

 © 2018 Alexandre Augusto Giron, Itana Maria de Souza Gimenes and Edson OliveiraJr. This open access article is

distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Evaluation of Test Case Generation based on a Software

Product Line for Model Transformation

1
Alexandre Augusto Giron,

2
Itana Maria de Souza Gimenes and

2
Edson OliveiraJr

1Federal University of Technology, Parana, Toledo-PR, Brazil
2Department of Informatics, State University of Maringá, Maringá-PR, Brazil

Article history

Received: 31-10-2017

Revised: 17-11-2017

Accepted: 18-1-2018

Corresponding Author:

Alexandre A. Giron

Federal University of

Technology, Parana, Toledo-

PR, Brazil
Email: alexandregiron@utfpr.edu.br

Abstract: Model-Driven Engineering (MDE) supports model evolution and

refinement by means of model transformations at several abstraction levels.

Validating these transformations is essential to ensure the quality and

correctness of such models. However, MDE transformations become more

complex to validate, for example, when they are implemented in different

languages. One particular example is the transformation of the SyMPLES

approach. SyMPLES is a development approach for embedded systems,

which is based on concepts of both Software Product Lines (SPL) and

MDE. SyMPLES has a model transformation process which creates

Simulink models from SysML models. This paper presents a case study

which applies test case generation based on SPL to validate this model

transformation. An SPL was used to generate a set of test cases based on

coverage criteria. The results showed that the test cases generated

uncovered errors in the transformation of SyMPLES. In addition, a

comparison with the test case generation based on metamodel is presented,

in order to analyze the effectiveness of the techniques. The coverage

criteria made it possible to reduce the number of test cases generated, thus

minimizing test effort and time.

Keywords: MDE Validation, Software Product Line, Embedded Systems

Introduction

An embedded system is a computer system

incorporated in a larger product (Marvedel, 2003). The

development process of these systems is different from

traditional systems due to their specific nonfunctional

requirements, such as, power consumption, performance,

hardware and software integration, real time and cost.

Therefore, specific approaches are needed to support

their development process.
Model-Driven Engineering (MDE) and Software

Product Lines (SPL) are complementary approaches that

contribute to improving the embedded systems

development process. MDE allows the generation of

applications and models by means of model

transformations at distinct abstraction levels (Mellor,

2004) and SPL supports non-opportunistic reuse of

common artifacts from the same domain to customize

new applications (Van der Linden et al., 2007). One of

the goals of MDE is to facilitate the code generation

from specification models, which can be carried out

automatically using MDE transformations.

The SysML-based Product Line approach for

Embedded Systems (SyMPLES) (Silva et al., 2013;

Fragal et al., 2013) is an approach to support the

embedded systems development process, which

combines both MDE and SPL concepts. SyMPLES is

composed of activities for both variability management

and model transformation. It guides the development

using annotations in SysML models (Friedenthal et al.,

2009) to specify the system. The annotations support the

variability resolution to configure specific products.

SyMPLES transforms configured SysML models into

Simulink models. SysML is a modeling language for the

specification of dynamic systems, at a high abstraction

level, whereas MATLAB/Simulink (Mathworks, 2017)

is an environment which supports modeling, system

simulation and C/C++ code generation.

Validation of MDE transformations is important to

ensure quality (Fleurey et al., 2004). If the models are

Alexandre A. Giron et al. / Journal of Computer Science 2018, 14 (1): 108.121

DOI: 10.3844/jcssp.2018.108.121

109

derived automatically by the MDE transformations, then

their quality will depend on the correctness of the

transformation (Küster and Abd-El-Razik, 2006).

Software testing techniques have been used to

validate MDE transformations (Küster and Abd-El-Razik,

2006), but these techniques are significantly different

from testing traditional software. This is due both to the

declarative nature of some transformation languages and

to the complex structure of the specification models,

which can have different types of elements and

arrangements between them (Tiso et al., 2012).

Furthermore, model transformations can be implemented

by different languages when divided into smaller

transformation steps, increasing their complexity. Thus,

validation becomes more difficult as the testing must

take into consideration all the transformation steps and

the transformed models (output models).

Analyzing the model transformation of the SyMPLES

approach, a need of validation was identified, because:

• It was evaluated in just one application example,

developed to specify a system to Yapa 2 board,

responsible for the flight control of an UAV

(Fragal et al., 2013), in the context of the Brazilian

National Institute of Science and Technology for

Critical Embedded Systems (INCT-SEC)

• Any MDE transformations must be validated to

analyze whether its execution produces expected

results

• SyMPLES model transformation structure was

designed with two transformation steps, each one

designed in a different language, using inputs and

producing output models. This “chain-based” design

could complicate the validation of the model

transformation as a whole

• The input domain (SysML metamodel) for the

model transformation can produce a big set of test

cases. It is important to seek alternatives to reduce

the size of the test cases, for example using

coverage criteria and generation policies, in the

context of MDE transformations (Fleurey et al.,

2004; Küster and Abd-El-Razik, 2006)

This paper presents a case study for the validation of

the SysML to Simulink model transformation. In

synthesis, the case study involves an MDE validation

technique using a SPL as input to the test case generation,

in the context of the embedded systems development. The

main objective of this paper is to evaluate the test case

generation using SPL to the validation of the model

transformation of the SyMPLES approach.

In a previous published work (Giron et al., 2017), the

model transformation of the SyMPLES was tested using

test case generation from the SysML metamodel. Now,

another objective in this study is to compare the results

with the previous publication. The same model

transformation is used to compare the techniques of test

case generation: From the SysML metamodel (previous

publication) and the generation from a SPL (this paper).

This paper is organized as follows: Related Work is

presented in the second section; detailed information of

the SyMPLES approach and its MDE transformation are

presented in the third section. The fourth section presents

concepts on MDE validation; the test case generation

technique is presented in the fifth section; the sixth

section presents the application of the technique and its

results; and conclusions, contributions and future work

are presented in the seventh section.

Related Work

Validation of MDE transformations was

investigated in many studies. There is a variety of

techniques for validation as Model-Based Testing,

formal verification and validation based on common

software testing techniques.

