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Abstract: Although workflow scheduling problem has been discussed by 

many researchers, a few efficient solutions have been introduced for Cloud 

computing. In this article, we present LPSO, a novel algorithm for 

workflow scheduling. Based on the Particle Swarm Optimization method, 

our proposed algorithm not only ensures the fast convergence but also 

avoid being trapped on local extrema. Our simulation experiments using 

CloudSim testing real scenarios reveal that LPSO is superior to formerly 

proposed algorithms. Moreover, the deviation between the solution found 

by LPSO and the optimal solution is negligible. 
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Introduction 

Cloud computing emerged with the promise of 

securing on-demand and convenient access to shared 

computing resources such as storage, servers and 

networks. Scheduling is one of the challenges that are 

encountered when processing workflow tasks over 

geographically distributed servers. An effective solution 

for that problem requires a reasonably efficient 

scheduling algorithm in order to minimize the 

completion time (called makespan) of tasks. The rest of 

the article is structured as follow. Section 2 surveys 

some of the related research germane to workflow 

scheduling algorithms. Section 3 describes the 

communication and computation model on which Cloud 

tasks operate. Based on this model, section 4 presents 

our proposed scheduling algorithm Local-search PSO 

(LPSO). Section 5 describes the simulation experiments 

we ran using the CloudSim platform (Ullman, 1975) in 

order to evaluate our algorithm. Section 6 concludes the 

article by giving pointers to potential future work. 

Related Work 

Workflow Scheduling: Problems and Approaches 

A workflow is a sequence of connected tasks. 

Scheduling tasks in the Cloud is challenge because each 

task needs to be mapped to an suitable server in order to 

satisfy some performance constraints. In general, this 

scheduling problem has been proved to be NP-complete 

(Ullman, 1975). Hence, past works mainly banked on 

heuristic-based solutions for scheduling workflows. 

For example, Parsa and Maleki (2009) presented a 
Grid-based solution that minimizes the makespan of 
workflows. Agarwal and Jain (2014) managed to assign 

a suitable priority sequence number to a task using a 
greedy algorithm. Huang (2014) suggested a scheduling 
solution for workflows that is based on genetic 
algorithms. Pandey et al. (2010) proposed an effective 
scheduling solution (PSO_H) that reduced the execution 
cost. In this work, we use the simulation kit, CloudSim 

(Buyya et al., 2009) to simulate the execution of the 
tasks with different scheduling policy. 

Using Hybrid Genetic Algorithms, Guo-Ning and Ting-

Lei (2010) presented an optimized algorithm for task 

scheduling. The authors investigated several QoS 

requirements such as cost, distance, bandwidth, completion 

time, reliability of various types of tasks. Guo et al. (2012) 

introduced a scheduling solution in the Cloud that 

minimizes the overall execution and transmission time. 

Based on small position value rule, he proposed the PSO 

algorithm. Rajkumar and Mala (2012) proposed an 

hierarchical scheduling algorithm which helps satisfy 

different levels of service agreements with prompt 

response from the service providers. Xue and Wu (2012) 

proposed the hybrid PSO algorithm to minimize the 

execution cost of the workflow. The PSO algorithm 

relies on crossover and mutation of genetic algorithms in 

order to improve the global search. In (Liu et al., 2013), 
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the researchers presented an intelligent scheduling 

system for jobs that are processed in the Cloud. 

The Particle Swarm Optimization Method 

Kennedy and Eberhart (1995) introduced an 

evolutionary optimization technique called Particle 

Swarm Optimization (PSO). For updating the position 

vector, they proposed the following formula: 
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Where: 

vi
k
 , vi

k+1
 = Velocity of particle i at iteration k and 

k+1 

xi
k
, xi

k+1
 = Position of particle i at iteration k and 

k+1 

ω = Inertia weight; c1, c2: Acceleration 

coefficients  

rand1, rand2 = Random number between 0 and 1 

pbesti = Best position of particle i; gbest: 

position of best particle in a population 

 

The goal of PSO is find the position that minimizes 

the fitness function, denoted by: 

 

( )Fitness gbest Min→  

 

Topological Neighborhood for the PSO 

In the original version of the PSO algorithm, all 

particles are directly connected to each other so there are 

no neighborhood relationships between them. The new 

position of an particle is determined based on the global 

best position among all the particles (gbest) and on its 

personal best position (pbest). However, various 

personal relationships, such as parent-child relationships, 

in real world do exist. This compelled some researchers 

(Zavala, 2013) to propose topological neighborhood 

between particles in PSO’s. Researches have applied 

various topological neighborhoods such as the Ring 

neighborhood, Von Neuman neighbourhood etc 

(Calheiros et al., 2011) where each particle shares its 

local best position with other particles in the topological 

space. For this reason each particle is affected by the 

local best (lbest) in its local neighborhood instead of 

pbest. In PSOs that use a local best position, the formula 

for updating the position vector is: 
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where, lbesti is the local best position of particle i with 

the best fitness value among its neighbors. 

