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Abstract: The advancement of imaging procedures has made 
hyperspectral sensors fit for acquiring spectral data in many restricted 
and bordering bands, which brings about a high relationship between's 
neighboring bands and high information excess. It is important to 
decrease these bands previously advance analysis utilizing land cover 
classification and target location. Going for the classification 
undertaking, this paper displays another weighted technique for band 
selection, in view of band comparability estimation through Weighted 
Linear Prediction-based Band Selection (WLPBS). This method 
removes bands according to the correlation using a weighted linear 
prediction criterion. This makes it less demanding to accelerate the 
learning procedure and to enhance overall classification accuracy. 
Experimental results using Support a Vectors Machine (SVM) classifier 
on Airborne Visible Infrared Imaging Spectrometer (AVIRIS) datasets showed 
the effectiveness of our WLPBS method to improves the classification accuracy 
and to select informative and distinctive bands compared with the widely used 
Linear Prediction-based Band Selection (LPBS) technique and to those in the 
state-of-the-art. The maximum result obtained for classification of the selected 
band from Indian Pine and Salinas's datasets successively was 91.07% and 
95.30% using WLPBS.  
 
Keywords: Band Selection, Data Whitening, Weighted Linear Prediction, 
Similarity Measurement, Hyper-Spectral Image, SVM Classifier 

 
Introduction 

Hyperspectral imaging is a quickly developing 
territory in remote sensing as announced in (Chang, 
2003). It extends and enhances the capacity of 
multispectral image investigation. It exploits several 
coterminous spectral channels to reveal materials that 
typically can't be settled by multispectral sensors. 
Therefore, with such high spectral resolution, numerous 
unobtrusive articles and materials can presently be 
revealed and extricated by hyperspectral imaging sensors 
with exceptionally thin analytic otherworldly bands for 
detection, discrimination, classification, identification, 
recognition, and quantification. A considerable lot of its 
applications are yet to be investigated. It has been the 
presence of mind to consider hyperspectral imaging as a 
characteristic expansion of multispectral imaging with 
band development (Chang, 2007).We about dependably 

will confront a mixed pixel problem where the 
estimation speaks to a reaction from a composite of 
different materials. For instance, a field of grass 
contains cutting edges ordinarily of various species 
mixed together with different weeds, in addition to 
commitments from the hidden soil that can be 
comprised of different natural mixes and soil 
composes (Chang, 2007). 

We perceive, as detailed in (Chang, 2003), that one 
of the awesome difficulties for hyperspectral imaging is 
subpixel recognition, which isn't dealt with in standard 
spatial-based image processing. After a target is recognized, 
the following stage is to characterize identified focuses as 
indicated by their spatial or otherworldly properties. The 
main contribution of the present work is a new approach 
called WLPBS for band selection to select informative 
bands for the classification task. 
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Hyperspectral band selection, which happens in a 
diversity of algorithms for information preprocessing, 
has gotten extensive consideration, with numerous 
researchers consistently advancing strategies and 
thoughts of their own. As to these techniques, they can be 
generally assembled into two sorts, namely supervised and 
unsupervised. The supervised methods need some earlier 
data, for example, training samples and target signatures. 
This is seen for example in (Kuo et al., 2014; Yang et al., 
2011). In general, these techniques initially characterize 
a few criteria, for example, the Jeffreys-Matusita (JM) 
distance (Yang et al., 2011), class divergence and 
signature angle (Keshava, 2004). At that point, the subset 
of bands that optimizes the criteria for training samples is 
selected. However, because the prior information is 
habitually not available in practice, supervised techniques 
are not appropriate for hyperspectral band selection 
(Martinez-Uso et al., 2007). Hence, this paper centers 
unsupervised band selection methods. 

