

© 2016 Toan Phan Thanh, Loc Nguyen The, Said Elnaffar and Cuong Nguyen Doan. This open access article is distributed

under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Sciences

Original Research Paper

LPSO: Another Algorithm for Workflow Scheduling in the

Cloud

1
Toan Phan Thanh,

1
Loc Nguyen The,

2
Said Elnaffar and

3
Cuong Nguyen Doan

1Hanoi National University of Education, Ha Noi, Vietnam
2American University of RAK, UAE
3Military Institute of Science and Technology, Ha Noi, Vietnam

Article history

Received: 23-05-2016

Revised: 24-11-2016

Accepted: 11-12-2016

Corresponding Author:

Toan Phan Thanh

Hanoi National University of

Education, Ha Noi, Vietnam

Email: pttoan@hnue.edu.vn

Abstract: Although workflow scheduling problem has been discussed by

many researchers, a few efficient solutions have been introduced for Cloud

computing. In this article, we present LPSO, a novel algorithm for

workflow scheduling. Based on the Particle Swarm Optimization method,

our proposed algorithm not only ensures the fast convergence but also

avoid being trapped on local extrema. Our simulation experiments using

CloudSim testing real scenarios reveal that LPSO is superior to formerly

proposed algorithms. Moreover, the deviation between the solution found

by LPSO and the optimal solution is negligible.

Keyword: Workflow Scheduling, Particle Swarm Optimization Cloud

Computing

Introduction

Cloud computing emerged with the promise of

securing on-demand and convenient access to shared

computing resources such as storage, servers and

networks. Scheduling is one of the challenges that are

encountered when processing workflow tasks over

geographically distributed servers. An effective solution

for that problem requires a reasonably efficient

scheduling algorithm in order to minimize the

completion time (called makespan) of tasks. The rest of

the article is structured as follow. Section 2 surveys

some of the related research germane to workflow

scheduling algorithms. Section 3 describes the

communication and computation model on which Cloud

tasks operate. Based on this model, section 4 presents

our proposed scheduling algorithm Local-search PSO

(LPSO). Section 5 describes the simulation experiments

we ran using the CloudSim platform (Ullman, 1975) in

order to evaluate our algorithm. Section 6 concludes the

article by giving pointers to potential future work.

Related Work

Workflow Scheduling: Problems and Approaches

A workflow is a sequence of connected tasks.

Scheduling tasks in the Cloud is challenge because each

task needs to be mapped to an suitable server in order to

satisfy some performance constraints. In general, this

scheduling problem has been proved to be NP-complete

(Ullman, 1975). Hence, past works mainly banked on

heuristic-based solutions for scheduling workflows.

For example, Parsa and Maleki (2009) presented a
Grid-based solution that minimizes the makespan of
workflows. Agarwal and Jain (2014) managed to assign

a suitable priority sequence number to a task using a
greedy algorithm. Huang (2014) suggested a scheduling
solution for workflows that is based on genetic
algorithms. Pandey et al. (2010) proposed an effective
scheduling solution (PSO_H) that reduced the execution
cost. In this work, we use the simulation kit, CloudSim

(Buyya et al., 2009) to simulate the execution of the
tasks with different scheduling policy.

Using Hybrid Genetic Algorithms, Guo-Ning and Ting-

Lei (2010) presented an optimized algorithm for task

scheduling. The authors investigated several QoS

requirements such as cost, distance, bandwidth, completion

time, reliability of various types of tasks. Guo et al. (2012)

introduced a scheduling solution in the Cloud that

minimizes the overall execution and transmission time.

Based on small position value rule, he proposed the PSO

algorithm. Rajkumar and Mala (2012) proposed an

hierarchical scheduling algorithm which helps satisfy

different levels of service agreements with prompt

response from the service providers. Xue and Wu (2012)

proposed the hybrid PSO algorithm to minimize the

execution cost of the workflow. The PSO algorithm

relies on crossover and mutation of genetic algorithms in

order to improve the global search. In (Liu et al., 2013),

Toan Phan Thanh et al. / Journal of Computer Sciences 2016, 12 (12): 611.617

DOI: 10.3844/jcssp.2016.611.617

612

the researchers presented an intelligent scheduling

system for jobs that are processed in the Cloud.