Brottier et al. (2006) presented a test case

generation process based on metamodel. This process

consists on creating partitions of the metamodel, using

equivalence classes, aiming to reduce the input

domain. These partitions are used to create model

fragments that can be used to generate input models

for testing. A limitation found is that the scope is

reduced to the test case generation. Our work focuses

on the test case generation but other activities are also

considered (i.e., Run tests activity).

Tiso et al. (2012) provide a development method for

MDE transformations and two approaches for testing:

Static test and dynamic test. However, no technique for

test case generation is discussed or proposed, thus it is

assumed the tester already has the input models to the

test execution.

Another approach for validation of transformations is

the Model-Based Testing (Guerra, 2012; Lano et al.,

2015). Differently from common software testing, this

kind of testing is usually performed with a symbolic

execution of the models. These models are used to

specify the desired behavior of the transformation, for

example, state machine models.

Lin et al. (2005) proposed a framework and a tool for

transformation testing. The tool allows the mapping

verification between input/output models and shows the

visualization of the differences between these models.

In this study, validation is based on functional

testing, mostly because the SysML to Simulink model

transformation implementation is composed of two

different languages. SyMPLES does not provide any

formal model to perform model-based testing of the

transformation and this kind of testing is out of the

scope of this paper. The main three activities of

testing MDE transformations were considered in this

Alexandre A. Giron et al. / Journal of Computer Science 2018, 14 (1): 108.121

DOI: 10.3844/jcssp.2018.108.121

110

study, from test case generation to the execution and

analysis. In addition, a comparison with previous

work is performed in this study.

Test Case Generation based on the SysML Metamodel

A previous work tackled the validation concern of the

SyMPLES model transformation using a metamodel-

based test case generation technique (Giron et al., 2017).

The previous work technique was applied using the

SysML metamodel, with two generation policies and a

set of coverage criteria. The generation policies were

used to define the size of a test case, because the bigger a

test case is, the more difficult to interpret it (Sen et al.,

2009). In addition, a bigger set of test cases increase the

test effort and time, therefore, an automated

environment, an analysis of the SysML metamodel and

coverage criteria were used.

The generation policies were applied to define how

many elements compose a SysML model. Each SysML

model was used to test the model transformation of the

SyMPLES approach. With regard to the policies, they

are described as follows:

• (N to 1) policy: A limited set of SysML elements

is inserted in the same diagram. Heuristics can be

applied to define the N value. For example, each

test case could group at most five of the

possibilities from one specific type of relationship

between two elements

• (1 to 1) policy: One diagram for each new element.

Using this policy it is easier to find out the cause of

an error when it occurs, but it could increase the size

of the set of test cases

With regard to the input domain for the test case

generation, the coverage criteria determined how

much of the SysML metamodel was used. Also, in

order to reduce the test case set, a strategy applied

was to generate only elements that could be used by

the transformation rules. For example, certain

diagrams from the SysML language were not took into

account in the SyMPLES model transformation.

Therefore, these diagrams and elements were

excluded. The result of these strategies was a

reduction of the number of test cases and avoided to

generate useless test cases.

After running tests using the test cases generated

and comparing the policies used, the effectiveness was

analyzed. The effectiveness was calculated in terms of

how many test cases were able to identify an error in

the model transformation. Comparing the policies

used, the effectiveness was about 18% (1 to 1) and

22% (N to 1).

A characteristic of the test case generation based on

metamodel is the set of test cases are generic. Each test

case is composed of a SysML model (and the expected

result of the transformation), but this model is generic.

This means it does not represent a real system

specification, for example. This is not considered to be a

problem, however, if the test could be more specific to

the model transformation, it would improve the

effectiveness of the test case set.

The SyMPLES Approach

SyMPLES can be divided into two parts: Domain

engineering, which contains the SPL related activities, as

variability management; and application engineering,

composed of a model transformation.

SPL in SyMPLES is specified with SysML models

with stereotypes to variability management and for

functional blocks. The transformation of SyMPLES can

be applied on the configured SysML models to obtain

corresponding Simulink models.

SyMPLES uses profiling mechanism for creating two

extension profiles of the SysML language, as follows

(Silva et al., 2013):

• The SyMPLES Profile for Functional Blocks

(SyMPLES-ProfileFB) specifies the types of

functional blocks by means of a set of stereotypes.

These stereotypes provide additional semantics to

the SysML blocks. Therefore, this profile helps to

map SysML blocks to Simulink blocks

• The SyMPLES Profile for Representation of

Variability (SyMPLES-ProfileVar): Represents the

variabilities of an SPL from a set of stereotypes and

aggregate values to the elements of the SysML

diagrams. Each product of the SPL is a SysML

configured model

In this approach two processes are defined to the SPL

activities, as follows:

• SyMPLES Process for Product Lines (SyMPLES-

ProcessPL) consists of activities related to SPL

artifacts creation

• SyMPLES Process for Identification of Variabilities

(SyMPLES-ProcessVar) is based in the SMarty

approach (OliveiraJr et al., 2010). It aims to support

the SPL variability management, from variability

identification to product configuration

The functional blocks profile was created to support

the model transformation in SyMPLES approach. This

model transformation maps SysML elements to Simulink

blocks. Each SysML model can be transformed to a

Simulink model, allowing, for example, the simulation

of embedded system specified. Therefore, Simulink

models generated from this transformation are closer to

Alexandre A. Giron et al. / Journal of Computer Science 2018, 14 (1): 108.121

DOI: 10.3844/jcssp.2018.108.121

111

the system implementation. In addition, Simulink models

can be used for code generation, provided by the

MATLAB/Simulink tool.

SysML to Simulink Model Transformation

The model transformation of the SyMPLES

approach is divided into three steps: (i) Configure a

SysML model, (ii) run an ATL transformation

(Jouault and Kurtev, 2005) and (iii) generate

functional blocks, as shown in Fig. 1.