The unsupervised band selection systems are usually 
built in data assessment techniques and attempt to 
choose the subset that has the most extreme information 
(Chacvez et al., 1982; Chang et al., 1999), maximum 
information divergence (Chang and Wang, 2006), or 
other information measurements (Jia et al., 2012; 
Mojaradi et al., 2008). However, these prioritization-
based strategies do not take band correlations into 
consideration. Thus, the bands acquired by these 
strategies are highly correlated in general. Others 
consider band correlation, for instance with a new 
similarity measure. The criterion of Linear Prediction 
Error (LPE) (Du and Yang, 2008) decreases the 
dimensionality by choosing a subset of spectral bands 
with distinctive and informative bands. However, a large 
portion of these supervised or unsupervised techniques 
considers band information into account. Though, few 
works focus on the quality of these bands. For the most 
part, the high level of outliers in bands can bring about 
extensive differences. Therefore, the outlying 
observations (pixels) in bands will have higher selection 
weights if the quality of the band is ignored, which will 
most likely prompt absurd outcomes. To overcome these 
limitations, the aim of this research was to give smaller 
weights to possible outliers observations using a 
weighted least-square function. 

In this study, an enhancement to reduce the influence 
of outliers in the algorithm of selection and minimize the 
correlation between the bands selected is proposed using 
the Weighted Linear Prediction (WLP) criterion. The 
proposed feature selection method is called Weighted 
Linear Prediction-based Band Selection (WLPBS). 

To guarantee that they chose bands are particular as 
well as instructive, data preprocessing, including terrible 
band pre-removal  and data whitening, is required. 

Experimental results demonstrate that our method 
WLPBS reduces the influence of outliers and minimizes 

the correlation between selected bands. The results with 
AVIRIS databases demonstrate that the proposed 
similarity-based band selection method has an obvious 
performance improvement in terms of information 
conservation and class separability compared with the 
widely used technique shown in (Du and Yang, 2008) and 
to those in the state-of-the-art MIFS (Banit'ouagua et al., 
2016) and MI-est (Guo et al., 2006) methods, based on 
the selection of complementary bands via MI evaluation. 

The rest of this paper is organized as follows. Section 
2 reviews some relevant works on the topic of 
unsupervised hyperspectral band selection. In section 3 
we present the proposed approach. The experimental 
results are presented in section 4. Finally, we give some 
closing comments in section 5. 

Related Works 

In the important writing, hyperspectral bands are 
frequently described by susceptible spectral 
information. Specialists have examined different 
unsupervised criteria to recognize these bands, for 
example, the spectral distance, band correlation, 
orthogonally, Linear Prediction (LP), Mutual 
Information (MI) and Kullback-Leibler Divergence 
(KLD). Among these criteria, the spectral distance is 
conceivably the most fundamental and well known. 

Some unsupervised techniques take the linear 
characteristics of bands into thought and look for the 
particular bands in the vector space. The latter procedure 
can be separated into the accompanying two categories: 
One removing distinctive pixels based on similarity 
measurement and the other utilizing the geometry concept, 
for example, a simplex strategy. The endmember 
extraction algorithms employing Unsupervised Fully 
Compelled Least-Squares Linear Unmixing (UFCLSLU) 
in (Heinz and Chang, 2001) and Orthogonal Subspace 
Projection (OSP) in (Ren and Chang, 2003) have a place 
with the primary category, though the well-known pixel 
purity index (Boardman et al., 1995) and NFINDR 
calculations (Winter, 1999) (Wang et al., 2007) have a 
place in the second category. The linear prediction error 
is likewise used to decrease the bands by estimating the 
similarity between bands (Du and Yang, 2008). Sun et al. 
(2014), an Autocorrelation network based Band Selection 
(ACMBS) strategy, which utilizes the base Linear 
Prediction (LP) error as the selection criterion and 
searches the suboptimal subset by Sequential Backward 
Selection (SBS) acquired promising results. The authors 
of (Han et al., 2017) propose an Improved Similarity 
Measurement method in light of LP (ISMLP) for 
hyperspectral ocean ice identification. 

The clustering methods are frequently used to select a 
representative and different bands (Martinez-Uso et al., 
2007; Cao et al., 2016). Positioning based techniques 
will rank bands in light of some ranking scores (Sun et al., 
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2015). Mutuelle Information (MI) is also favored by 
numerous researchers for their nonlinear attributes 
(Banit'ouagua et al., 2016; Guo et al., 2006). 

