Whether allow to update value or not N/A

database-schema

database-schema-metadata

driver

url
username

password

name

max-rows

allow-add database-table
table-triggers

allow-update

allow-delete
constrains

is-cross-table

auditable

workflowable

class-def

short-query

list-query
master-query

name

data-type

id-field
auto-increment

foriegn-keys

relation

reference-
table

view-mode

required

ui-input

field

reference-
field hashed secured field-triggers test-value

Jalal Kiswani et al. / Journal of Computer Science 2018, 14 (12): 1638.1659

DOI: 10.3844/jcssp.2018.1638.1659

1649

Table 10: Attributes of the UI-theme

Name Description Related model

Resource-path The path to theme resources N/A

Splash-image The URL of theme splash image which will be shown during theme loading N/A

Home-image The URL of the home image which will be shown in N/A

Table 11: Database-schema

Name Description Related model

Driver The driver will be used to connect to the database N/A

URL Database URL N/A

Username Database username N/A

Password Database password N/A

Database tables The list of database tables of this database Databasemetadata

Table 12: Table-Metadata

Name Description Related model

Id-field The table primary key Id-field

Field The database fields metadata Field

Max-rows The allowed maximum number of rows in this table N/A

Allow-add Whether adding records to this table is allowed or not N/A

Allow-update Whether modification of this table is allowed or not N/A

Allow-delete Whether delete of this table is allowed or not N/A

Is-cross-table Is this table is cross-join between two tables in many-many relationship or not N/A

Master-query The query of this table that will be used in master-view of this table N/A

List-query The query of this table that will be used in look-up view of this table when used N/A

 as foreign-key lookup

Short-query The query of this table that will be used when fast search inside dialogs N/A

Constraints The constraints that should be applied on this table Classdefinition

Table triggers The triggers that should be called when operation are called on this table Classdefinition

Workflowable Does this table support a workflow N/A

Auditable Weather this table will be auditable or not N/A

Table 13: ID-Field

Name Description Related model

Autoincrement Weather this field is auto-increment or not N/A

Field Field attributes Field

Table 14: Field

Name Description Related model

Field-name The field-name N/A

Data-type Field data type N/A

Validation-model Field-validation-model Validation

UI-general General UI attributes Ui-general

Field-triggers The callback triggers on the field N/A

Hashed This attribute will make the framework able to hash the value on insert N/A

 or update, its most likely used for storing password fields

Secured This attribute is used to make the fields encrypted in the database. N/A

Table 15: Foreign-key-field

Name Description Related model

Field Field metadata N/A

Reference-table Reference table Table-meta N/A

Reference-field Field Reference-field N/A

Relation Relationship type whether one-one, one-many, many-to-one, or many-many N/A

View-mode The view-mode (list, dialog, lookup) N/A

Jalal Kiswani et al. / Journal of Computer Science 2018, 14 (12): 1638.1659

DOI: 10.3844/jcssp.2018.1638.1659

1650

Database-Schema Metadata

This subsection describes the required metadata for

the database schema. Most of these metadata are

already available in the DBMS metadata. However,

the authors proposed a new metadata related to the

user-interface, triggers and other components as seen

in Fig. 7 and described in Table 11 to 15.

Process-Workflow Engine

The proposed design for the business processes and
services is shown in Fig. 8. However and as described
earlier in the Section 4.1, they will not be included in the
implementation.

Framework UML-Diagram

This section contains the architecture and design of

the framework as UML diagrams.

High-Level Package Diagram

Figure 9 depicts the internal package structure of the

framework and its relationship with applications,

including the dependency between the packages.
The metadata package can be seen at the bottom of

Figure 9. This package contains the metadata
information and the repository to be accessible by other

packages. On the upper level, there are the static and
dynamic packages. The static resources compose and
utilize some of the dynamic features in the dynamic
packages to reduce the development cost. The dynamic
package, on the other hands, contains the most significant
aspects of the framework, which are used to generate
different types of dynamic objects for the applications.
These include UI (for dynamic views), data-access,
services, auditing, security test-cases and others.

