

© 2016 Melissa Shahrom and Zalilah Abd Aziz. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

Journal of Computer Sciences

Original Research Paper

Cognitively Inspired Algorithm for Imprecise Navigation

1,2
Melissa Shahrom and

2
Zalilah Abd Aziz

1Department of Infrastructure Engineering, University of Melbourne, Australia
2Universiti Teknologi MARA Selangor, Malaysia

Article history

Received: 26-05-2016

Revised: 12-07-2016

Accepted: 13-07-2016

Corresponding Author:

Melissa Shahrom

Department of Infrastructure

Engineering, University of

Melbourne, Australia and

Universiti Teknologi MARA

Selangor, Malaysia
Email: melissashahrom@gmail.com

Abstract: This paper presents an algorithm, namely the private navigation

algorithm. The aim of this algorithm is to bridge the gap between high

quality navigation services and low quality of location information or

imprecise data. Generally, the imprecision is due to the poor positioning

technology and the algorithms use to protect location privacy. The benefits

of the algorithm are at least two-fold: Firstly, it provides an efficient

instructions for navigation under imprecision and secondly it supports

location privacy protection while using navigation services. In common

navigation systems, the navigation instructions generated are based on

geometry oriented representation, e.g., shortest path which is based on the

distance travelled and normally involves many turns. In human wayfinding,

the navigation instruction is considered efficient if the instruction can

reduce the cognitive load during the wayfinding activities as well as can

guide users to a destination. The algorithm applies the simplest path

computations for generating simple navigation instructions due to its ability

to minimize the complexity of communicating the instructions. The

research examines the efficiency of the algorithm based on several

performance measurers. The research also takes into account the

wayfinding heuristics such as the initial orientation and agent’s behavior

(passive or active), that possibly can improve agent’s navigation

performance. The cognitively motivated simplest cardinal direction

weighting function is introduced which reflects the complexity of

communicating cardinal instructions. The results show that the private

navigation algorithm was efficient when it is incorporated with wayfinding

heuristic for imprecise navigation.

Keywords: Cognitive, Privacy, Private Navigation Algorithm, Simplest

Path, Efficient Algorithm, Wayfinding Heuristic, Cognitive Wayfinding

Instruction

Introduction

This research presents a study of navigation under
imprecision in the computerized agent environment.
Wayfinding and navigation can be defined as a spatial
problem solving. It is knowing where you are in an
environment, where your intended destination is and
knowing how to get there from your current location. In
navigation systems, the imprecision refers to two
different reasons; which are due to poor positioning
technology and for protecting location privacy.

Many studies of human navigation and wayfinding

exist in the literature such as in (Hochmair and Karlsson,

2005; 2000; Golledge, 1999) as well as the studies of the

role of human cognition in navigation (Wiener et al.,

2009; Hochmair and Karlsson, 2005). A diversity of

navigation models has been proposed in the literature

dealing with different aspects of human navigation,

comprising route descriptions (Westphal and Renz, 2011;

Haque et al., 2007; Richter and Duckham, 2008),

providing landmarks (Duckham et al., 2010; Michon and

Denis, 2001; Caduff and Timpf, 2005) and also planning

and survey knowledge (Werner et al., 1997; Goldin and

Thorndyke, 1982).

Some studies have indicated that, not only the total

length of the route is important for human navigation,

but the complexity of navigation instruction also plays

an important role. According to Streeter et al. (1985), in

verbal instructions, routes that are easier to describe and

follow are in favor as compared to the overall length of a

route. As reported in Golledge (1995), several criteria

Melissa Shahrom and Zalilah Abd Aziz / Journal of Computer Sciences 2016, 12 (6): 276.288

DOI: 10.3844/jcssp.2016.276.288

277

used in human route selection are ranked highly by

human subjects such as the shortest distance, least time

as well as the number of turns.
In cognitive wayfinding, the navigation instruction is

considered efficient if the instructions can reduce the
cognitive wayfinding load during the wayfinding
activities in order to prevent navigation errors and guide
users to a destination. Reducing cognitive wayfinding
load is defined as reducing complexity of route
instructions, reducing complexity of identifying decision
points and computing efficient route for navigation. In
short, the cognitive wayfinding refers to easy-to-follow
routes and less complex navigation instructions.