The Particle Swarm Optimization Method

Kennedy and Eberhart (1995) introduced an

evolutionary optimization technique called Particle

Swarm Optimization (PSO). For updating the position

vector, they proposed the following formula:

()

()

1

1 1

2 2

k k k

i i i i

k

i

v wv c rand pbest x

c rand gbest x

+ = + × −

+ × −
 (1)

1k k k

i i i
x x v+ = + (2)

Where:

vi
k
 , vi

k+1
 = Velocity of particle i at iteration k and

k+1

xi
k
, xi

k+1
 = Position of particle i at iteration k and

k+1

ω = Inertia weight; c1, c2: Acceleration

coefficients

rand1, rand2 = Random number between 0 and 1

pbesti = Best position of particle i; gbest:

position of best particle in a population

The goal of PSO is find the position that minimizes

the fitness function, denoted by:

()Fitness gbest Min→

Topological Neighborhood for the PSO

In the original version of the PSO algorithm, all

particles are directly connected to each other so there are

no neighborhood relationships between them. The new

position of an particle is determined based on the global

best position among all the particles (gbest) and on its

personal best position (pbest). However, various

personal relationships, such as parent-child relationships,

in real world do exist. This compelled some researchers

(Zavala, 2013) to propose topological neighborhood

between particles in PSO’s. Researches have applied

various topological neighborhoods such as the Ring

neighborhood, Von Neuman neighbourhood etc

(Calheiros et al., 2011) where each particle shares its

local best position with other particles in the topological

space. For this reason each particle is affected by the

local best (lbest) in its local neighborhood instead of

pbest. In PSOs that use a local best position, the formula

for updating the position vector is:

()

()

1

1 1

2 2

k k k

i i i i

k

i i

v w v c rand pbest x

c rand lbest x

+ = × + × −

+ × −
 (3)

where, lbesti is the local best position of particle i with

the best fitness value among its neighbors.

As shown in Fig. 1, the neighborhood relationships

are determined based on each topology. For example, in

the Ring topology, each particle has k neighbors. In this

study we set k = 2 so each particle xi connects directly to

its left-neighbor (Left(xi)) and its right-neighbor

(Right(xi)). Based on the Ring topology, we build a

searching function described as follow:

Function Ring(xi)

Input: current positionxi

Output: xwhere Fitness(x) = min{Fitness(xi),

Fitness(Left(xi)), Fitness(Right(xi))}

Problem Formulation

A workflow can be denoted as a Directed Acyclic

Graph (DAG) represented by G = (V, E), where:

• V is set of vertex, each vertex represents a task

• T = {T1, T2,…,TM} is the set of tasks, M is the

number of tasks

• E represents the data dependencies between these

tasks. The edge (Ti, Tj) ∈ E denotes that task Ti is

the parent of the task Tj and that the data spawned

by Tiare consumed by task Tj

• S = {S1, S2,….,SN} is the set of N computation servers

• The workload of each task Tishould be fully

executed by any server Sj∈S

• The computation of taskTi denoted by Wi (flop-

floating point operations)

• P(Si) denotes the computational power of server Si

(MI/s: million instructions/second)

• The function B(Si,Sj) represents the directed

bandwidth from server Si to server Sj represents

where function B(): S×S → R
+

. We assume

that B(Si,Si) = ∞ and B(Si,Sj) = B(Sj,Si)

• Dij denotes data produced by task Ti and consumed

by task Tj

The function f(): T→S represents a scheduling plan

where f(Ti) is the server that processes task Ti

The above assumptions lead to:

• The execution time of task Ti is:

()()
i

i

W

P f T
 (4)

• The communication time between task Ti and task Tj is:

() ()(),

ij

i j

D

B f T f T
 (5)

Toan Phan Thanh et al. / Journal of Computer Sciences 2016, 12 (12): 611.617

DOI: 10.3844/jcssp.2016.611.617

613

 (a) (b) (c)

Fig. 1. Neighborhood topologies (a) Star topology (b) Ring topology (c) Von Neumann topology

Accordingly, we formally need to minimize the

execution time (makespan) of the workflow:

minmakespan →

where, makespan is the time elapsed between a task’s

start and finish times.