Metadata Class Diagrams

This section includes the class diagrams of the

Metadata for Smart-EIS.

High-level Metadata Classes

The class diagram shown in Figure 10 shows the
highest level of meta-data abstraction. It starts by the
metadata interface, in which every class contains the
metadata information to be implemented. In addition, it
defines the composition rules between the different high-
level metadata where the application contains
information about the modules and SOA. The modules,
in turn, contain metadata about menus, schema, reports
and services. The SOA Metadata, on the other hand,
contain the processes metadata, which include service
callers that uses the services.

Fig. 8: Process-workflow engine

process-workflow-metadata model (SOA)

process-workflow

process

service-call

order services exception-handler (class-def)

name class-def in-parameters out-parameters

Jalal Kiswani et al. / Journal of Computer Science 2018, 14 (12): 1638.1659

DOI: 10.3844/jcssp.2018.1638.1659

1651

Fig. 9: High-level package diagram of Smart-EIS

Fig. 10: High-level metadata classes

Schema Metadata Class Diagram

Figure 11 contains the schema metadata. From top-

to-bottom, it starts with schema metadata, which

compose an instance of schema configuration that

contains the schema runtime configurations. In addition,

it contains the relationships as described in the metadata

ER-Model in the previous section.

org.jk.eis

application

dynamic
static

test-cases

logging auditing security

UI SOA services data-access

metadata

org.jk.eis

Metadata

<<Interface>>

Metadata

<<Interface>>

ApplicationMetadata

<<Interface>>

ModuleMetadata
<<Interface>>

MenuMetadata

<<Interface>>

SchemaMetadata

<<Interface>>

ReprortMetadata

<<Interface>>

Service

<<Interface>>

SoaMetadata <<Interface>>

ProcessMetadata

<<Interface>>

ServiceCaller

Jalal Kiswani et al. / Journal of Computer Science 2018, 14 (12): 1638.1659

DOI: 10.3844/jcssp.2018.1638.1659

1652

Fig. 11: Schema metadata class diagram

Fig. 12: Views and UI metadata class diagram

Views and UI Metadata Class Diagram

Figure 12 shows the class diagram for the views

metadata. It contains the metadata for static and dynamic

views, which is composed of the menu metadata. The

figure also shows the relationship with the schema

metadata information.

Application Management Classes

The high-level functional side of Smart-EIS is shown in

Fig. 13. It starts with the application manager class which is

responsible for the application lifecycle (initialize, start,

stop, reload). It uses the application metadata to be able to

build the application. Moreover, it utilizes its state

<<Interface>>

SchemaMetadata
<<Interface>>

SchemaConfig

a

M

org.jk.eis-api.schema

M <<Interface>>

TableMetadata

M

M

M M M
<<Interface>>

IDFieldMetadata <<Interface>>

FieldMetadata

<<Interface>>

ForiegnkeyFieldMetadata

<<Interface>>

TableConstraints

<<Interface>>

TableTriggers

<<Interface>>

FieldTrigger

M

M M

<<Enumeration>>

Relation

<<enumeration>>

ViewMode

<<Interface>>

ViewMetadata

org.jk.eis.ui

M

M

M

M

M

M M M

M

M

M

<<Interface>>

Theme

<<Interface>>

DynamicView <<Interface>>

StaticView

<<Interface>>
TableMetaView

<<Interface>>
ServiceView

<<Interface>>
ProcessView

<<Interface>>
UIComponent

<<Interface>>
UIValidationModel

<<Interface>>
UIInput

Jalal Kiswani et al. / Journal of Computer Science 2018, 14 (12): 1638.1659

DOI: 10.3844/jcssp.2018.1638.1659

1653

depending on the metadata repository, which uses metadata loader to load the metadata configurations.