Configure a SysML Model

In this step, a SysML model with SyMPLES

stereotypes must be configured. The model can be

composed of four diagrams: Block Definition, Internal

Block, State Machine and Parametric. The root diagram

is the Block Definition, used to describe the main blocks

of the system. The Internal Block represents the internal

relationship of a block based on block instances,

therefore one Internal Block diagram can be used for

each main block specified in the Block Definition. The

behavior can be specified in the State Machine diagram

and the Parametric diagram specifies block constraints,

values and properties. If a block will be used in the

system, or if it is optional, then these variabilities must

be resolved to configure the SysML model.

The variabilities are specified in a Block Definition

Diagram using variation points, defined in the SyMPLES

approach. An example of the definition of an SPL for the

Mini-UAV, used in this study, is presented in Fig. 2.

In Fig. 2 three variation points are defined:

Barometer, Servos and Camera. SyMPLES defines the

variation point stereotype which means that it must be

one Internal Block Diagram to specify such variability.

The SysML model with SyMPLES stereotypes can

be imported to the pure::variants tool (Beuche, 2012),

which creates a Variant Model Descriptor (VDM). In

Fig. 3 an example of a configured VDM is shown. The

Feature Model in Fig. 3 shows three variabilities: Two

options mutually exclusive for the Barometer sensors;

two options mutually exclusive for the Camera; and two

options for the Servos. The variabilities are resolved in

this model, then, they are automatically reflected in an

output SysML model.

Fig. 1: SysML to Simulink model transformation, provided by SyMPLES approach

Alexandre A. Giron et al. / Journal of Computer Science 2018, 14 (1): 108.121

DOI: 10.3844/jcssp.2018.108.121

112

Fig. 2: Block Definition Diagram of the Mini-UAV (Fragal et al., 2013)

Fig. 3: VDM Model representing the features of the Mini-UAV

SPL, generated in pure::variants tool

Execute ATL Transformation

This step uses ATL rules to select relevant information

about the SysML model, like element attributes, stereotypes

and graphic data (i.e., element position and size). Each

element with relevant information is stored in one XMI

intermediary model. This intermediate transformation using

an XMI intermediary model makes this process more

flexible to deal with EMF-based editors.

Generate Functional Blocks

This step is implemented in Java and uses the XMI
model produced in the previous step and the main file of
the SysML model, known as UML file. The UML file
must be used because it contains values that are
referenced by the XMI model and to retrieve the
SyMPLES stereotypes in the SysML model. In this step,
a MATLAB script is generated and it represents the

Simulink model. With its execution, the Simulink model
can be visualized.
The SyMPLES transformation process can be

classified as a Model-to-Model (M2M) transformation,

receiving as input models the SysML models with

SyMPLES stereotypes. The SysML configured model is

used as input to the transformation, producing an

intermediary file (XMI), which is based on the Simulink

metamodel (Biehl et al., 2010). The XMI file is an

intermediate model. The final Simulink model is generated

only after the “Generate Functional Blocks” step.

SyMPLES Transformation Example

An example of input model can be visualized in Fig.

4. It is composed of a SysML Internal Block Diagram

and its Block Definition diagram is the same as in Fig. 2.

The Navigation block from the Block Definition

Diagram is composed of a block “Yapa2”, which has the

subsystem stereotype, defined in SyMPLES. This means

that a Simulink subsystem block will be generated after

the transformation.

The obtained result after the execution of the

transformation is an output model composed of a

MATLAB script, known as M-File. Then, this script can

be executed in MATLAB to produce the Simulink

model. Figure 5 shows the Simulink model.

The SyMPLES transformation can be complex to

validate because its implementation is divided into two

steps, each one designed in a different language. The first

one used ATL language and the functional block generation

was written in Java. In addition, the transformation uses the

SysML and Simulink metamodels and reads stereotypes

information from SyMPLES profiles when it transforms the

input models. Therefore, it is important to take into

consideration all of these concerns for the validation

process of the SyMPLES transformation.

Alexandre A. Giron et al. / Journal of Computer Science 2018, 14 (1): 108.121

DOI: 10.3844/jcssp.2018.108.121

113

Fig. 4: Example of input model to the transformation of the SyMPLES approach. Adapted from Fragal et al. (2013)

Fig. 5: Example of Simulink model generated by the transformation. Adapted from Fragal et al. (2013)

In the previous work, a first attempt to validate the

model transformation of SyMPLES was performed. The

test case generation technique was based on the SysML

metamodel. The test cases generated were generic

because the only information used was the SysML

metamodel and SyMPLES stereotypes.

In this study, an alternative technique to test case

generation is proposed. As the SyMPLES model

transformation transforms models from SPL

specifications, the main idea is to use an SPL to provide

test cases for the model transformation. The details of

the proposal evaluated in this case study are explained in

the next section.

Validation of MDE Transformations

Approaches based on software testing are frequently

used in industry and can be applied to validate MDE

transformations (Fleurey et al., 2004). Two main types

of testing can be applied: Black-box testing, or functional

testing, in which the input models are compared to the

output models after the transformation; and White-Box

testing, or structural testing, in which the internal aspects

of the model transformation are analyzed.

As previously mentioned, a transformation can be

written in different languages (e.g., ATL, QVT) and

even common programming languages. In addition,

transformations become more difficult to test when the

same transformation is designed into steps, where each

one can also be written in different languages, like the

transformation of the SyMPLES approach. In these

cases, a functional approach is more appropriate.

Regardless the testing type, to validate model

transformations at least three steps must be followed

(Küster and Abd-El-Razik, 2006): Test Case Generation,

in which the test case are generated accordingly to a

coverage criterion; Oracle definition, which defines the

expected result of a test; and Test Execution, to

determine and analyze the testing results.

In the Test Case Generation, two factors must be

taken into account: The size of one test case and the size

of the set of test cases. The size of one test case is the

number of elements of the model. A test case with few

elements facilitates both its comprehension and an

efficient diagnostic when an error is found. However,

decreasing the size of the test case may result in an

increase of the set of test cases. When the size of the set

of test cases is too big, the test becomes unfeasible

(Fawaz et al., 2015). Therefore, reducing the size of the

set is important to reduce the test time by using coverage

criteria and generation policies (Fleurey et al., 2004;

Küster and Abd-El-Razik, 2006).