Proposed Algorithm

Escaping Local Extremum

As PSO algorithms progress, they may get trapped in

a local extremum. We here propose the following

method for escaping such local extrema: When the

swarm gets stuck in an area around a local extremum, we

combine the PSOs having topological neighborhood with

a neighborhood searching function (Liu et al., 2007) to

move particles to the new area.

Variable Neighborhood Searching Function

In order to help the swarm escape from the area

around the local extrema, we designed 2 operators

named Exchange and RotateRight, as illustrated in the

Fig. 2 and built a Variable_Neighborhood_Searching

function based on these operators.

Function Variable_Neighborhood_Searching ()

Input: position vector xi

Output: position vector xk : Fitness(xk) < Fitness(xi)

Begin

 1. t: = 0;

 2. while (Fitness(xk) > Fitness (xi) and (t

<Max_Iteration)

 3. r: = random [1,M];

 4. xi: = RotateRight(xi, r);

 5. rand1: = [1,M]; rand2: = [1,M];

 6. xk: = Exchange (xi, rand1, rand2);

 7. if Fitness(xk) < Fitness(xi) then return xk else

return xi;

 8. t: = t+1;

 9. end while

End.

Note: If the function cannot find a better position than

the current position (xi) within the Max_Iteration limit,

xi is returned.

The LPSO Algorithm

The LPSO algorithm can be described as follows:

Algorithm LPSO ()

 Input: T, S, size of workload W[1×M], P[1×N],

B[N×N], D[M×M], the deviation ε, the number of

particle NoP, the constant K

 Output: the best position gbest

 Begin

 1. For i: = 1 to NoP do

 2. xi: = random vectors; vi: = random vectors;

 3. end for

 4. t: = 0 ;

 5. While (t ≤ number of iterations) Do

 6. for i: = 1 to NoP do

 7. Compute new positionxi

 8. end for

 9. for i: = 1 to NoP do

 10. Update pbesti;

 11. end for

 12. Update gbest;

 13. for i: = 1 to NoP do

 14. lbesti: = Ring(xi);

 15. end for

 16. for i: = 1 to NoP do

 17. Update vi
k
 andcompute xi;

 19. end for

 20. t++;

 21. if (the deviation of gbest ≤ ε after K generations)

then gbest: = Variable_Neighborhood_Searching

(gbest);

 23. End while;

 24. Return gbest;

 End.

Toan Phan Thanh et al. / Journal of Computer Sciences 2016, 12 (12): 611.617

DOI: 10.3844/jcssp.2016.611.617

614

Fig. 2. Operator RotateRight (a) and Operator Exchange (b)

At each iteration, the LPSO updates the position

vectors of particles based on gbest and lbest using

formulas (2) and (3). If the deviation of gbest less

than ε during K continuous generations, this means

that the swarm is stuck in a local extremum and hence

the function Variable_Neighbourhood_Searching()

should be called. This function moves (migrates) the

swarm to a new area and produces a new generation.

If gbest is not improved significantly, i.e., the

deviation of gbest is less than ε after K continuous

migrations upon calling the function

Variable_Neighbourhood_Searching(), LPSO halts. In our

experiments, we set K = 30, ε = 0.21. In the best case,

LPSO can find the absolute position upon calling the

function Variable Neighbourhood Searching()K times.

In the case of LPSO fall into a trap of the local

extremum, LPSO will escape from the area around the

extremum by calling the function

Variable_Neighbourhood_Searching().

Results and Discussion

We conducted some experiments in order to compare

the performance of the LPSO algorithm with others,

namely the PSO_H (Pandey et al., 2010) and Random

(Mitzenmacher and Upfal, 2005). Our experimental

setup consists of a computer with RAM 4GB, Intel Core

i5 2.2 GHz and Windows 7 Ultimate. We used Java, the

simulation tool CloudSim and the library Jswarm

(Calheiros et al., 2011) to conduct our simulation

experiments.