Fig. 13: Application management classes

Fig. 14: User-interface management classes

<<Interface>>

ApplicationManager

org.jk.eis.api.application

+ init()

+ start()

+ stop()

+ reload()

<<Interface>>

MetadataRepository

+ getApplicationMetadata(): ApplicationMetadata

+ loadMetadata(): ApplicationMetadata

org.jk.eis.api.repository

<<Interface>>

Application
<<Interface>>

MetadataLoader

+ load(): ApplicationMetadata

<<Interface>>

Module
<<Interface>>

SoaEngine

<<Interface>>

Menu

<<Interface>>

Schema
<<Interface>>

Reports
<<Interface>>

Service

<<Interface>>

MenuItem

<<Interface>>

UIWindow

org.jk.eis.ui

builder

<<Interface>>

UIView <<Interface>>

UIApplicationFrame

<<Interface>>

UIBuilder

+ buildWindow(UIApplication)

+ buildView(UIVViewMetadata)

+ buildInput(UIInputMetadata)

<<Interface>>

UIComponent

<<Interface>>

UIInput

<<Interface>>

UICommand

<<Interface>>

UIContainer

<<Interface>>

UIComponentFatory

<<Interface>>

UIValidationModel

Jalal Kiswani et al. / Journal of Computer Science 2018, 14 (12): 1638.1659

DOI: 10.3844/jcssp.2018.1638.1659

1654

Fig. 15: Application Startup and Authentication

User-Interface Management Classes

Figure 14 shows the class diagram of the process of
building the views using the UI Builder class. This class
builds the application main windows, views (static or
dynamic) as well as input components. The input
components building is delegated to the

UIComponentFactory.

Application Metadata Bootstrap Sequence

Diagrams

Figure 15 shows the sequence diagram of the
application metadata bootstrap. In particular, it shows
the application startup and authentication through the
Application Manager, Metadata Repository, Metadata
Loader, UIBuilder and UIApplicationFrame.

Framework Features

The following subsections list the main features of
Smart-EIS discussed in detail throughout this chapter.
The features are categorized in terms of development
and usability. Development:

1. Dynamic generation of configuration views: In most

IS applications, most of the database tables are

configuration tables that require only simple CRUD

operations, using Smart-EIS, the CRUD operations

functionality for these tables are generated

dynamically at runtime.

2. Follow convention-over configurations concept; to

avoid overloading the framework users with a

significant amount of configuration, we followed

the convention over configuration principle, where

there are defaults almost of everything. For

example, the metadata for database tables is

extracted automatically either in development time

using the Database Analyzer, or dynamically at

runtime using database metadata provided by

JDBC API Kiswani (2018a)

3. Ready-made database-driven components; In Smart-

EIS, we have designed and implemented a database-

driven GUI component to reduce the development

cost of views and business logic. For example, data

table builds itself dynamically using metadata

extracted from SQL statement, which is also

filterable, sortable, printable and exportable to

Microsoft Excel

4. Full dependency preparation and setup; project setup

is dramatically reduced by using the de-facto

standard project-object-model – Maven. With

Maven the developer only needs to include Smart-

EIS dependency and then Maven will automatically

resolve all the required internal dependencies,

libraries and API’s

5. The ability to disable security on developer’s

machines; one of the challenges of unit-testing is

the security setup and navigation. For example, in

most systems, if the developer intends to make

manual testing for a specific view, they are

required to start the application, log in, navigate

to the designated view, then test the views. In

Smart-EIS, the developer can start the application

in development mode so that he/she can access

Application manager Metadata repository Metadata loader UIBuilder
UIApplication

Frame

Main

1: init
1.1: loadMetadata

1.1.1: load

1.1.1.1: Metadata

1.1.1.1.1: Metadata

1.1.1.1.1.1: buildApplication

2: start()

2.1: Build application frame

2.1.1: init

2.1.2: Application frame

2.1.2.1: show

2.1.2.1.1: enter security crednetials

Jalal Kiswani et al. / Journal of Computer Science 2018, 14 (12): 1638.1659

DOI: 10.3844/jcssp.2018.1638.1659

1655

the security defaults, which are set automatically

for him/her and he/she will be able to access the

view directly

6. Simple straightforward data-access-API with a

single Line of Code (LOC); Using the proposed

APIs, such as the data-access API and exception-

handling API, shall reduce the required lines of

code, which will result in better productivity,

readability and maintainability

7. Transparent localization support; the developers do

not need to care about the application localization,

which includes: GUI design orientation, component

labels and reports. All of these are managed

transparently by Smart-EIS

8. User Experience and Usability; usability was given

special attention in Smart-EIS for both developers

and end-users. In particular:

• Consistency across all views; since all the

configurations views are built dynamically and the

other GUI components are built using components

provided by the framework, this ensures the GUI

consistency across the whole system.