There are very few research on imprecise navigation

involving computer agents have been discussed in the

literature, especially in the evaluation of efficient

navigation instructions. One of the works on imprecise

navigation is an imprecise navigation algorithm as

introduced in Duckham et al. (2003) which uses the

shortest path for constructing navigation instructions. It

has been reported in their work that, this algorithm is

able to generate navigation instructions with imprecise

location information. The factor of providing efficient

and simple navigation instructions for imprecise

navigation is not taken into account and investigated in

Duckham et al. (2003). Despite, they used common

shortest path calculations for generating the paths and

instructions. In common shortest path algorithms, a cost

function is applied that is related to the graph’s structure

in its embedding geographical reference frame, such as

the distance between nodes, speed of movement, or

direction of travel (Brunye et al., 2015). By doing this,

the structure of the road network is often ignored, as its

aim is to get the shortest path to the destination.

Although the former imprecise algorithm

(Duckham et al., 2003) has been proven to be reliable in

the past research, the private navigation algorithm is

developed in order to improve the performance of imprecise

navigation by considering the cognitive aspect in the route

computation. The aim of the private navigation algorithm is

to bridge the gap between high quality navigation services

and low quality of location information.

Graph Representation

Conventional navigation systems are developed

based on Dijkstra algorithm which is known as the

shortest path algorithm. The algorithm uses metric

distances in order to identify the shortest route between

an origin and a destination (Agarwal and Gupta, 2014).

Metric distance is a simple measure that is used to

identify the optimum path in conventional navigation

systems. Recent studies have shown that minimizing

turns is also an essential factor determining the route

choice of users despite the shortest distance (Shahrom,

2013). Cognitively, users usually incorporate several

criteria with the distance for path selection, such as the

fastest route, the route with least ambiguous and the

easiest route. However, these route computations cannot

be developed in one simple algorithm (Shahrom, 2013).

Numerous previous studies have worked on generating

suitable routes for various purposes. A common

approach is to apply graph search on a route network to

obtain one suitable path and then to describe that path.

Fig. 1. Line graph construction

Melissa Shahrom and Zalilah Abd Aziz / Journal of Computer Sciences 2016, 12 (6): 276.288

DOI: 10.3844/jcssp.2016.276.288

278

The graph usually represents the road’s spatial

information of locations and lengths, where intersections

are nodes, streets are edges and streets lengths are weights.

This representation is a conventional approach and has

been used in several recent analyses of road networks. The

navigation instruction that is based on geometry oriented

representation usually generates instructions with many

turns due to lack of topological analysis.

The concept regarding navigation in a graph, for

informing users when to change directions and into

which direction to turn next can be represented by a line

graph. The line graph is used to represent each street as

node and the street intersections are represented as

edges. A line graph L(G) is a graph in which each node

of L(G) represents an edge of G and two nodes of L(G)

are adjacent if their corresponding edges share a

common node in G. The construction of a line graph is

illustrated in Fig. 1:

• A graph G

• Nodes in L(G) constructed from edges in G. Each

node of the line graph is shown labeled with a pair of

nodes of the corresponding edge in the original graph

• Added edges in L(G), e.g.,: The L(G) node labeled

(a,c) corresponds to the edge between nodes a and c.

L(G) node (a,c) is adjacent to three other nodes:

(a,d) and (a,b) (corresponding to edges sharing the

node a) and (d,c) (corresponding to an edge sharing

the node c)

• The line graph

Unlike the geometry oriented graph, edges cost of the

line graph is always set to 1. Therefore, the minimum

number of turn can easily be determined where it refers

to the shortest topological distance. Moreover, different

cost can also be applied such as to represent the

complexity of describing the navigation instructions.