Alexandre A. Giron et al. / Journal of Computer Science 2018, 14 (1): 108.121

DOI: 10.3844/jcssp.2018.108.121

114

Considering the Test Execution, Tiso et al. (2012)
define two approaches to transformation testing:
Checking static properties (static testing) and
analyzing the execution (dynamic testing). Static
testing refers to verifying properties in the output
models, like checking whether certain attributes are
present in the output model. On the other hand,
dynamic testing refers to analyze the execution of the
output model, if it is executable.
The result analysis process from the execution of the

tests in model transformations is also important. A
transformation is usually based on rules that map
elements from input models to the corresponding one in
the output models. Thus, a wrong use of the
transformation rules may lead to errors, classified as
(Küster and Abd-El-Razik, 2006):

• (Type 1) Metamodel coverage: The transformation

rules have been implemented, but they are not

sufficient to map all elements that the metamodel

possess. An example is when the rules can only be

applied to certain kinds of elements, thus the other

kinds of elements are not mapped

• (Type 2) Syntactically incorrect models: When the

transformation rule cause generation of an output

model that does not comply with the output

metamodel

• (Type 3) Semantically incorrect models: When the

transformation rules are applied to an input model

and the output model is produced syntactically

correct, but it does not produce a model with the

expected elements. For example, when an input

model with elements is transformed but some

elements are missing in the output model. Therefore,

the output model is not a correct transformation

from the input model

• (Type 4) Ambiguity: The same transformation rule

produces different results from the same input model

• (Type 5) Errors due to incorrect coding: Included

here all the other types of common errors and the

codification errors. Examples are the incorrect

primitive types (integer, floating point) and memory

references out of bounds

Test Case Generation Based on SPL Modeled

with SyMPLES

This section presents the test case generation based

on SPL. The SPL must be modeled with SyMPLES in

order to generate test cases for the model transformation

of the SyMPLES.

Due to the fact that SyMPLES has variability

management, the possibility of generating test cases

from the SPL was identified. Each product from a SPL is

a SysML model with resolved variabilities, so it can be

used as an input model to test the transformation.

As the model transformation of the SyMPLES needs

a product from a SPL (i.e., a model) to transform it into a

Simulink model, a SPL can be used as the “input

domain” to generate several products to test if the

transformation can produce the expected results (i.e., the

Simulink model).

It is worthy to note that, in this case study, the focus

is to test the SyMPLES model transformation, not the

SPL. This paper will not perform any SPL testing

techniques. A premise used in this case study is that the

SPL must be modeled with SyMPLES approach and the

software components of the SPL are already tested. An

analogy that can be made is that the model

transformation corresponds to the System Under Test

(SUT) and the SPL corresponds to the input data domain

of the SUT. Obviously, it is a reduced domain as it

discards elements that are not used by the

transformation. The SPL provides a family of SysML

models as input to test the model transformation.

However, the test case generation using SPL for model

transformations has little research available. Possibly, this

is due to the fact that this is a particular situation: An

MDE transformation with specific characteristics needs

validation and the proposal is to use an SPL as a source of

test cases, not to perform SPL testing, but to test the MDE

transformation in the context of the Embedded Systems

and of the SyMPLES approach.
According to Lochau et al. (2012), SPL testing has an

issue about the number of products that can be generated
from the SPL. This concept is the same when using an
SPL as input domain to test the model transformation. If
the SPL has too many products then the test could be
difficult to manage. To alleviate this problem, a coverage
criterion can be applied to the SPL to determine the
maximum number of generated models for testing and
therefore allowing partitioning the SPL. Other
approaches can be used as well, for instance optimization
algorithms (Fleurey et al., 2004) or search-based
software testing (Anand et al., 2013).
Therefore, to apply the test case generation based on

SPL, to test the model transformation of SyMPLES,

three definitions are made, as follows:

• SPL must be modeled using SyMPLES. This is a

requirement to the transformation itself, otherwise it

will not produce any output model

• Domain definition: The SPL is used to provide the

test cases, therefore it is needed to perform a Feature

Analysis in the SPL in order to calculate the

maximum amount of products available in the SPL.

This number reflects the size of the set of test cases

• Coverage criteria: It is also needed to define the

coverage on the test case set, in terms of the quantity

of test cases. It is important to highlight that, if

increasing the size of the test case set, then it could

increase the test effort and time

Alexandre A. Giron et al. / Journal of Computer Science 2018, 14 (1): 108.121

DOI: 10.3844/jcssp.2018.108.121

115

The main idea of this technique is to generate specific
test cases, related to the SPL used, because this model
transformation requires SyMPLES stereotypes. Basically,
in SyMPLES the specification of an SPL of a system will
have blocks with stereotypes and its variabilities. The
stereotypes define which Simulink block will be generated
at the output model level. Therefore, using a real world
SPL would be possible to generate specific test cases, to
test at least the elements used and allowed to be
transformed. Then, a test case will be created based on one
product of the SPL. The calculation of the amount of test
cases for the generation can be performed with the SPL
Feature Analysis procedures.

SPL Feature Analysis

The Feature Analysis can be performed based on the

Binary Decision Diagram (BDD). Its implementation is

based on the SPLOT tool, in this study. Comparative

studies in feature analysis showed that BDD is efficient

in terms of execution time (Mendonca et al., 2009;

Benavides et al., 2007).
BDD uses a logic structure to represent a boolean

function, composed of decision nodes and terminal nodes (0
and 1). Each node represents a boolean variable and all the
paths will lead to the boolean value 1 when the function is
true. Connections will lead to left or right and correspond to
the value 0 and 1, respectively. Figure 6 presents an
example of a BDD and its corresponding Truth Table of a
boolean function S. The function can be resolved using the
values in the table to traverse the path in the BDD.
The feature model of an SPL can be represented with

a BDD. In an example, in an SPL with two mutually
exclusive options to configure, the possible
configurations can be defined equivalently using a BDD

with an XOR function. Options for SPL features in
SyMPLES are alternative_OR, alternative_XOR,
optional and mandatory. In summary, SPL constraints
are mapped to boolean functions in a BDD.