As shown in Fig. 1, the neighborhood relationships 

are determined based on each topology. For example, in 

the Ring topology, each particle has k neighbors. In this 

study we set k = 2 so each particle xi connects directly to 

its left-neighbor (Left(xi)) and its right-neighbor 

(Right(xi)). Based on the Ring topology, we build a 

searching function described as follow: 

 

Function Ring(xi) 

Input: current positionxi 

Output: xwhere Fitness(x) = min{Fitness(xi), 

Fitness(Left(xi)), Fitness(Right(xi))} 

 

Problem Formulation 

A workflow can be denoted as a Directed Acyclic 

Graph (DAG) represented by G = (V, E), where:  

 

• V is set of vertex, each vertex represents a task 

• T = {T1, T2,…,TM} is the set of tasks, M is the 

number of tasks  

• E represents the data dependencies between these 

tasks. The edge (Ti, Tj) ∈ E denotes that task Ti is 

the parent of the task Tj and that the data spawned 

by Tiare consumed by task Tj 

• S = {S1, S2,….,SN} is the set of N computation servers 

• The workload of each task Tishould be fully 

executed by any server Sj∈S  

• The computation of taskTi denoted by Wi (flop-

floating point operations) 

• P(Si) denotes the computational power of server Si 

(MI/s: million instructions/second) 

• The function B(Si,Sj) represents the directed 

bandwidth from server Si to server Sj represents 

where function B(): S×S → R
+ 

. We assume 

that B(Si,Si) = ∞ and B(Si,Sj ) = B(Sj,Si) 

• Dij denotes data produced by task Ti and consumed 

by task Tj 

 

The function f(): T→S represents a scheduling plan 

where f(Ti) is the server that processes task Ti 

The above assumptions lead to: 
 

• The execution time of task Ti is: 
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• The communication time between task Ti and task Tj is: 
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 (a) (b) (c) 

 
Fig. 1. Neighborhood topologies (a) Star topology (b) Ring topology (c) Von Neumann topology 

 

Accordingly, we formally need to minimize the 

execution time (makespan) of the workflow: 

 

minmakespan →  

 

where, makespan is the time elapsed between a task’s 

start and finish times.  

Proposed Algorithm 

Escaping Local Extremum 

As PSO algorithms progress, they may get trapped in 

a local extremum. We here propose the following 

method for escaping such local extrema: When the 

swarm gets stuck in an area around a local extremum, we 

combine the PSOs having topological neighborhood with 

a neighborhood searching function (Liu et al., 2007) to 

move particles to the new area. 

Variable Neighborhood Searching Function 

In order to help the swarm escape from the area 

around the local extrema, we designed 2 operators 

named Exchange and RotateRight, as illustrated in the 

Fig. 2 and built a Variable_Neighborhood_Searching 

function based on these operators. 

 

Function Variable_Neighborhood_Searching ( ) 

Input: position vector xi 

Output: position vector xk : Fitness(xk) < Fitness(xi) 

Begin 

 1. t: = 0; 

 2. while (Fitness(xk) > Fitness (xi) and (t 

<Max_Iteration) 

 3. r: = random [1,M]; 

 4. xi: = RotateRight(xi, r); 

 5. rand1: = [1,M]; rand2: = [1,M]; 

 6. xk: = Exchange (xi, rand1, rand2); 

 7. if Fitness(xk) < Fitness(xi) then return xk else 

return xi; 

 8. t: = t+1; 

 9. end while 

End.  

Note: If the function cannot find a better position than 

the current position (xi) within the Max_Iteration limit, 

xi is returned. 