• Item Special GUI container to show for most

access views to reduce the navigation time to

reach the view

• Full shortcuts for every GUI-based functionality in

the system, such as menus, views and buttons.

• Both single view and multiple views are supported

Framework Validation and Evaluation

Validation and evaluation of the proposed

methodology and Smart-EIS framework have been

performed through three phases. In the first phase, the

proposed design of the framework and its API libraries

were implemented. Next, a simple Human Resource

(HR) management system was built using Smart-EIS to

show how the proposed framework can reduce the

development time and efforts of building such systems

Kiswani (2018b). In the last phase, evaluation of

Smart-EIS was conducted. The evaluation was based on

several metrics that were studied to compare

developing a Student Information System (SIS)

traditionally with developing the same system using the

proposed Smart-EIS framework. Smart-UMS was

chosen for this evaluation.

Framework Components Implementation

To empower our theoretical work in this thesis with

the practical part, we have implemented the proposed

APIs and design, described in detail in Section 4, into

opensource projects that were uploaded into GitHub.

Every API has been implemented as a separate open

source project, to be utilized and reused by interested

researchers and practitioners in the open-source and

academic community. The main projects are:

1. General utility: https://github.com/kiswanij/jk-util

2. Database API: https://github.com/kiswanij/jk-db

3. Database metadata: https://github.com/kiswanij/jkdb-

metadata

4. Dynamic database API: https://github.com/kiswanij/jk-

db-dynamic

5. Application metadata: https://github.com/kiswanij/jk-

app-metadata

6. Desktop components: https://github.com/kiswanij/jk-

desktop

7. Application: https://github.com/kiswanij/jk-application

8. Smart-EIS-Desktop:

https://github.com/kiswanij/smart-desktop

Figure 16 contains the high-level architecture design

of the implemented APIs.

Evaluating Smart-EIS: A Case Study

To be able to correctly identify the benefits and

advantages of using Smart-EIS on enterprise

applications, a university management system, UMS

(now known as SolidSIS) was selected as a case study

(http://solidsis.com/). Figure 17 shows the main menu

of UMS. UMS was chosen for the following reasons:

(i) It is a mature software with more than ten years of

being on the market, (ii) it is implemented in more than

20 academic institutions in the middle east, (iii) it

consists of many modules including admission,

registration and student finance, which are developed

as desktop applications and (iv) it includes web-based

modules such as students e-Service, instructors e-

Service and evaluation, along with a smart-phone self-

service module for students.

The objective of this case study is to compare the

originally built UMS (UMS 9.0) with a newer version

(UMS 10.0) that has been built using Smart-EIS

framework. This comparison was performed in terms of

several identified metrics to show the benefits of using

Smart-EIS framework in building such systems, as

presented in Table 16.

Table 16 shows that the comparison was based on

three main metrics. First, the number of manually

developed views was measured in both UMS 9.0 and

UMS 10.0. The other two metrics measured the number of

manually managed tables in the back-end, which were

classified into core business tables and technical ones.

Core business tables contain the data required for the

development of the application domain business logic.

Technical tables, on the other hand, contain the data

required for low-level functionality, such as security,

auditing and logging. By manually, we mean that the

Jalal Kiswani et al. / Journal of Computer Science 2018, 14 (12): 1638.1659

DOI: 10.3844/jcssp.2018.1638.1659

1656

developer has to write code to develop the requirements for the front-end (views) as well as the back-end.