Implementation Details

The SPL-based test case generation was implemented

in this case study using the Java language and an SPL

specified using SysML with stereotypes of the

SyMPLES approach. The test case generator allows two

types of coverage criteria: Partial and total. They are

based on the percentage of the maximum amount of

products from the SPL, calculated using Feature

Analysis previously presented.

Figure 7 shows the process of SPL-based test case

generation and the Test Execution. Initially, the SPL

definition is taken as input. The SPL definition includes

models specified according to SyMPLES and an XML

specification. They are used to generate VDM models,

allowing the configuration of each product according to

the coverage criterion. In addition, the specification in

XML format is used because it is compatible with the

BDD feature analysis (based on SPLOT tool as

mentioned before).
A limitation of this implementation is that the VDM

configuration must be manual, in the test case
generation. Other SPL can be used for test case
generation with the tool implemented in this case study,
but it must be specified according to SyMPLES,
otherwise it would need a tool to automate the
generation of the products. The implementation created
in this study is specific to the SyMPLES approach, but
the concept would be the same for other types of SPLs.

Fig. 6: BDD example

Alexandre A. Giron et al. / Journal of Computer Science 2018, 14 (1): 108.121

DOI: 10.3844/jcssp.2018.108.121

116

Fig. 7: SPL-based test case generation and run tests activity

After the VDM generation, feature configuration

must be performed, then a script must be executed to

create the SysML models, according to the configured

VDM. Such script is generated jointly with the VDM.

Then, the SysML models generated by the script and

corresponding to each VDM can be used as input to the

transformation test. Each SysML model represents a

configuration of the SPL (i.e., Config. 1 in Fig. 7). This

configuration also the expected results of the

transformation, but this is not part of the test case

generator tool.

In this case study, a table was used to map the input

and output elements, using the transformation rules

extracted from the SyMPLES documentation. For

example, if an input model contains a determined

element, in the output model a corresponding element

(or elements) must be present. Therefore, it is possible to

check if the transformation test has passed or not.

It is worthy to highlight that if an error in the

transformation is identified (for example, in the ATL

step of the model transformation), then the second step

cannot be tested because there is no output model from

this step. This scenario is showed in the reports of Fig. 7.

If an error is detected in the Run Tests activity, the

transformation will not generate the output model. This

scenario is not a problem, because the main objective of

a test case is to find an error in the transformation.

Static Test

The static test is basically composed of the execution

of model transformation using test cases generated and

analyzing its results. The execution of the tests aims to

run the transformation in a suitable environment. Then,

one or more intermediary models or output models can

be produced, but only if the transformation executes as

expected, without any execution errors.
It is important to highlight using proper tools to

automate the execution tends to decrease the test time

and facilitate the result analysis. The test case generator
implemented in this case study also generates an ANT
script to run the tests automatically.

Dynamic Test

Dynamic test can be applied if the output models

produced by the transformation are buildable or

executable (Tiso et al., 2012). If the output models do not

execute correctly, then the transformation was not able to

generate them as expected. Therefore, the dynamic test

was included to provide a higher level of validation.

To automate the dynamic test, a MATLAB script was

used, developed in previous work. The script executes

each output model using the feval command. If an error

occurs, it is stored in a text file with prefix

logDynamicTest. The following information composes

the log file: Error number (or count), the name of the

output model, error message and the line number. This

information is needed to help to find the cause of the

error in the model. Finding the cause of an error often

requires knowledge of its implementation.

Validation of the SysML to Simulink Model

Transformation

In this section, the case study scenario is presented.

The test case generation based on SPL was applied to the

model transformation of SyMPLES.

Hypothesis of this Case Study

In this case study, the hypothesis is described as follows:

• The test of the model transformation of SyMPLES

using an SPL modeled with SyMPLES is more

specialized to find errors compared to a metamodel-

based technique (of test case generation)

Alexandre A. Giron et al. / Journal of Computer Science 2018, 14 (1): 108.121

DOI: 10.3844/jcssp.2018.108.121

117

In other words, an SPL-based technique would allow

finding more errors in the transformation with fewer test

cases generated, when compared with a metamodel-

based technique. The activities performed in this case

study are described as follows.

Activities Performed

Three main activities were performed to validate

the transformation of the SyMPLES approach: Test

Case Generation, Test Execution (Run Tests) and

Result Analysis.

As previously mentioned, for the validation of the

SyMPLES transformation the Test Case Generation by

SPL was performed. The SPL used as input to the test

case generation was the Mini-UAV specification

presented in Fig. 2 and 3. An analysis is shown in Fig.

8 related to the variability “Barometer” and “Servos”.

The first variability shows two mutually exclusive

options: BPM085 and MS5611, mapped to the BDD as

a XOR function. The “Camera” variability is also

mapped as a XOR function and the “Servos” variability

is mapped as an OR function. In Fig. 8, there are two

paths that lead to 1-terminal to the XOR structure and

three to the OR structure.

The result of the SPL analysis and considering all of

the variabilities is a maximum amount of twelve possible

configurations: Two for the Barometer, combined with

two for the Camera and three for the Servos, as shown in

Table 1. Therefore, twelve SysML models can be

generated as products to test the model transformation.

Table 2 shows the results from generating test cases

using this Mini-UAV SPL. Using one coverage criteria

will define how much SPL products (in this case SysML

models) will be tested in the transformation. The last

column of Table 2 shows the quantity of errors found

when the first step (Step 1: ATL transformation) of the

model transformation was tested.

Twelve products were generated using the total

coverage criterion. Each product is a SysML model

composed of one Block Definition, Internal Block and State

Machine Diagrams and then used to test the transformation.

Then, each model associated with the expected result of the

transformation composes the test case.