In view of the defined criteria, two major kinds of 
optimization strategies, i.e., an incremental (Whitney, 
1971) search and an integrated search (Marill and 
Green, 1963), are utilized in the literature to search 
for the particular bands. An incremental pursuit is a 
`down-top' strategy which method which starts with a 
single band followed by incrementally adding new 
bands. If the combination of a certain band and the  
preselected bands meet the optimal criterion, this band 
is recognized as the new band to be included. The 
procedure is repeated until the point that the quantity 
of bands is sufficiently extensive. An integrated 
search is the complement of an incremental search. It 
is a ‘down-top’ search method and treats the complete 
set of bands as the candidates to be selected at first. 
Then, the bands in the candidate set are detached one 
by one until reaching the wanted number of remaining 
selected bands. 

Without a reasonable stopping criterion, the band 
selection process may run pointlessly long or perhaps 
forever depending on search strategy. Optimization 
strategies and evaluation functions can impact the 
decision of a stopping criterion. Stopping criteria based 
on a generation procedure include: (i) When a 
predefined number of features is chosen and (ii) when a 
predefined number of emphases is come to. Stopping 
criteria based on an evaluation function can include: (i) 
When the expansion (or erasure) of any element does 
not produce a better subset; and (ii) when an ideal 
subset as indicated by some evaluation function is 
acquired. The loop proceeds until the stopping criterion 
is satisfied (Dash and Liu, 1997). 

As of late, numerous pertinent works have turned to the 
idea of Virtual Dimensionality (VD) (Chang and Liu, 2014) 
or subspace identification strategies (Ghamary Asl et al., 
2014) to estimate the number of spectrally distinct 
signatures that describe the information. 

Similarity-Based Band Selection 

Data Preprocessing 

The experimental results in (Du and Yang, 2008) 
recommend that using data whitening (after bad band 
deletion) for selected bands may offer a somewhat 
preferable execution over utilizing original bands. 
This is because the noise component in different 
bands is varied and if the noise component is larger, a 
band may appear to be different from others, although 
it may not be informatively distinct. In this way, in 
this study, we apply data whitening to the original 
bands (after bad band removal), which can be easily 
achieved by the eigendecomposition of the data 

covariance matrix. The readers are referred to (Du et al., 
2003) for a demonstration that the net effect of noise 
whitening and data whitening is similar. 

Linear Prediction-Based Band Selection Method 

To choose the most unique or different bands, a 
likeness metric should be assigned. The authors of 
(Du and Yang, 2008) utilized an approach where band 
similarity can be assessed mutually rather than 
pairwisely. It starts with the best band-band 
combination and afterward the two-band combination 
is in this way expanded to three, four, et cetera, until 
the desired numbers of bands are selected. Linear 
Prediction (LP), a new criterion for similarity 
comparison, can together assess the similarity 
between a solitary band and various bands. 

There are two parameters for LP-based Band 
Selection (BS): Initial bands and number of bands to be 
selected. The last must be pre-decided. The 
accompanying algorithm can be utilized to locate the 
first two best groups (Du and Yang, 2008). 
 
1. Arbitrarily select a band B1 from the original data 

set and undertaking the various N-1 bands to its 
orthogonal subspace 〈B1〉

⊥. Discovery the band B2 
with the most extreme projection in 〈B2〉

⊥, which is 
viewed as the most, not at all like B1 

2. For the band B2, project the various N-1 bands to its 
orthogonal subspace 〈B2〉

⊥. Find the band B3 with the 
most extreme projection in 〈B2〉

⊥ 
3. In the event that B3 = B1, the algorithm is terminated 

because B1 and B3 are affirmed to the combine with 
the most noteworthy dissimilarity. At that point 
either B1 or B3 can be utilized as the underlying 
band. If B3 ≠ B1, go to the following stage 

4. For Bi, locate the most dissimilar band until Bi+1 = 
Bi-1 at that point, either Bi-1 or Bi can be utilized as 
the initial band (or the two bands are utilized as the 
initial band pair) 