Fig. 16: High-level architecture of the implemented API

Fig. 17: UMS main window

Table 16: Comparing UMS 9.0 with UMS 10.0

Measured Metric UMS 9.0 UMS 10.0

Number of manually developed views 395 108
Number of manually managed business tables 247 119
Number of manually managed technical tables 35 0

<<component>>

Desktop applications

<<component>>

Web Applications

<<component>>

smart-eis-desktop

<<component>>

smart-eis-web

<<component>>

Smart-EIS

<<component>>

application

<<component>>

application-metadata

<<component>>

dynamic-data-access
<<component>>

database-metadata

<<component>>

Desktop-components
<<component>>

data-access

<<component>>

services

<<component>>

common-utilities

Jalal Kiswani et al. / Journal of Computer Science 2018, 14 (12): 1638.1659

DOI: 10.3844/jcssp.2018.1638.1659

1657

Discussion

The HR management system was built based on Smart-

EIS with only four steps. Therefore, observation shows that

using Smart-EIS framework in building such systems

should be more rapid and effective than the traditional

approach. Moreover, the learning curve of using the

proposed framework to build information systems is low in

comparison with the required learning curve to build the

same system traditionally, where there will be is a need to

understand technical and non-technical knowledge as

mentioned in the introduction section. In other words, basic

knowledge in Java, Maven and MySQL are sufficient to

build EIS using Smart-EIS proposed framework.

The evaluation of the proposed framework shows that

Smart-EIS had reduced the manual development time

and effort of the front-end by 72%. Furthermore, Smart-

EIS reduced the manual development time and effort of

the back-end by 57%.

The results of the validation and evaluation

process shown that Smart-EIS has promising potential

in delivering information systems in general and

enterprise information systems in particular, rapidly in

comparison with the traditional approach. Another

potential of the framework can be identified in

reducing the development cost as well.

However, the proposed framework may introduce

some drawbacks. First, there is a need for specialized

expertise in software architecture and development for the

customization and troubleshooting of the framework itself.

Second, Smart-EIS dynamically generates views with a

limited ability to customize their layout, which may limit

the flexibility to support custom-designed layouts. Third,

the proposed framework has been developed using Java

technology, so the applicability of the proposed

framework on other technologies is not guaranteed.

Conclusion and Future Work

In this article, an end-to-end software development

framework (Smart-EIS) was proposed toward building

high-quality enterprise information systems efficiently

and effectively. It presented and described a detailed

architectural design, models, as well as other design

aspects of Smart-EIS. Moreover, open-source projects of

the framework’s APIs have been implemented to support

the design of the framework. Validation and evaluation

of the framework have shown promising results, which

were discussed as well.
Smart-EIS showed that the framework can reduce the

development cost by (i) generating the UI views

dynamically using metadata configurations, (ii)

following convention over configuration concept, (iii)

utilizing database driven UI components, (iv) usage of

simple and straightforward APIs that are relatively easy

to understand by junior level developers, along with many

others. Moreover, user experience and usability have been

enhanced by making each view consistent across the

whole application. The efficiency of the interface

interaction has been enhanced as well through the design

and implementation of a smart-detection of frequent-

accessed views to make them appear on the home

application’s window along with full shortcuts on all the

views of the system. In addition, support for both single

and multiple views management has been presented.

During the literature review phase of the work

presented in this thesis, it has been found that there is a

lack of research studies and investigations on metadata

utilization and dynamic applications generation, which is

considered one of the future work directions on this

field. We believe that further research in this area will be

beneficial for the industry of software development as

well as the academic sector.

Another direction of future work has been identified

during the application of the framework in the case

study. We have observed that the percentage of

configuration tables that require straightforward

functional management is high (e.g., reached more than

60% in UMS). We believe that a more detailed study is

required here to prove the importance of the need for a

standard way of handling the configuration tables across

technologies dynamically. Moreover and while working

on the case study, we have found that there is no

standard to generate the technical statistical data

dynamically to help in quantitative analysis. We consider

this to be another interesting direction of future work.