It is worthy to note that the Run tests activity was

divided into two steps. This is due to the fact that the

transformation is structured in two steps: ATL

transformation (Step 1) and the Generation of Functional

blocks, written in the Java language (Step 2). Table 3

presents an example report, related to the results of the

test of Step 1, related to the total coverage criteria. The

test cases were named variant because each one is a

variant configuration of the SPL.

Table 1: Total amount of possible configurations of the SPL

Variability Function Possible configurations

Barometer BPM085 XOR MS5611 2

Camera RGB XOR Infrared 2

Servos Aileron OR Rudder 3

Total (Combined) - 12

Table 2: Coverage criteria compared in the test case generation

Coverage Number of generated products Percentage of SPL products covered (%) Errors found

Total 12 100 11

Partitioned 9 75 8

Partitioned 6 50 5

Partitioned 3 25 2

Table 3: Results of the test of Step 1 of the transformation, after the execution of the test cases from the Total coverage criteria

Test case Result Error found

Variant0 Error org.eclipse.emf.ecore.xmi.UnresolvedReferenceException

Variant1 Error org.eclipse.emf.ecore.xmi.UnresolvedReferenceException

Variant2 Pass -

Variant3 Error org.eclipse.emf.ecore.xmi.UnresolvedReferenceException

Variant4 Error org.eclipse.emf.ecore.xmi.UnresolvedReferenceException

Variant5 Error org.eclipse.emf.ecore.xmi.UnresolvedReferenceException

Variant6 Error org.eclipse.emf.ecore.xmi.UnresolvedReferenceException

Variant7 Error org.eclipse.emf.ecore.xmi.UnresolvedReferenceException

Variant8 Error org.eclipse.emf.ecore.xmi.UnresolvedReferenceException

Variant9 Error org.eclipse.emf.ecore.xmi.UnresolvedReferenceException

Variant10 Error org.eclipse.emf.ecore.xmi.UnresolvedReferenceException

Variant11 Error org.eclipse.emf.ecore.xmi.UnresolvedReferenceException

Alexandre A. Giron et al. / Journal of Computer Science 2018, 14 (1): 108.121

DOI: 10.3844/jcssp.2018.108.121

118

Fig. 8: Analysis of “Barometer” and “Servos” variability

Fig. 9: Results in test execution considering step 1 of the

transformation of SyMPLES

Several test cases showed the presence of errors, in

the tests of Step 1 of the transformation. Figure 9

presents a comparison between the coverage criteria

and provides an analysis of the type of error found.

The error rate is calculated based on the amount of

errors found divided by the amount of test cases. The

error rate by type is calculated based on the quantity

of error types divided by the amount of test cases.

Increasing the number of test cases resulted in a

gain in the number of errors found (upper curve in the

graph, Fig. 9). In other words, the blue curve

represents the variation of the number of test cases

that showed an error between the coverage criteria.

The coverage criteria applied, showed in Fig. 9, was

the types classified as partitioned or total. For an

example, in the “Partitioned 25” almost 70% of the

test cases showed an error.

Although the results showed a high error rate, only

one type of error was detected. The type of error

identified was the Type 5 of the classification presented

in the Fourth section. This is showed by the bottom

curve in the graph. Increasing the number of test cases

did not result in the detection of other types of errors

(Fourth section, Validation of Model Transformations).

Therefore, in this case, the “Partitioned 25” criterion is

more efficient because its error rate by different type is

higher than others, about 33%.

All the errors identified are related to unresolved

references of elements in the input models

(UnresolvedReferenceException). Therefore, they

were classified as type 5: Common coding errors.

Only after the correction of the errors, the test was

executed again and no error was found in the

transformation. Without errors, the intermediary

models were successfully generated.

With the intermediary models generated by the

transformation, the test of the second step of the

transformation (Step 2: Generate Functional Blocks) was

performed, but no error was detected, which means that

all of the output models were generated.

Then, the validation proceeds with the dynamic

test. Each output model was executed with the

dynamic test script and no error was identified,

allowing the visualization of the Simulink models,

ending the Run test activity.

Comparing Results

Summarizing the results from this case study, the

proportion of errors found by test case generated

obtained was about 92%, considering total coverage of

the SPL. This means the effectiveness of the test case

set: 11 from 12 test cases were useful to find errors.

However, these errors are related to common coding

problems. No error was found in the dynamic test. In

addition, errors of Type 1-4 (Fourth section), which are

specific of the MDE context, could not be found.

Due to the specific nature of this case study, which

involves the test of model transformation of the

SyMPLES approach and test case generation from an

SPL specified with SyMPLES, it is hard to compare

results to evaluate the generation technique.

Alexandre A. Giron et al. / Journal of Computer Science 2018, 14 (1): 108.121

DOI: 10.3844/jcssp.2018.108.121

119

However, despite the differences in the techniques,

some concepts are similar when generating test cases.

Sen et al. (2009), for an example, presented a test case

generation algorithm based on the metamodel. Using a

metamodel-based technique, the test case set generated

is more generic, normally bigger and they also applied

coverage criteria to minimize the test size, but

including mutation factors and other strategies. The

mutation factors refer to how much distinguish are the

test cases in the test case set. A higher mutation factor

could increase the probability of the test case find an

error (Sen et al., 2009).

On the other hand, using an SPL-based technique the

generation is specific to the possible configurations of the

products. Therefore, the mutation between the test cases is

limited to the quantity of the variabilities in the SPL.

A simple approach to analyze the mutation score

between the test cases, in this context, can be done as

follows: divide the sum of the variations by the sum of

the core elements of the SPL. Considering the SPL

specification, composed of a set of diagrams (including

the diagram presented in Fig. 2), the sum of core

elements in this case study is 7 blocks (in the block

definition diagram) plus 21 blocks (in internal diagrams)

(Fragal et al., 2013).

From such 28 blocks obtained from the specification,

the variabilities are located on only 6 blocks and thus the

mutation score in this context would be about 21%. In

addition, as the XOR variabilities require one block only

in each product, the changes fall, in practice, to 4 blocks

with ~14% mutation score. Comparing to the metamodel-

based technique (Sen et al., 2009), the mutation score

achieved is up to 87%. This can be explained due to the

generic and big test case set in this technique.