Problem Instances

We use both random and real world instances in our

experiments using the following data sets:

• The computation power of the servers and the

bandwidth of connections between servers are

collected from Cloud providers such as Amazon

(Vliet and Paganelli, 2011) and their web site (exp.

http://aws.amazon.com/ec2/pricing)

• The sets of working data are collected from

Montage project (http://montage.ipac.caltech.edu)

Based on the number of servers, N and the number of

tasks, M, we split the instances into 6 groups:

Group 1: M =10, N = 3; Group 2: M = 10, N

= 5; Group 3: M = 20, N = 5;

Group 4: M = 20, N = 8; Group 5: M = 25, N

= 8; Group 6: M = 50, N = 8;

The ratio of the number of edges to the number of

vertexes of graph Gcan be formulated as follows:

()1 / 2

E

M M
α =

× −

Configuration Parameters

The Cloud's configuration parameters are chosen as

follows:

• Server’s computation power: From 1 to 250

(million instructions/s)

• Connection bandwidth B: From 10 to 100

(Megabit/s)

• Communication data D: From 1 to 10000

(Megabit)

• ω = 0.729; c1 = c2 = 1.49445; K = 30, Deviation ε =

0.21

• Number of particles NoP = 25 ; ε = 0.21 ; α: from

0.2 to 0.7

• Our default threshold for number of generations is

300. Once the algorithm exceeds this threshold,

the execution is terminated. Both of LPSO and

PSO_H are executed with the number of

generations is 300, after that their best results are

recorded and listed in the Table 1

Results

Each problem instance was executed 30 times

continuously. The results described in Table 1 show that

the mean value (listed in column Mean) and standard

deviation value (listed in column STD) of LPSO are

better than those of PSO_H (Pandey et al., 2010) and

Toan Phan Thanh et al. / Journal of Computer Sciences 2016, 12 (12): 611.617

DOI: 10.3844/jcssp.2016.611.617

615

Random (Mitzenmacher and Upfal, 2005) in most of the

cases. When the number of servers (N) and the number

of tasks (M) are relatively large (i.e., larger scale cloud),

for example M = 20 and N = 8; M = 25, N = 8; M = 50, N

= 8, LPSO is better than PSO_H and Random with

respect to all metrics: Mean, standard deviation and best

value (listed under column Best).

Since the number of server (N) is a finite integer

number, the elements of the position vector (denoted by

xi
k
[t]) must be integer numbers (t = 1..M) too. In

Equation 2, the value of the left hand side xi
k+1

 is an

integer number while the value of the right hand side (xi
k

+ vi
k
) is a real number. Pandey et al. (2010) resolved this

situation by rounding the real value of the right hand side

to the nearest integer. For example, if xi
k
[t] + vi

k
[t] = 3.2

then task Tt gets assigned to server S3. If xi
k
[t] + vi

k
[t] = 3.8

then Tt gets assigned to server S4. Inevitably, this introduces

some sort of randomness in the assignment of servers in the

PSO_Halgorithm (Pandey et al., 2010) and hence it cannot

maintain the diversification of swarm. For this reason,

PSO_H often gets trapped in local extrema.

Alternatively, we introducea new method. The left

hand side xi
k+1

 will be assigned to the server whose

computation power is the closest to (xi
k
 + vi

k
)

[] () [] []()

() [] []()

1 if |P |

| P | " ; 1,2 ..

k k k

i j i i

k k

r i i r

x t j S x t v t

S x t v t S S t M

+ ← − +

≤ − + ∈ =

In other words, the new position of a particle is the

one that makes a task get assigned to a server whose

computation power is the closest to the real value

computed from the position vector. The results described

in Table 1 shows that the mean (under the Mean column)

and standard deviation (under the STD column) of LPSO

are better than those of PSO_H (Pandey et al., 2010) and

Random (Mitzenmacher and Upfal, 2005) in most of the

cases. The solutions of LPSO are smaller than the

solutions of PSO_H with a value difference varying from

1 to 12%. The LPSO's standard deviations are smaller

than the PSO_H's with a value difference varying from

53 to 84%. These results show that LPSO is stable and

better than both the PSO_H (Pandey et al., 2010) and

Random (Mitzenmacher and Upfal, 2005).