 
LP-based BS exploits the advantage of a simple 

algorithm concept and has shown high productivity in 
selecting appropriate bands. In view of the hypothesis 
of this strategy, the high linear independence of bands 
shows their appropriateness for selection as best 
bands. Though, this criterion does not generally fulfill 
the classification purpose it may fail when the 
candidate band to be selected has many outliers, as 
these outlying observations (pixels) in the band will 
have higher selection weights. This leads to an 
unreasonable result. To resolve this problem, we 
proposed WLPBS, which has both the ability to 
exclude the correlated bands and minimize the 
weights of outlying observations (pixels) in the band. 
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Proposed Algorithm: Weighted Linear Prediction-

Based Band Selection Method 

The basic steps of the WLP-based BS algorithm can 
be described as follows: 
 
1. As in Linear Prediction-based Band Selection 

(LPBS), initialize the algorithm by choosing a 
pair of bands B1 and B1; the selected subset is 
denoted as S = {B1, B2} 

2. Find a third band B3 that is the most dissimilar to all 
the bands in the current S by using a certain criterion 
(discussed below) and then the selected band subset 
is updated as 

3
S S B= ∪  

3. Continue step 2 until the stopping condition is 
satisfied 

 
The criterion used in the WLPBS algorithm is 

described as takes after. Expect that the present band 
subset S incorporates B1 and B2. To find a third band that 
is the most different to B1 and B2, let each band B be 
assessed as: 
 

0 1 1 2 2
a a B a B B′+ + =  (1) 

 
where, B′ is the weighted linear prediction of band B by 
B1 and B2 and a0, a1 and a2 are the parameters that can 
minimize the linear prediction error: e = ||B-B′||. Using a 
weighted least squares solution, a = (a0, a1, a2)

T can be 
estimated as: 
 

( )
1

T T
a X WX X Wy

−

=  (2) 

Where X is an N ×3 matrix whose first column is one, 
the second column includes all the pixels in B1 and 
third column includes all the pixels in B2. y is N ×1 
vector with all the pixels in B. W is a matrix that is 
used to weight the outlier observations (pixels) in 
bands. WLS uses a kernel to weight nearby 
observations more heavily than other observations. 
The kernel assigns a weight given by: 
 

( )
2

|| ||
, exp i

x x
W i i

k

  −
 = −    

 (3) 

 
Where  k is the number of already selected band, xi and x 
are respectively candidate and estimate bands. This 
builds the weight matrix W, which has only diagonal 
elements. 

The band that yields the greatest error emin (utilizing 
the ideal parameters in a) is considered as the most 
dissimilar band to B1 and B2 and will be chosen as B3 
then S = {B1, B2, B3}. The schematically depiction of 
WLPBS approach is as appeared in Fig. 1. 

The stopping condition: The research strategy in 
WLPBS stops when the linear prediction error cannot be 
further optimized. The performances of previously 
mentioned algorithms are assessed on two real AVIRIS 
datasets (Indian Pine and Salinas) as far as 
dimensionality reduction and classification accuracy 
utilizing SVM classifier. Every database has been 
separated into two parts: the training-base and the test 
one. Half of the pixels from each class were arbitrarily 
decided for training, with the staying 50% for the test set 
on which performance was evaluated. 

 

 
 

Fig. 1: Schematical description of weighted linear prediction-based band selection approach 
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The results presented here are comparable with the 
results of the original unsupervised approach LPBS (Du and 
Yang, 2008) and to those in the state-of-the-art MIFS 
(Banit'ouagua et al., 2016) and MI-est (Guo et al., 2006) 
methods, based on the selection of complementary bands 
via MI evaluation. We point out that the performances of 
MIFS outperform  (Banit'ouagua et al., 2016) any MI-based 
method using the associated reference map, an entropy-
based method,  and a correlation-based method. This is the 
reason why we chose this method to advocate the idea of 
using WLPBS algorithm to perform bands selection in 
hyperspectral images, by comparing its results. 

The evaluation of our band reduction approach is 
performed by supervised classification utilizing Support 
Vector Machine (SVMs). One-Vs-One multiclass SVMs 
were trained attributable to the accessibility of ground 
truth and tested on the reduced datasets. For this, we 
utilize the Library for Support Vector Machines 
(LIBSVM) package with the Gaussian Radial Basis 
Function (RBF) as in past work (Banit'ouagua et al., 2016). 
To improve the penalty parameter c and the aperture γ a 
cross-validation strategy is performed. The classification 
accuracy is processed for band reduction techniques. 