Previous Work

Before presenting the comparison with the previous

work, it is worthy to mention that the same version of the

SyMPLES transformation was used. Table 4 shows a

summary of the results compared with previous work

results. The coverage criterion compared is the total

coverage, in both techniques. The errors of Type 5 were

found applying the test case generation based on the SPL

and errors of Type 3 were found using generation based

on the SysML metamodel.

In order to compare the effectiveness of the test case

sets in both techniques, the graph in Fig. 10 is presented.

The graph leads to the conclusion that the generation

based on SPL was more efficient in the validation of the

transformation. However, only errors of Type 5 were

found, which are classified as common coding errors.

On the other hand, the generation based on

metamodel was capable to find errors of Type 3, which

are more related to the development of the MDE

transformations. In this case study, the test case set

effectiveness is higher with the SPL-based technique, but

the quantity of errors found is higher with the metamodel

based technique.

It is worthy to highlight that errors of Type 4

(Ambiguity) are difficult to find using black-box testing

approach and errors of Type 2 require information from the

output metamodel, although they can be detected using

dynamic testing when applicable (Tiso et al., 2012).

Threats to Validity

A threat to validity identified is that the SPL used

was relatively small (only 12 potential products) in

this case study and domain specific, related to the

Embedded Systems context. Using total coverage on

the SPL was possible, but this coverage could be

difficult to apply. For instance, an SPL with n features

can yield up to 2n individual systems (or products)

(Classen et al., 2011). Examples of bigger SPLs

include: Linux 2.6.32.2 kernel, with 6052 features

(Peng et al., 2013) and Eclipse SPL, 1024 features

(Johansen et al., 2012).

Fig. 10: Comparison between SPL-based and metamodel-

based techniques, regarding the effectiveness of the

test case set generated

Table 4: Comparison of results with the previous work (Giron et al., 2017)

Generation technique Generation policy Maximum amount of test cases Type of error found Errors found

SPL-based - 12 Type 5 11

Metamodel based 1 to 1 184 Type 3 33

 N to 1 46 Type 3 10

18%

22%

92%

Metamodel

(1 to 1)

Metamodel

(N to 1)
SPL

Alexandre A. Giron et al. / Journal of Computer Science 2018, 14 (1): 108.121

DOI: 10.3844/jcssp.2018.108.121

120

Conclusions, Contributions and Future

Work

The validation of MDE transformations is required

for quality assurance. In this study, a case study for

validation based on the functional test of a model

transformation was presented. An SPL-based technique

was used for test case generation and made it possible

to identify errors in the transformation, in a systematic

way, contributing to the quality of the transformation.

The main contribution of this case study is to

provide an evaluation of the technique of the SPL-

based test case generation, in the context of MDE

transformations. A motivation to the case study was

the fact the test cases generated would be more related

to the transformation of the SyMPLES approach,

which uses SPL concepts. The hypothesis suggested

that test would produce better results, compared to

other test case generation techniques, like the

metamodel-based. However, with specific test cases

generated, it was only identified one type of error

(Type 5). Although this technique obtained a higher

rate of errors identified in the transformation,

supporting the hypothesis proposed, more evidence

would be necessary to compare and evaluate SPL-

based and Metamodel-based techniques.

Another contribution is the validation of the

SyMPLES model transformation. The provided

information and the tools developed helped to improve

the model transformation.

The tools developed in this study aimed to automate

the validation activities; however, they are specific to the

transformation under test. For example, the test case

generation tool can be applied to SPL specified with

SyMPLES stereotypes. In general, the concepts are

generic but the tools developed are specific to the

transformation under test. The high variety of

technologies related to MDE transformations can make it

difficult to reuse such tools.

Directions for future work would include the

investigation of methods of structural testing in the

validation of the transformation of the SyMPLES

approach. Combining with structural testing the

validation level could be higher.

Funding Information

The authors thank CAPES foundation for partially

funding this work, to Vanderson Fragal for his support

and contributions and to CNPq for the support to the

INCT-SEC project.

Author’s Contributions

All authors contribute equally to this work.

Ethics

This paper provides an original contribution of the

authors and it is not published elsewhere. All refereces

used are cited in this paper. There is no ethical issue

involved in this article.

References

Anand, S., E.K. Burke, T.Y. Chen, J. Clark and M.B.

Cohen et al., 2013. An orchestrated survey of

methodologies for automated software test case

generation. J. Syst. Software, 86: 1978-2001.

 DOI: 10.1016/j.jss.2013.02.061

Benavides, D., S. Rueda, P. Trinidad and A. Cortés,

2007. FAMA: Tooling a framework for the

automated analysis of feature models. Proceedings

of the 1st International Workshop on Variability

Modelling of Software-Intensive Systems, (SIS’ 07),

Limerick Irlanda, pp: 129-134.

Beuche, D., 2012. Modeling and building software

product lines with pure::variants. Proceedings of the

16th International Software Product Line

Conference, Sept. 02-07, ACM, Salvador, Brazil,
pp: 255-255. DOI: 10.1145/2364412.2364457

Biehl, M., Sjöstedt, C. J. and Törngren, M., 2010. A

modular tool integration approach: Experiences

from two case studies. Proceedings of the 3rd

Workshop on Model-Driven Tool and Process

Integration, (TPI’ 10).

Brottier, E., F. Fleurey, J. Steel, B. Baudry and Y. Le

Traon, 2006. Metamodel-based test generation for

model transformations: an algorithm and a tool.

Proceedings of the 17th International Symposium on

Software Reliability Engineering, Nov. 7-10, IEEE
Xplore Press, Raleigh, NC, USA, pp: 85-94.

 DOI: 10.1109/ISSRE.2006.27

Classen, A., P. Heymans, P.Y. Schobbens and A. Legay,

2011. Symbolic model checking of software product

lines. Proceedings of the 33rd International

Conference on Software Engineering, May 21-28,

ACM, Waikiki, Honolulu, HI, USA, pp: 321-330.