Cognitive Cost: Minimizing Navigational

Complexity with Simplest Path

The private navigation algorithm implements the

simplest path computation for generating cognitively

simple navigation instructions due to its ability to

minimize the complexity of communicating the

instructions. In the context of personal navigation

systems, the assumptions are:

• Users have wireless devices (e.g., mobile phones or

PDAs) that are online via some form of wireless

communication network

• Users are assumed to be able to obtain their

positions using GPS technology

• Each mobile object store locally its position and

only reveals its imprecise location (as a region)

Figure 2 shows the process in the private navigation

algorithm. The dotted line arrows and boxes show the

cognitively applied strategies for producing and

interpreting route instructions for imprecise navigation.

The algorithm incorporate the cognitive cost and

wayfinding heuristic in the navigation process.

The routing algorithms and computer-based agent

simulation environment have been developed using Java.

The algorithm starts with determining the imprecise

region (obfuscated) O and the desired destination d. The

imprecision in this context is achieved by the number of

nodes in the obfuscated region (Duckham and Kulik,

2005). A set of nodes s′ is taken into account (as

obfuscated region) instead of a single node from where

the agent is located.

A graph G comprises a set of nodes V and edges E

connecting those nodes. A weighted graph has a function

w:ε→R
+
 associating a weight with each edge e∈E.

Simplest path (Duckham and Kulik, 2003) is different in

terms of its weighting function where it associates a

weight with each pair of connected edges rather than

each edge in the graph, w:ε→R
+

where ε = {((vi,vj),

(vj,vk)) ∈ E × E} (Fig. 4).

The idea is that, the weight is based on the

complexity of information required to negotiate the

decision point represented by the edge pair such as a

path from vi to vk through intersection vj.

A set O is a representation of an imprecise location of

a user such that s’∈ O and O ⊆ V. By providing a larger

obfuscation set, the spatial resolution of a location is

reduced, making the users location imprecise. User’s

location in O is only imprecise and not inaccurate, such

that in O definitely contain s’.

For navigation services, the drawbacks of having the

location obfuscated or imprecise are:

• If the density of nodes is too high, the quality of

service would be compromised, however

• If the density of nodes is too low, the probability of

being located in that location is very high, thus the

privacy protection technique applied in the privacy-

aware algorithm is ineffective

Computing the simplest path instead of the shortest

path enables the algorithm to generate simplest

navigation instructions, due to its ability to minimize the

instruction complexity. The steps involve are:

• An algorithm selects element of s’∈O and (s’,vi) ∈E

• A weight of w(e) is assigned for each pair of

connected edges e ∈ E to represent the complexity

of information to communicate instruction

• Path computation is based on the shortest path

calculation by using simplest path cost given by

the graph

Melissa Shahrom and Zalilah Abd Aziz / Journal of Computer Sciences 2016, 12 (6): 276.288

DOI: 10.3844/jcssp.2016.276.288

279

Fig. 2. The dotted line arrows and boxes show the improved strategies for producing and interpreting route instructions

Melissa Shahrom and Zalilah Abd Aziz / Journal of Computer Sciences 2016, 12 (6): 276.288

DOI: 10.3844/jcssp.2016.276.288

280

Fig. 3. Private navigation algorithm

The algorithm (Fig. 3) sets all edges in the obfuscated

region with zero weight. The route generation is based

on the shortest path calculation by using simplest path

cost given by the graph. The algorithm uses the single-

source shortest path computation for generating simplest

path from all nodes in obfuscated region s′ and calculate

the minimum cost of going from s′ to other nodes in the

graph through multiple edges to get the simplest path. To

generate the simplest path p, the algorithm iterate

backwards through the edges vt and choosing the edges

(vt,td) ∈E where cs(vt,td) is minimum. Based on p,

algorithm generates instruction q′ for all s′ ∈ O to d,

where a is the instruction and 0,1........n-1 is the

sequence, n is the number of instruction.