It should be noted that the whitened data are used 
only for band selection processes, while the 
classifications are carried out on original data. 

Experiment 

Indian Pine Experiments 

Data Description 

Indian Pines scene: This image is a public hyperspectral 
dataset, which was acquired over a test site called Indian 
Pine in northwestern Indiana, U.S.A. The AVIRIS sensor 
nominally collects 224 spectral reflectance bands of data in 
the [0.4-2.5]- µm Visible and Near-Infrared (VNIR) range. 

Among them, four contain only zeros and are discarded. 
Therefore, 220 bands from the 92AV3C dataset are used for 
the experiments. Each of the 220 band images is of 
145×145 pixels. Around 49% of pixels are grouped into 16 
different classes (Table 1). As to the remaining pixels, it is 
difficult to group them into any of the existing classes and 
they are identified as the background. 

In our experiments, as specified in (Du and Yang, 
2008) we removed the noisiest bands from this dataset 
and kept 196 spectral bands as the initial data for every 
method. More precisely, we removed bands [1.3], 
[104.108], [150.163] and [218.220]. 

Owing to a large number of pixels in the remote 
sensing image, the sizes of the matrices in the data 
processor are large, which decreases proficiency. Be that 
as it may, utilization of just a moderately little subset of 
pixels in the band determination process does not change 
the outcomes as a rule (Du and Yang, 2008) (Han et al., 
2017). This is on the grounds that a high spatial 
correlation exists between  bands of hyperspectral data. 
Here, for band decrease, we utilized just 10% of N pixels 
scattered all through the labeled pixels to decide the 
bands to be selected. 

Results and Discussion 

Table 2 shows the overall classification accuracy 
using an SVM classifier from the Indian Pine data. As 
we can see, the proposed WLP-based band selection 
algorithm significantly outperforms the LPBS, MIFS 
(Banit'ouagua et al., 2016) and MI-est (Guo et al., 2006) 
methods. The reason is that LPBS is influenced by 
outliers while WLPBS minimizes their weight. 
Accordingly,  the bands selected by WLPBS are the best 
for classification. Compared to the MIFS algorithm 
(Banit'ouagua et al., 2016) WLPBS fast in terms of 
execution time and does not require many parameters 
because it's used just 10% of N pixels scattered throughout 
the labeled pixels to determine the bands to be selected. 

 
Table 1: Number of training and testing pixels in each class for the Indian Pine and Salinas datasets 

 Indian Pine   Salinas 

 ------------------------------------------------------------------------------- ------------------------------------------------------------------------------------ 
No Class Pixels in training set Pixels in testing set Class Pixels in training set Pixels in testing set 

1 Alfalfa 29 25 Brocoli-green-weeds-1 1005 1004 
2 Corn-notill 719 715 Brocoli-green-weeds-2 1863 1863 

3 Corn-min 419 415 Fallow 988 988 
4 Corn 117 117 Fallow-rough-plow 697 697 
5 Grass/Pasture 249 248 Fallow-smooth 1339 1339 

6 Grass/Trees 374 373 Stubble 1980 1979 
7 Grass/pasture-mowed 13 13 Celery 1790 1789 
8 Hay-windrowed 243 246 Grapes-untrained 5636 5635 

9 Oats 10 10 Soil-vinyard-develop 3102 3101 
10 Soybeans-notill 483 485 Corn-senesced-green-weeds 1639 1639 
11 Soybeans-min 1234 1234 Lettuce-romaine-4wk 534 534 

12 Soybean-clean 304 310 Lettuce-romaine-5wk 964 963 
13 Wheat 108 104 Lettuce-romaine-6wk 458 458 
14 Woods 644 650 Lettuce-romaine-7wk 535 535 

15 Bldg-Grass-Tree-Drives 190 190 Vinyard-untrained 3634 3634 

16 Stone-steel towers 46 49 Vinyard-vertical-trellis 904 903 
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Figure 4 presents the linear prediction error for 25 bands 
selected using WLPBS and LPBS. We can observe from 
this figure that WLPBS provides the lowest prediction error 
(the optimal parameters in a) as compared to LPBS for the 

Indian Pine data. With WLPBS we have the  best-estimated 
band, used to select the most dissimilar band to B1 and B2 in 
order to maximize emin. LPBS does not exceed WLPBS in 
the quality of the band selected.  