The LPSO Algorithm 

The LPSO algorithm can be described as follows: 

 

Algorithm LPSO () 

 Input: T, S, size of workload W[1×M], P[1×N], 

B[N×N], D[M×M], the deviation ε, the number of 

particle NoP, the constant K 

 Output: the best position gbest 

 Begin 

  1. For i: = 1 to NoP do  

  2. xi: = random vectors; vi: = random vectors; 

  3. end for 

  4. t: = 0 ;  

  5. While (t ≤ number of iterations) Do  

  6. for i: = 1 to NoP do 

  7. Compute new positionxi 

  8. end for 

  9. for i: = 1 to NoP do 

  10. Update pbesti;  

  11. end for 

  12. Update gbest; 

  13. for i: = 1 to NoP do 

  14. lbesti: = Ring(xi);  

  15. end for 

  16. for i: = 1 to NoP do 

  17. Update vi
k
 andcompute xi; 

  19. end for 

  20. t++;  

  21. if (the deviation of gbest ≤ ε after K generations) 

then gbest: = Variable_Neighborhood_Searching 

(gbest); 

  23. End while; 

  24. Return gbest; 

 End. 
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Fig. 2. Operator RotateRight (a) and Operator Exchange (b) 

 

At each iteration, the LPSO updates the position 

vectors of particles based on gbest and lbest using 

formulas (2) and (3). If the deviation of gbest less 

than ε during K continuous generations, this means 

that the swarm is stuck in a local extremum and hence 

the function Variable_Neighbourhood_Searching() 

should be called. This function moves (migrates) the 

swarm to a new area and produces a new generation. 

If gbest is not improved significantly, i.e., the 

deviation of gbest is less than ε after K continuous 

migrations upon calling the function 

Variable_Neighbourhood_Searching(), LPSO halts. In our 

experiments, we set K = 30, ε = 0.21. In the best case, 

LPSO can find the absolute position upon calling the 

function Variable Neighbourhood Searching()K times. 

In the case of LPSO fall into a trap of the local 

extremum, LPSO will escape from the area around the 

extremum by calling the function 

Variable_Neighbourhood_Searching( ). 

Results and Discussion 

We conducted some experiments in order to compare 

the performance of the LPSO algorithm with others, 

namely the PSO_H (Pandey et al., 2010) and Random 

(Mitzenmacher and Upfal, 2005). Our experimental 

setup consists of a computer with RAM 4GB, Intel Core 

i5 2.2 GHz and Windows 7 Ultimate. We used Java, the 

simulation tool CloudSim and the library Jswarm 

(Calheiros et al., 2011) to conduct our simulation 

experiments.  

Problem Instances 

We use both random and real world instances in our 

experiments using the following data sets: 

 

• The computation power of the servers and the 

bandwidth of connections between servers are 

collected from Cloud providers such as Amazon 

(Vliet and Paganelli, 2011) and their web site (exp. 

http://aws.amazon.com/ec2/pricing) 

• The sets of working data are collected from 

Montage project (http://montage.ipac.caltech.edu) 

Based on the number of servers, N and the number of 

tasks, M, we split the instances into 6 groups: 

 

Group 1: M =10, N = 3; Group 2: M = 10, N 

= 5; Group 3: M = 20, N = 5; 

Group 4: M = 20, N = 8; Group 5: M = 25, N 

= 8; Group 6: M = 50, N = 8; 

 

The ratio of the number of edges to the number of 

vertexes of graph Gcan be formulated as follows: 

 

( )1 / 2

E

M M
α =

× −
 

 

Configuration Parameters 

The Cloud's configuration parameters are chosen as 

follows: 

 

• Server’s computation power:  From 1 to 250 

(million instructions/s) 

• Connection bandwidth B:  From 10 to 100 

(Megabit/s) 

• Communication data D:  From 1 to 10000 

(Megabit) 

• ω = 0.729; c1 = c2 = 1.49445; K = 30, Deviation ε = 

0.21 

• Number of particles NoP = 25 ; ε = 0.21 ; α: from 

0.2 to 0.7 

• Our default threshold for number of generations is 

300. Once the algorithm exceeds this threshold, 

the execution is terminated. Both of LPSO and 

PSO_H are executed with the number of 

generations is 300, after that their best results are 

recorded and listed in the Table 1 

 

Results 

Each problem instance was executed 30 times 

continuously. The results described in Table 1 show that 

the mean value (listed in column Mean) and standard 

deviation value (listed in column STD) of LPSO are 

better than those of PSO_H (Pandey et al., 2010) and 
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Random (Mitzenmacher and Upfal, 2005) in most of the 

cases. When the number of servers (N) and the number 

of tasks (M) are relatively large (i.e., larger scale cloud), 

for example M = 20 and N = 8; M = 25, N = 8; M = 50, N 

= 8, LPSO is better than PSO_H and Random with 

respect to all metrics: Mean, standard deviation and best 

value (listed under column Best). 