The algorithm uses a priority queue data structure. In

priority queue, a node with high priority is served before

a node with low priority. If two nodes have the same

priority, they are served according to their order in the

queue. It removes the node that has the path with the

lowest discovered weight to s. This lowest discovered

path will change as the graph is explored:

• Set the cost of going to s’ = 0 and the cost of going

to every other edge to 1
• Let (s’, vi) be equal to e
• For each unvisited neighbor e’ of e; if the cost of

going to e and then directly to e’ is smaller than the
currently known minimum cost of getting to e’,
update the cost of getting to e’ to be the cost of
getting to e plus the cost of getting from there to e’

• Mark e as visited and put in S. (The distance
associated with it is now final and minimal)

• If there are no more unvisited nodes, stop and return
• Let e’ be equal to the next-smallest tentative

distance and go to step 3

Figure 5 illustrates the process of selecting and
generating the navigation instruction in the private
navigation algorithm. Assume that there are three nodes
in the obfuscated set O, s’ = {v1,v2,v3}.

Melissa Shahrom and Zalilah Abd Aziz / Journal of Computer Sciences 2016, 12 (6): 276.288

DOI: 10.3844/jcssp.2016.276.288

281

Fig. 4. Simplest path weight (Duckham and Kulik, 2003)

Fig. 5. Generating instruction sequence

Each of these nodes has a series of navigation

instructions, a1, a2,an with q’ = {q1, q2, q3} where q’

is the instructions generated based on the simplest path

computation from all s’ to d. For example, the

instruction sequence from v1 to d is q1 which consist of

{a1, a2, a3,an} where n is the number of instruction.

Three sets of simplest path instructions are generated, q1,

q2 and q3. The algorithm executes these instructions one

by one from all nodes in the obfuscated set; v1,v2 and v3.

The one with most frequently leads to destination (in this

Melissa Shahrom and Zalilah Abd Aziz / Journal of Computer Sciences 2016, 12 (6): 276.288

DOI: 10.3844/jcssp.2016.276.288

282

illustration, q2 is the most successful instruction

sequence with 100% success) is chosen as a navigation

instructions and is placed in Q.

Finally, the instruction Q is used as the navigation

instruction from obfuscated region O to destination d.

For one-time query (static) analysis, once the instruction

sequence is finalized, an agent follows the instruction

sequence and the algorithm is terminated once the

destination is detected and stopped when the instruction

is not executable. In a real wayfinding task, successful

wayfinding corresponds to the agent’s ability to reach

destination from a start by following a sequence of

instructions given.

Computational Complexity

This section explains the time complexity of the

algorithm in terms of how long the program runs. The

efficiency of the algorithm depends on how much time it

takes to execute and provide relevant result by analyzing

the time with respect to increase in input elements. In the

private navigation algorithm, the statement corresponds

to the extract minimum operation of Dijkstra’s algorithm

takes 2|E| steps as it has to check all the edges of the

graph once, to get the value of minimum cost. The private

navigation algorithm runs in O(|E| +|V |log|V |) where E is

the number of edges, due to the implementation of priority

queue in the Dijkstra’s operations. The private navigation

algorithm has the time complexity issues as contributed

by the path computation.

The repetitive process is used for computing the

minimum complexity of every edge connected to the

selected edges. In order to compute the complexity of

an intersection, the algorithm needs to know the

orientation of all other edges connected to the selected

edge which leads to 2|E| steps. Both operations happen

|E| times, which leads to a total number of |E|(2|E|+2|E|)

steps. However, since geographical networks are sparse

graphs with a small limited number of roads at an

intersection, the number of steps reduces to

approximately |E|(2|E|), which leads to a time

complexity of O(|E|
2
). The operation of the simplest

path algorithm can be seen as a mapping from the

original graph G to a graph G’ = (E’, ε), where E’ is the

set of edges E [17]. In the worst case which requires a

totally connected graph, the graph G’ could have as

many as |E| = V (|V|-1) edges, leading to a complexity

of O(|V|
4
) for the simplest path algorithm. Since most of

geographical networks can be considered to be planar

graphs, which have a maximum number of |E| = 3(|V|-

2) edges, the complexity of the simplest path algorithm

is the same as shortest path algorithm which is O(|V|
2
).