Fig. 3. M = 10, N = 3

Fig. 4. M = 10, N = 5

Fig. 5. M = 20, N = 5

Fig. 6. M = 20, N = 3

Fig. 7. M = 25, N = 8

Fig. 8. M = 50, N = 8

Toan Phan Thanh et al. / Journal of Computer Sciences 2016, 12 (12): 611.617

DOI: 10.3844/jcssp.2016.611.617

616

Table 1. Comparison of makespan between LPSO and other algorithms

 LPSO PSO_H RANDOM

 --------------------------------------- ---------------------------------- ----------------------------------

M N α Best Mean STD Best Mean STD Best Mean STD

10 3 0.26 16.2 18.2 1.5 16.4 20.4 2.4 21.4 28.6 3.2

10 5 0.26 75.6 81.0 5.0 86.0 107.5 13.2 123.3 184.1 42.4

20 5 0.15 28.5 34.2 3.1 29.6 41.0 5.0 45.8 59.0 6.8

20 3 0.31 122.7 128.4 3.6 130.6 142.1 4.8 140 161.8 8.4

25 8 0.3 228.4 236.1 6.1 235.1 260.3 15.0 271.9 359.0 39.9

50 8 0.3 11.1 12.6 0.8 12.1 14.0 0.9 13.9 87.1 25.2

Figure 3-8 depict the performance of the three

algorithms: Proposed algorithm LPSO, PSO_H

(Pandey et al., 2010) and Random (Mitzenmacher and

Upfal, 2005) where the vertical axis represents the

makespan (seconds) of the schedule. For each instance,

we evaluate the mean value (column MEAN), standard

deviation value (column STD) and the best position

vector (listed in column BEST), At the first instance,

LPSO even found the optimal solution.

Conclusion

Minimizing the makespan is the ultimate objective of

any scheduling algorithm. In addition to that objective,

our proposed algorithm also avoid being trapped on local

extrema. The contributions of our paper are:

• Building a novel approach, represented by the

function Variable_Neighbourhood_Searching, to

help optimization algorithms escape from a local

extremum

• Proposing a novel scheduling algorithm called LPSO

by augmenting the PSO strategy with the Variable

Neighbourhood Searching function

The simulation results suggest that LPSO is superior

to its predecessor especially when LPSO operates in a

larger Cloud with respect to the number of tasks and

servers are larger. As a future work, we plan to enhance

the LPSO algorithm in order to process bigger instances

in a reasonable makespan.

Acknowledgment

This research has been supported by the Hanoi

National University of Education and Military Institute

of Science and Technology (Vietnam) and the American

University of RAK (UAE).

Authors Contributions

Toan Phan Thanh is the principle investigator in this

research which is part of his PhD work. Dr. Loc Nguyen

The is his PhD academic advisor and directly

supervising this work. Dr. Said Elnaffar helped with

algorithm design and formalism, CloudSim simulation,

and the write up of the manuscript. Dr. Cuong Nguyen

Doan oversaw the work and provided advices.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Agarwal, A. and S. Jain, 2014. Efficient optimal

algorithm of task scheduling in cloud computing

environment. Int. J. Comput. Trends Technol., 9:

344-349.

Buyya, R., R. Ranjan and R.N. Calheiros, 2009.

Modeling and simulation of scalable Cloud

computing environments and the CloudSim toolkit:

Challenges and opportunities. Proceedings of the

International Conference on High Performance

Computing and Simulation, Jun. 21-24, IEEE

Xplore Press, pp: 1-11.

 DOI: 10.1109/HPCSIM.2009.5192685

Calheiros, R.N., R. Ranjan, A. Beloglazov, C.A.F. De

Rose and R. Buyya, 2011. CloudSim: A toolkit for

modeling and simulation of cloud computing

environments and evaluation of resource provisioning

algorithms. Software Pract. Exp., 41: 23-50.