Finally and since the current trends are apparent in

making applications cloud-enabled as well as providing

applications that are based on the Software as a Service

concept (SaaS), the authors believe that enhancing this

framework to be cloud-based and plug-and-play, will

reduce the time-to-market and cost of building such

applications. It could also be enhanced to support Big

data and Internet of things systems.

Acknowledgment

The authors would like to thank the reviewers for

their valuable comments and suggestions that

contributed to the improvement of this work.

Author’s Contributions

Jalal Kiswani: Participated in all experiments,

coordinated the data-analysis and contributed to the

writing of the manuscript. Contributed substantially to

the conception and design of the study, the acquisition of

data of the analysis and interpretation.

Muhanna Muhanna: Responsible for the

conceptualization of work and its realization, complied

the literature sources, interpreted figures and tables and

provided final approval of the version to publish.

Jalal Kiswani et al. / Journal of Computer Science 2018, 14 (12): 1638.1659

DOI: 10.3844/jcssp.2018.1638.1659

1658

Abdallah Qusef: Wrote some parts of the manuscript,

acted as corresponding author, helped in reference checking

and provided critical revision of the article.

Ethics

This work is original and not published elsewhere.

The authors confirm that they have read and approved

the manuscript and there is no conflict of interest. There

is no ethical issue involved in this article.

References

Bass, L., P. Clements and R. Kazman, 2012. Software

Architecture in Practice. 3rd Edn., Pearson Education,

Upper Saddle River, ISBN-10: 0321815734, pp: 640.

Bianco, P., R. Kotermanski and P.F. Merson, 2007.

Evaluating a service-oriented architecture. Technical

report, Software Engineering Institute.

Borger, E. and W. Schulte, 2000. A practical method for

specification and analysis of exception handling-a

java/jvm case study. IEEE Trans. Software Eng., 26:

872-887. DOI: 10.1109/32.877847

Capilla, R., A. Jansen, A. Tang, P. Avgeriou and M.A.

Babar, 2016. 10 years of software architecture

knowledge management: Practice and future. J.

Syst. Software, 116: 191-205.

 DOI: 10.1016/j.jss.2015.08.054

Cervantes, H. and R. Kazman, 2016. Designing Software

Architectures: A Practical Approach (SEI Series in

Software Engineering). 1st Edn., Addison-Wesley

Professional, ISBN-10: 0134390784, pp: 320.

Da Xu, L., 2011. Enterprise systems: State-of-the-art and

future trends. IEEE Trans. Industrial Inform., 7:

630-640. DOI: 10.1109/TII.2011.2167156

De Alwis, B. and J. Sillito, 2009. Why are software

projects moving from centralized to decentralized

version control systems? Proceedings of the ICSE

Workshop on Cooperative and Human Aspects on

Software Engineering, May 17-17, IEEE Xplore
Press, Vancouver, BC, Canada, pp: 36-39.

 DOI: 10.1109/CHASE.2009.5071408
Dearie, A., 2007. Software deployment, past, present and

future. Proceedings of the Future of Software
Engineering, May 23-25, IEEE Xplore Press,
Minneapolis, MN, USA, pp: 269-284.

 DOI: 10.1109/FOSE.2007.20

Do, H., G. Rothermel and A. Kinneer, 2006. Prioritizing

junit test cases: An empirical assessment and

costbenefits analysis. Empirical Software Eng., 11:

33-70. DOI: 10.1007/s10664-006-5965-8

Fowler, M. and K. Beck, 1999. Bad Smells in Code. In:

Refactoring: Improving the Design of Existing Code,
Fowler, M., K. Beck, J. Brant, W. Opdyke and D.

Roberts (Eds.), Addison-Wesley Professional,

Boston, ISBN-10: 0201485672, pp: 75-88.

Fowler, M., 2002. Patterns of Enterprise Application

Architecture. 1 Edn., Addison-Wesley Longman

Publishing Co., Inc., ISBN-10: 0321127420, pp: 560.

Garlan, D. and D.E. Perry, 1995. Introduction to the

special issue on software architecture. IEEE Trans.

Software Eng., 21: 269-274.

He, W. and L. Da Xu, 2014. Integration of distributed

enterprise applications: A survey. IEEE Trans.