Finally, the algorithms iteratively simulate the
navigation instruction in order to choose the most
efficient navigation instruction that can bring most
agents to destination. The private navigation algorithm

have a time complexity of O(|V|
2
) because the time

execution is directly proportional to the size of the
obfuscated region.

Experimental Setting

A Victoria, Australia road network dataset was used

in the simulation. The experiments aimed to improve the

navigation performance by adding heuristics in

wayfinding such as to perform the initial orientation,

using cardinal direction for communicating instructions

and agent responses when following the instructions. A

simple instruction set was used in order to test the

algorithm, comprising only basic directions; straight,

right and left, for relative directions. The obfuscated

(imprecise) regions were then chosen randomly based on

the number of nodes (obfuscated level) in the region.

The level of obfuscation starts with a single node to 6

nodes in a set, then, extended to a larger size of 10, 15,

20 and 25 nodes in order to see the difference in the

performance. Each algorithm performed 100 iterations

per experiment (10 start regions and 10 destination ×10

obfuscation level) and their success rates and stopping

distances were recorded.

Improving Imprecise Navigation

Performance with Initial Orientation

Spatial orientation is the ability to establish a position

in space relative to a particular destination. The initial

orientation of a user from the start node to the

destination is important for successful navigation

especially for imprecise navigation, in which perhaps the

user can make correct navigation decisions when

following the navigation instructions. In this research,

the initial orientation information is given to users by

computing a direction from a start node to a destination

node. The basic entity of the initial orientation is a

position of a destination given by a coordinates. An

initial orientation is computed, given (s′,d) where the

origin is at s′ (a node in obfuscated set) and heading to d.

The initial orientation is the heading of an agent

from the origin, which refers to which edge should the

agent, has to start with. Routing algorithms provide

initial orientation information and the agent chooses

which edge to start based on the minimum bearing from

the origin to the destination. In Fig. 6, e2 is chosen due

to a1 has the smallest angle from the origin to the

destination. Without initial orientation knowledge,

agents choose the starting edge randomly.

The result from the analysis shows that, agents with

the initial orientation (SimpRelOP) perceived higher

success rate as compared to agents without initial

orientation knowledge (SimpNP). With initial

orientation, SimpRelOP achieved 100% success rate

as compared to SimpNP (0%) at level 1 (Fig. 10).

Melissa Shahrom and Zalilah Abd Aziz / Journal of Computer Sciences 2016, 12 (6): 276.288

DOI: 10.3844/jcssp.2016.276.288

283

Fig. 6. Initial orientation with least-angle strategy (Hochmair and

Karlsson, 2005)

Fig. 7. Simplest cardinal direction weighting function

(Shahrom, 2013)

An increase of 26.5% of an average mean of success

rates when the agent was given the initial orientation at

the beginning of its navigation. The results from the

statistical test also indicate that there was a significant

difference in success rate between SimpRelOP and

SimpNP (p = 0.001 < 0.05).

There was also an improvement in the percentage of

frequency of normalized Euclidean stopping distance,

when initial orientation was given. Without initial

orientation, 36.67% of the agents stopped at a

normalized Euclidean stopping distance > = 1. The

increase in navigation performance can be seen where

the frequency of normalized stopping distance at range >

= 1 reduced to 3.33% for SimpRelOP and thus the

frequency moved to a higher level, which is in the range

of 0.4-0.6 of normalized Euclidean stopping distance.