 

 
 
Fig. 2: The ground truth map of AVIRIS 92AV3C and a thematic map of 25 selected bands using the WLPBS, LPBS and MIFS 

algorithms 
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The experimental results in Fig. 4 propose that 
utilizing WLPBS for select the bands may offer a 
marginally preferred performance over utilizing LPBS. 
This is on account of the outliers observations in various 
bands are changed, if the outliers observation is bigger, a 
band may appear to be different from others, despite the 
fact that it may not be informatively distinct. 

Without minimizing the weight of outliers, the bands 
selected by LPBS are almost similar, which justifies the 
low variation of LPE for LPBS method. 

Figure 2 presents classification maps when using 25 
bands selected by WLPBS and LPBS. We can see that 
25 bands are adequate to distinguish materials contained 
in the district (Table ref tab 4). It additionally appears in 
this figure that the thematic map delivered utilizing the 
25 bands chosen by WLPBS algorithm is the most like 
the Ground Truth (GT). 

Salinas Experiments 

Data Description 

Salinas scene was gathered utilizing the 224 bands 
AVIRIS sensor over Salinas Valley, California and is 
described by high spatial resolution (3.7 m pixels). 

The region covered includes 512 lines × 217 
samples. In this study, the utilized Salinas scene data 
have well-labeled ground references containing 16 
classes (Table 1). This datum comprises 205 spectral 
bands, after noisy band elimination ([108-112], [154-
167] and 224). In our experiments with the AVIRIS 
Salinas data set in Table 3, the size of the smaller 
classes is bigger when compared to those in the 
AVIRIS Indian Pines data set. We decided to use only 
1% of the available ground-truth pixels in Table 1 to 
compute the relevant bands to be selected. 

Results and Discussion 

The supervised classification results got from 
Salinas band sets are shown in Table 3. This can be 
ascribed to the fact that LPBS method is based on 
band correlation and has little consideration of data 
quality. In this manner, classification results in light 
of the bands gotten by this strategy are less accurate 
using whitened bands. The most elevated accuracy is 
accomplished when utilizing WLPBS, that considers 
band correlations and outliers. 

The results are given in Fig. 5 showing that the 
WLPBS algorithm achieves better performance in LPE 
reduction (best B′ with optimal parameters in a) than 
LPBS in the Salinas dataset. WLPBS selects the most 
dissimilar set of bands. 

Figure 3 presents classification maps for 25 selected 
bands using WLPBS and LPBS. As in the Indian Pine 
scene, the thematic map produced using 25 bands 
selected from the Salinas dataset with the WLPBS 
algorithm is most similar to the GT map. Table 4 
presents the classification accuracy of each class, with 
respect to several methods. 

The Selected Number of Bands (NB) 

The VD utilized by (Du and Yang, 2008) might be 
a sensible marker of the fitting number of bands to be 
selected. However, this criterion may work effectively 
when noise is independently and identically 
distributed. This is, unfortunately, not true when is 
applied to real image data. For this reason, we here 
use LPE as a criterion to stop the selection process, 
we stop the selection if any band from the candidate 
ones can't optimize more the linear prediction error. 

 
Table 2: A comparison of classification accuracy for Indian pine dataset 

 Indian Pine data 

 -------------------------------------------------------------------------------------------------------------------------- 

Number of Bands WLPBS LPBS MIFS MI-est* 

20 88.00 86.82 85.19 86.57 

25 88.79 87.52 88.02 87.18 

30 90.20 87.70 88.35 88.23 

35 90.84 88.02 89.06 89.00 

40 91.07 89.01 88.75 89.38 

Notes: The outcomes held of MI-est [marked by (*)] is the result of Guo et al. (2006). 