DOI: 10.1145/1985793.1985838

Fawaz, K., F. Zaraket, W. Masri and H. Harkous, 2015.

PBCOV: A property-based coverage criterion.

Software Quality J., 23: 171-202.

 DOI: 10.1007/s11219-014-9237-3

Fleurey, F., J. Steel and B. Baudry, 2004. Validation in

model-driven engineering: Testing model

transformations. Proceedings of the 1st international

Workshop on Model, Design and Validation, Nov.

2-2, Rennes, France, IEEE Xplore Press, pp: 29-40.
DOI: 10.1109/MODEVA.2004.1425846

Alexandre A. Giron et al. / Journal of Computer Science 2018, 14 (1): 108.121

DOI: 10.3844/jcssp.2018.108.121

121

Fragal, V.H., R.F. Silva, I.M.S. Gimenes and E.

OliveiraJr, 2013. Application engineering for

embedded systems transforming SysML

specification to simulink within a product line based

approach. Proceedings of the 15th International

Conference on Enterprise Information Systems

(EIS’ 13), pp: 94-101.

Friedenthal, S., A. Moore and R. Steiner, 2009. A

Practical Guide to SysML: The Systems Modeling

Language. 1st Edn., Morgan Kaufmann, Boston,

ISBN-10: 012378607X, pp: 560.

Giron, A.A., I.M.S. Gimenes and E. OliveiraJr, 2017.

Case study of test case generation based on

metamodel for model transformations. J. Software,

12: 364-378. DOI: 10.17706/jsw.12.5.364-378

Guerra, E., 2012. Specification-driven test generation for

model transformations. Proceedings of the 5th

International Conference on Theory and Practice of

Model Transformations, May 28-29, Springer,
Prague, Czech Republic, pp: 40-55.

 DOI: 10.1007/978-3-642-30476-7_3
Johansen, M.F., Ø. Haugen and F. Fleurey, 2012. Bow

tie testing: A testing pattern for product lines.
Proceedings of the 16th European Conference on
Pattern Languages of Programs, Jul. 13-17, ACM,
Irsee, Germany. DOI: 10.1145/2396716.2396725

Jouault, F. and I. Kurtev, 2005. Transforming models
with ATL. Proceedings of the International
Conference on Model Driven Engineering
Languages and Systems, Oct. 02-07, Springer,
Berlin, Heidelberg, pp: 128-138.

 DOI: 10.1007/11663430_14

Küster, J. M. and Abd-El-Razik, M., 2006. Validation of

model transformations: First experiences using a

white box approach. Proceedings of the

International Conference on Model Driven

Engineering Languages and Systems, Oct. 01-06,

Springer, Berlin, pp: 193-204.

 DOI: 10.1007/978-3-540-69489-2_24

Lano, K., T. Clark and S. Kolahdouz-Rahimi, 2015. A

framework for model transformation verification.

Formal Aspects Comput., 27: 193-235.

 DOI: 10.1007/s00165-014-0313-z

Lin, Y., J. Zhang and J. Gray, 2005. A Testing

Framework for Model Transformations. In: Model-

Driven Software Development, Beydeda, S., M.
Book and V. Gruhn (Eds.), Springer, Berlin,

Heidelberg, pp: 219-236.

Lochau, M., S. Oster, U. Goltz and A. Schürr, 2012.

Model-based pairwise testing for feature interaction

coverage in software product line engineering.

Software Quality J., 20: 567-604.

 DOI: 10.1007/s11219-011-9165-4

Marvedel, P., 2003. Embedded System Design. 1st Edn.,

Springer, Berlin, ISBN-10: 1402076908, pp: 241.
Mathworks, 2017. MATLAB Simulink.

Mellor, S.J., 2004. MDA Distilled: Principles of Model-

Driven Architecture. 1st Edn., Addison-Wesley

Professional, Boston, ISBN-10: 0201788918, pp: 150.

Mendonca, M., M. Branco and D. Cowan, 2009.

SPLOT: Software Product Lines Online Tools.

Proceedings of the 24th ACM SIGPLAN Conference

Companion on Object Oriented Programming

Systems Languages and Applications, Oct. 25-29,

ACM, Orlando, Florida, USA, pp: 761-762.

 DOI: 10.1145/1639950.1640002

OliveiraJr, E., I.M.S. Gimenes and J.C. Maldonado,

2010. Systematic management of variability in

UML-based software product lines. J. Univ.

Comput. Sci., 16: 2374-2393.

 DOI: 10.3217/jucs-016-17-2374

Peng, X., Z. Xing, X. Tan, Y. Yu and W. Zhao, 2013.

Improving feature location using structural

similarity and iterative graph mapping. J. Syst.

Software, 86: 664-676.

 DOI: 10.1016/j.jss.2012.10.270

Sen, S., B. Baudry and J.M. Mottu, 2009. Automatic

model generation strategies for model

transformation testing. Proceedings of the

International Conference on Theory and Practice of

Model Transformations, (PMT’ 09), Springer,

Berlin, Heidelberg, pp: 148-164.

 DOI: 10.1007/978-3-642-02408-5_11

Silva, R., V. Fragal, E. OliveiraJr, I.M.S. Gimenes and F.

Oquendo, 2013. SyMPLES: A SysML-based

approach for developing embedded systems

software product lines. Proceedings of the 15th

International Conference on Enterprise Information

Systems, (EIS’ 13), Angers, France, pp: 257-264.
Tiso, A., G. Reggio and M. Leotta, 2012. Early

experiences on model transformation testing.

Proceedings of the 1st Workshop on the Analysis of

Model Transformations, Oct. 02-02, ACM,

Innsbruck, Austria, pp: 15-20.

 DOI: 10.1145/2432497.2432501

Van der Linden, F., K. Schmid and E. Rommes, 2007.

The Product Line Engineering Approach. In:

Software Product Lines in Action, van der Linden,

F.J., K. Schmid and E. Rommes (Eds.), Springer

Berlin Heidelberg, ISBN-10: 3540714375, pp: 3-20.