These mean differences were significant based on the

statistical tests. Thus, it can be concluded that there is a

significant difference in normalized Euclidean stopping

distance between SimpRelOP and SimpNP (p = 0.01 <

0.05) where SimpNP stopped farther than SimpRelOP.

However, the analysis on the normalized network

stopping distance showed although SimpRelOP

performed better than SimpNP, with an average

difference of 200 meters in stopping distance, however,

no significant difference between SimpRelOP and

SimpNP when the statistical test was conducted. The

tremendous performance of the agents when initial

orientation was given shows that, giving efficient

direction is important for navigation under imprecision.

Cognitive Cost Heuristic: Simplest Cardinal

Direction Weighting Function

Brunye et al. (2015) reported that real navigation is

faster and more accurate when following cardinal

direction. In this experiment, comparisons were made

based on which navigation instruction can efficiently

lead agents to the destination, by using either cardinal

direction (SimpCardOP) or relative direction

(SimpRelOP). For this purpose, an agent was assumed

to have knowledge about compass direction to execute

the instructions.

Figure 7, presents a new model for the simplest

cardinal direction-weighting function (Shahrom, 2013),

which is constructed based on the complexity of

communicating cardinal instructions. This model

implements the simplest path strategy for computing

cardinal direction travelling costs. The weight is chosen

to reflect the amount of complexity of information

required to describe the decision points.

Based on work by Mark (1986), the instructions are

classified into frames that have several slots for different

properties of an instruction. The numbers of the slots are

used as the weighting function to measure the

Melissa Shahrom and Zalilah Abd Aziz / Journal of Computer Sciences 2016, 12 (6): 276.288

DOI: 10.3844/jcssp.2016.276.288

284

information content of the instruction. In Fig. 7, each

weight holds information about whether the direction is

moving straight from the cardinal direction (1 slot),

moving not from the cardinal direction (3 slots), turn at a

cardinal direction (3 slots), turn not from cardinal

direction, or if the direction involves junction or

intersection >2 (2 slots). For example, the instruction

“turn west/east/north/south at T-junction” is weighted

“3” because the junction is easy to recognize and not

possible to overshoot at T-junction, whereas, “turn

west/east/north/south at other junctions” is weighted “5”

because it involves two information; turn at cardinal

direction (3 slots) and involves junction or intersection

>2 (2 slots). The weight is given high when the cardinal

instruction complexity is high, in which the instruction

involves the intersection.

There was an improvement on the performance

when cardinal direction was used in communicating the

navigation instruction by using SimpCardOP

algorithm. At most levels, the difference in success

rates can be seen between the two directions. The result

shows, an increase of 13.1% for SimpCardOP in the

success rate. From the statistical test, SimpCardOP

scored more than 50% success rate with 13% higher

than SimpRelOP. The result shows that, there is a

significant change in the average mean value,

especially between SimpCardOP and SimpRelOP (p =

0.00 < 0.05). The results on success rate also concluded

that cardinal direction is an efficient direction to be

used in the private navigation algorithm.

The improvement in the navigation performance can

also be seen in the frequency distribution of normalized

Euclidean stopping distance. The maximum frequency

distribution of normalized Euclidean stopping distance

increased to an average range 0.1-0.3 of normalized

Euclidean stopping distance for SimCardOP. The results

from analysis test shows that there was a significant

difference in the normalized Euclidean stopping distance

for all algorithms. Thus, there is a significant change in

the average mean value for both tests for SimpCardOP

and SimpRelOP (p = 0.00 < 0.05). Since the average

mean of SimpCardOP was lesser than the mean

SimpRelOP, it can be concluded that cardinal direction is

more efficient for navigation under imprecision in terms

of normalized Euclidean stopping distance as compared

to relative direction.

The normalized network distance also showed a

significant difference between SimpCardOP and

SimpRelOP, (p = 0.00 < 0.05). SimpCardOP has brought

agents closer 200 m more than SimpRelOP to the

destination. These results indicated that, with cardinal

direction, most agents stopped closer to destinations as

compared to the relative direction for imprecise navigation

in terms of normalized network stopping distance.