 
Table 3: A comparison of classification accuracy for Salinas dataset 

 Salinas data 

Number -------------------------------------------------------------------------------------------------------------- 

of Bands WLPBS LPBS MIFS 

20 94.46 93.85 93.99 

25 94.93 94.50 94.61 

30 95.11 94.65 94.39 

35 95.24 94.88 94.80 

40 95.30 94.98 95.07 
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Fig. 3: The ground truth map of Salinas dataset and thematic map of 25 selected bands selected with the WLPBS, LPBS and MIFS 

algorithms 
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87.50% (Table 2). If the LPE decreases, the number of 
bands selected and the classification values are 
increased. Thus, the LPE might be a sensible pointer 
of the fitting number of bands to be selected in the 
real data. 
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Fig. 4: The linear prediction error (LPE) for 25 bands selected by LPBS and WLPBS for Indian Pine dataset 
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Fig. 5: Linear prediction error (LPE) for 25 bands selected by LPBS and WLPBS for Salinas dataset 

 
Table 4: Classification result using the 25 selected bands with the WLPBS, LPBS and MIFS algorithms  

 Accuracy % 

 ------------------------------------------------------------------------------------------------------------------------------------------- 

 Indian Pine   Salinas 

Class ----------------------------------------------------------- ------------------------------------------------------------ 

No WLPBS LPBS MIFS WLPBS LPBS MIFS 

1 92.00 84.00 100.00 100.00 100.00 99.60 

2 85.03 83.92 85.59 100.00 100.00 100.00 

3 80.96 81.45 78.07 99.39 100.00 99.60 

4 82.05 79.49 83.76 99.57 99.43 99.43 

5 97.98 97.98 96.77 99.33 99.48 99.18 

6 97.59 97.05 98.93 99.85 99.80 99.90 

7 92.31 92.31 92.31 100.00 100.00 99.83 

8 97.97 97.97 97.97 87.38 86.64 87.97 

9 100.00 90.00 100.00 99.71 99.74 99.58 

10 89.90 86.39 80.00 99.15 99.21 98.54 

11 87.60 84.36 86.22 99.63 99.63 99.63 

12 86.45 82.26 84.52 99.90 99.79 100.00 

13 99.04 99.04 99.04 99.78 99.78 99.56 

14 94.62 95.38 96.00 99.07 98.50 98.69 

15 62.11 70.00 75.79 83.30 81.12 80.68 

16 100.00 95.92 100.00 99.78 99.89 99.67 

 
Conclusion 

Band selection in hyperspectral imaging is 
imperative, regardless of the learning algorithm which is 
utilized to train the hyperspectral dataset. Because of the 
presence of irrelevant and redundant bands, by choosing 
just the relevant bands of the data, higher predictive 
accuracy can be obtained. In this study, the problem of 
band selection (selection of just the important band in 
the classification procedure) is achieved. 

Among the numerous arrangements of this problem, 
algorithm-based band similarity measures are ideal for 
they think about band correlations while the bands gotten 
by the others are highly correlated in general. 

Existing LPBS, one of these algorithms, excludes 
correlated bands effectively, but it may fail when the 
candidate band to be selected has many outliers. 

To resolve this problem, an unsupervised band 
selection method called WLPBS has been proposed. 
WLPBS has the ability to both exclude the correlated 
bands and minimize the weights of outlying observations 
(pixels) in the band. 

The investigations demonstrate that WLPBS can 
remove the bands with low qualities and accordingly 
get high classification accuracy. Nonetheless, the 
major problem of the WLP-based band selection is 
that computational cost is high all the pixels are used. 
Later on, we will build up The N-FINDR algorithm 
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for pixel selection and then the selected pixels are 
used for band selection. 
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Abbreviations 

The following abbreviations are used in this manuscript: 
 
WLPBS: Weighted Linear Prediction based band 

selection 
LPBS: Linear Prediction based band selection 
WLP: Weighted Linear Prediction 
LP: Linear Prediction 
LPE: Linear Prediction Error 
VD: Vertual Dimensionality 
GT: Ground Truth 
SVM: Support a Vector Machine 
JM: Jeffreys-Matusita 
BS: Band Selection 
RBF: Radial Basis Function 
NB: Number of Bands 
MI: Mutual Information 
MIFS: Mutual Information Feature Selection 
 