Since the number of server (N) is a finite integer 

number, the elements of the position vector (denoted by 

xi
k
[t]) must be integer numbers (t = 1..M) too. In 

Equation 2, the value of the left hand side xi
k+1

 is an 

integer number while the value of the right hand side (xi
k
 

+ vi
k
) is a real number. Pandey et al. (2010) resolved this 

situation by rounding the real value of the right hand side 

to the nearest integer. For example, if xi
k
[t] + vi

k
[t] = 3.2 

then task Tt gets assigned to server S3. If xi
k
[t] + vi

k
[t] = 3.8 

then Tt gets assigned to server S4. Inevitably, this introduces 

some sort of randomness in the assignment of servers in the 

PSO_Halgorithm (Pandey et al., 2010) and hence it cannot 

maintain the diversification of swarm. For this reason, 

PSO_H often gets trapped in local extrema. 

Alternatively, we introducea new method. The left 

hand side xi
k+1

 will be assigned to the server whose 

computation power is the closest to (xi
k
 + vi

k
)  

 

[ ] ( ) [ ] [ ]( )
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In other words, the new position of a particle is the 

one that makes a task get assigned to a server whose 

computation power is the closest to the real value 

computed from the position vector. The results described 

in Table 1 shows that the mean (under the Mean column) 

and standard deviation (under the STD column) of LPSO 

are better than those of PSO_H (Pandey et al., 2010) and 

Random (Mitzenmacher and Upfal, 2005) in most of the 

cases. The solutions of LPSO are smaller than the 

solutions of PSO_H with a value difference varying from 

1 to 12%. The LPSO's standard deviations are smaller 

than the PSO_H's with a value difference varying from 

53 to 84%. These results show that LPSO is stable and 

better than both the PSO_H (Pandey et al., 2010) and 

Random (Mitzenmacher and Upfal, 2005). 

 

 
 
Fig. 3. M = 10, N = 3 

 
 
Fig. 4. M = 10, N = 5 

 

 
 
Fig. 5. M = 20, N = 5 

 

 
 
Fig. 6. M = 20, N = 3 

 

 
 
Fig. 7. M = 25, N = 8 

 

 
 
Fig. 8. M = 50, N = 8 



Toan Phan Thanh et al. / Journal of Computer Sciences 2016, 12 (12): 611.617 

DOI: 10.3844/jcssp.2016.611.617 

 

616 

Table 1. Comparison of makespan between LPSO and other algorithms 

   LPSO   PSO_H   RANDOM 

   --------------------------------------- ---------------------------------- ---------------------------------- 

M N α Best Mean STD Best Mean STD Best Mean STD 

10 3 0.26 16.2 18.2 1.5 16.4 20.4 2.4 21.4 28.6 3.2 

10 5 0.26 75.6 81.0 5.0 86.0 107.5 13.2 123.3 184.1 42.4 

20 5 0.15 28.5 34.2 3.1 29.6 41.0 5.0 45.8 59.0 6.8 

20 3 0.31 122.7 128.4 3.6 130.6 142.1 4.8 140 161.8 8.4 

25 8 0.3 228.4 236.1 6.1 235.1 260.3 15.0 271.9 359.0 39.9 

50 8 0.3 11.1 12.6 0.8 12.1 14.0 0.9 13.9 87.1 25.2 

 

Figure 3-8 depict the performance of the three 

algorithms: Proposed algorithm LPSO, PSO_H    

(Pandey et al., 2010) and Random (Mitzenmacher and 

Upfal, 2005) where the vertical axis represents the 

makespan (seconds) of the schedule. For each instance, 

we evaluate the mean value (column MEAN), standard 

deviation value (column STD) and the best position 

vector (listed in column BEST), At the first instance, 

LPSO even found the optimal solution. 

Conclusion 

Minimizing the makespan is the ultimate objective of 

any scheduling algorithm. In addition to that objective, 

our proposed algorithm also avoid being trapped on local 

extrema. The contributions of our paper are: 
 

• Building a novel approach, represented by the 

function Variable_Neighbourhood_Searching, to 

help optimization algorithms escape from a local 

extremum 

• Proposing a novel scheduling algorithm called LPSO 

by augmenting the PSO strategy with the Variable 

Neighbourhood Searching function 
 

The simulation results suggest that LPSO is superior 

to its predecessor especially when LPSO operates in a 

larger Cloud with respect to the number of tasks and 

servers are larger. As a future work, we plan to enhance 

the LPSO algorithm in order to process bigger instances 

in a reasonable makespan. 
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