Agent’s Behavior in Wayfinding Affects

Navigation Performance

This experiment was conducted in order to test
whether an active agent can perform better than a passive
agent for imprecise navigation. For the comparison
purposes, the algorithm with relative and cardinal
directions were used in the experiments and the agents’
performances were recorded and compared.

Navigation agent algorithm in Fig. 8 can be used by
an agent to navigate from a starting node s ∈ V to a
destination node d ∈ V. The algorithms generate the
instruction sequence Seq from s to d where s is the start
node. The algorithms execute the sequence of
instructions by making the agent follow each instruction.

For every executable instruction i → t, the location s

is updated to t where t is a stop node. However, if the

instruction is not executable and the agent is active, the

agent would hold any instruction that cannot be

completed at that time and keep moving on until the

instruction can be executed. If the agent is passive, it

stops immediately s = null and the algorithm terminates.

When the instruction sequence has been executed, the

algorithm checks to see whether the agent has reached its

destination d. If so, the agent has arrived at a location d

and the algorithm terminates.

Figure 9 illustrates the agent’s wayfinding environment.

It is modeled through 7 nodes with a static simulated

environment. The agent’s task is to find the way from an

obfuscated region (contains two nodes, a and b) to node e.
Example, Seq = [S, L], where S = Straight, L = Left.

For the passive agent that start from a, the path is (a, b,
c, stop) whereas from b, the path is (b, c, d, e). The agent
from a fails to reach destination when following the
instruction in a passive mode because the agent could
not complete the instruction sequence. However, if the
agent is active, it can successfully reach destination e,
where it continues straight on at node c and then
performs the next instruction L when it reaches d. The
behavior of an agent, either passive or active, determines
the result of the wayfinding activities.

The results from the experiments show that the private
navigation algorithm works well in both relative
(SimpRelOA) and cardinal directions (SimpCardOA)
especially when an agent was active. Caduff and Timpf
(2005) discussed different models of agents, namely strict
and weak, to interpret a robust route instruction. In their

model, strict agent stops when the instruction is not
executable, whereas a weak agent moves straight on and
executes the instruction at the next possibility. They
reported that, their weak agent produces a more robust
route and performs better in navigation, which is similar to
the active agent in this research. Based on the analyses,

SimpCardOA was the most efficient algorithm, which is
not only it can achieve a high percentage of success, but it
can also bring agent closer to the destination (Fig. 10).
When the agent was moving “straight on” if the

Melissa Shahrom and Zalilah Abd Aziz / Journal of Computer Sciences 2016, 12 (6): 276.288

DOI: 10.3844/jcssp.2016.276.288

285

instruction was not executable and then try to execute the
instruction whenever possible, it was expected to see
improvement in the navigation performance. The
algorithms that run with active agents, increased in

success rate performance. The consistency can be seen in

the navigation’s performance where the success rates for
all tests increased with active agents and the result shows
positive significant difference (p = 0.00 < 0.05). Both
SimpCardOA and SimpRelOA scored above 51% of

success rates with this condition.

Fig. 8. Navigation agent

Fig. 9. Following navigation instructions

Fig. 10. Percentage of success

Melissa Shahrom and Zalilah Abd Aziz / Journal of Computer Sciences 2016, 12 (6): 276.288

DOI: 10.3844/jcssp.2016.276.288

286

Fig. 11. Normalized euclidean stopping distance

Fig. 12. Normalized network stopping distance

However, the increase in the performance of

normalized Euclidean stopping distance failed to be

proven statistically for SimpCardOA and SimpRelOA (Fig.

11). Thus, there was no significant difference in the

stopping distance when the agent was active;

SimpCardOA (p = 0.1 > 0.05) and SimpRelOA (p = 0.5 >

0.05). Active agents in SimpCardOA (p = 0.2 > 0.05) and

SimpRelOA (p = 0.9 > 0.05), did not affect the difference

in normalized network stopping distance. The results

showed that there were no significant differences in the

normalized network stopping distance when the agent was

active (Fig. 12).