Industrial Inform., 10: 35-42.

 DOI: 10.1109/TII.2012.2189221
Jin, J., S. Sun and X. Bao, 2016. Research of adaptive

software design patterns. Int. J. Control Automat., 9:

289-296. DOI: 10.14257/ijca.2016.9.5.28
Johnson, P., 2002. Enterprise software system integration:

An architectural perspective. PhD Thesis, KTH.

Kiswani, J., 2018a. JK-DB-metadata-console.

Kiswani, J., 2018b. Smart-EIS desktop HR example.

Kiswani, J., M. Muhanna and A. Qusef, 2017b. Using

metadata in optimizing the design and development

of enterprise information systems. Proceedings of

the 8th International Conference on Information and

Communication Systems, Apr. 4-6, IEEE Xplore
Press, Irbid, Jordan, pp: 188-193.

 DOI: 10.1109/IACS.2017.7921969
Kiswani, J., M. Muhanna, S. Dascalu and F. Harris,

2017a. Software infrastructure to reduce the cost and

time of building enterprise software applications:

Practices and case studies. Proceedings of ISCA 26th

International Conference on Software Engineering

and Data Engineering, (EDE’ 17), pp: 93-98.

Kulkarni, V., R. Venkatesh and S. Reddy, 2002.

Generating enterprise applications from models.

Proceedings of the International Conference on

Object-Oriented Information Systems, (OIS’ 02),

pp: 270-279.

McGovern, J., S. Tyagi, M. Stevens and S. Mathew,

2003. Java Web Services Architecture. 1st Edn.,

Morgan Kaufmann, ISBN-10: 1558609008, pp: 832.

Niu, N., L. Da Xu and Z. Bi, 2013. Enterprise

information systems architecture analysis and

evaluation. IEEE Trans. Industrial Inform., 9:

2147-2154. DOI: 10.1109/TII.2013.2238948
Oracle, 1999. Code conventions for the java

programming language.

Royce, W.W., 1987. Managing the development of

large software systems: Concepts and techniques.

Proceedings of the 9th International Conference

on Software Engineering, (CSE’ 87), IEEE

Computer Society Press, Monterey, California,

USA, pp: 328-338.
Schlossnagle, T., 2006. Scalable Internet Architectures.

1st Edn., Pearson Education,

 ISBN-10: 067232699X, pp: 288.

Sommerville, 2015. Software Engineering. 10th Edn.,

Addison Wesley.

Jalal Kiswani et al. / Journal of Computer Science 2018, 14 (12): 1638.1659

DOI: 10.3844/jcssp.2018.1638.1659

1659

Stair, R. and G. Reynolds, 2017. Fundamentals of

Information Systems. 9th Edn., Cengage Learning,

ISBN-10: 1337097535, pp: 560.

Sullivan, A., 2003. Economics: Principles in Action. 3rd

Edn., Pearson Prentice Hall, ISBN-10: 0130081515,

pp: 712.

Tabatabaie, M., R. Paige and C. Kimble, 2009.

Exploring Enterprise Information Systems. In:

Social, Managerial and Organizational Dimensions

of Enterprise Information Systems, Cruz-Cunha,

M.M. (Ed.), ISBN-10: 1605668567, pp: 415-433.

Tamm, T., P.B. Seddon, G.G. Shanks and P. Reynolds,

2011. How does enterprise architecture add value to

organisations? CAIS, 28: 10-10.

The Economist, 2008. Let it rise: A special report on

corporate IT. Special report, The Economist.

Valipour, M.H., B. AmirZafari, K.N. Maleki and N.

Daneshpour, 2009. A brief survey of software

architecture concepts and service oriented

architecture. Proceedings of the 2nd IEEE

International Conference on Computer Science and

Information Technology, Aug. 8-11, IEEE Xplore
Press, Beijing, China, pp: 34-38.

 DOI: 10.1109/ICCSIT.2009.5235004

Wolfgang, P., 1994. Design patterns for object-oriented

software development. Reading Mass.