Guo, L., S. Zhao, S. Shen and C. Jiang, 2012. Task

scheduling optimization in cloud computing based

on heuristic algorithm. J. Netw., 7: 547-552.

 DOI: 10.4304/jnw.7.3.547-553

Guo-Ning, G. and H. Ting-Lei, 2010. Genetic simulated

annealing algorithm for task scheduling based on

cloud computing environment. Proceedings of the

International Conference on Intelligent Computing

and Integrated Systems, Oct. 22-24, IEEE Xplore

Press, pp: 60-63.

 DOI: 10.1109/ICISS.2010.5655013

http://montage.ipac.caltech.edu

Huang, J., 2014. The workflow task scheduling

algorithm based on the GA model in the cloud

computing environment. J. Software, 9: 873-880.

Toan Phan Thanh et al. / Journal of Computer Sciences 2016, 12 (12): 611.617

DOI: 10.3844/jcssp.2016.611.617

617

Kennedy, J. and R.C. Eberhart, 1995. Particle swarm

optimization. Proceeding of the IEEE International

Conference on Neural Networks, Nov. 27-Dec. 1,

IEEE Xplore Press, pp: 1942-1948.

 DOI: 10.1109/ICNN.1995.488968

Liu, H., A. Abraham and C. Grosan, 2007. A novel

variable neighborhood particle swarm optimization

for multi-objective flexible job-shop scheduling

problems. Proceedings of the 2nd International

Conference on Digital Information Management,

Oct. 28-31, IEEE Xplore Press, pp: 138-145.

 DOI: 10.1109/ICDIM.2007.4444214

Liu, J., X. Luo, B. Li, X. Zhang and F. Zhang, 2013. An

intelligent job scheduling system for web service in

cloud computing. Indonesian J. Electr. Eng., 11:

2956-2961. DOI: 10.11591/telkomnika.v11i6.2118

Mitzenmacher, M. and E. Upfal, 2005. Probability and

Computing: Randomized Algorithms and

Probabilistic Analysis. 1st Edn., Cambridge

University Press, Cambridge,

 ISBN-10: 0521835402, pp: 352.

Pandey, S., L. Wu, S.M. Guru and R. Buyya, 2010. A

Particle swarm optimization-based heuristic for

scheduling workflow applications in cloud

computing environments. Proceedings of the 24th

IEEE International Conference on Advanced

Information Networking and Applications, Apr. 20-

23, IEEE Xplore Press, pp: 400-407.

 DOI: 10.1109/AINA.2010.31

Parsa, S. and R.E. Maleki, 2009. RASA: A new task

scheduling algorithm in grid environment. Int. J.

Digital Content Technol. Applic., 3: 91-99.

 DOI: 10.4156/jdcta.vol3.issue4.10

Rajkumar, R. and T. Mala, 2012. Achieving service level

agreement in cloud environment using job

prioritization in hierarchical scheduling. Proceeding

of the International Conference on Information

System Design and Intelligent Application, (DIA’

12), Springer, pp: 547-554.

 DOI: 10.1007/978-3-642-27443-5_63

Ullman, J.D., 1975. NP-complete scheduling problems.

J. Comput. Syst. Sci., 10: 384-393.

 DOI: 10.1016/S0022-0000(75)80008-0

Vliet, J.V. and F. Paganelli, 2011. Programming

Amazon EC2: Survive your Success. 1st Edn.,

O'Reilly Media, Inc., Sebastopol,

 ISBN-10: 1449305261, pp: 186.

Xue, S.J. and W. Wu, 2012. Scheduling workflow in

cloud computing based on hybrid particle swarm

algorithm. Indonesian J. Electr. Eng., 10: 1560-1566.

DOI: 10.11591/telkomnika.v10i7.1452

Zavala, A.E.M., 2013. EVOLVE-A Bridge between

Probability, Set Oriented Numerics and

Evolutionary Computation IIA Comparison, A

Comparison Study of PSO Neighborhoods. 1st Edn.,

Springer, Verlag Berlin Heideberg,

 ISBN-13: 978-3-642-32725-4