Conclusion

The work described in this research has been

concerned with the development of a cognitively

motivated private navigation algorithm for imprecise

navigation. The research aims at bridging the gap between

providing high quality personal navigation services and

low quality location information. The private navigation

algorithm relies on the topological representation and

takes into account the simplicity for communicating

navigation instruction in human wayfinding.

The algorithm was further improved by applying a

new cost function called a simplest cardinal direction

weighting function. This weighting function has been

introduced for reducing cognitive load and decreasing

wayfinding errors for imprecise navigation. Reducing

cognitive load means providing a user with the minimum

amount of information required to find their way.

Technically, this research should enable computing

routes that are more aligned with human cognition for

wayfinding and generating route instructions by using

imprecise location information. The algorithm proposed

can also be applied for privacy-aware navigation services

which not only can protect user’s location privacy but

also receive efficient navigation instructions. With agent

simulation, it is possible to determine where people face

wayfinding difficulties, why they face them and how

wayfinding information and design have to be changed

to avoid such difficulties. Moreover, the testing of

different navigation ideas and theories before

Melissa Shahrom and Zalilah Abd Aziz / Journal of Computer Sciences 2016, 12 (6): 276.288

DOI: 10.3844/jcssp.2016.276.288

287

implementation in the real world can result in major

economic benefits.

Acknowledgement

The authors would like to extend their appreciation to
Prof. Matt Duckham for several related research
discussions.

Funding Information

The authors have no support or funding to report.

Author’s Contributions

Melissa Shahrom: Led the study, conducted the

experiments and did all the analysis. She also produced

the manuscript in its original form and revised it into its

final form.

Zalilah Abd Aziz: Reviewed the draft manuscript.

Ethics

We confirm that this manuscript has not been
published elsewhere and is not considered for another
journal.

References

Agarwal, U. and V. Gupta, 2014. Network routing

algorithm using genetic algorithm and compare with

route guidance algorithm. Int. J. Sci. Res. Eng.

Technol.

Brunye, T.T., Z.A. Collier, J. Cantelon, A. Holmes and

M.D. Wood et al., 2015. Strategies for selecting

routes through real-world environments: Relative

topography, Initial route straightness and cardinal

direction. PLoS ONE, 10: e0124404-e0124404.

PMID: 25992685

Caduff, D. and S. Timpf, 2005. The Landmark Spider:

Representing Landmark Knowledge for Wayfinding

Tasks. In: Reasoning with Mental and External

Diagrams: Computational Modeling and Spatial

Assistance. Barkowsky, T., C. Freksa, M. Hegarty

and R. Lowe (Eds.), Menlo Park, CA, pp: 30-35.

Duckham, M. and L. Kulik, 2003. Simplest Paths:

Automated Route Selection for Navigation. In:

Spatial Information Theory: Foundations of

Geographic Information Science, W. Kuhn, M.F.

Worboys and S. Timpf (Eds.), pp: 169-185.

Duckham, M. and L. Kulik, 2005. A Formal Model of

Obfuscation and Negotiation for Location Privacy.

In: Pervasive Computing, Gellersen, H.W., R. Want

and A. Schmidt, Springer, pp: 243-251.

Duckham, M., L. Kulik and M. Worboys, 2003.

Imprecise navigation. Geoinformatica, 7: 79-94.

DOI: 10.1023/A:1023426607262

Duckham, M., S. Winter and M. Robinson, 2010.

Including landmarks in routing instructions. J.

Locat. Based Services, 4: 28-52.

 DOI: 10.1080/17489721003785602

Goldin, S.E. and P.W. Thorndyke, 1982. Simulating

navigation for spatial knowledge acquisition. Hum.

Factors: J. Hum. Factors Ergonom. Society, 24:

457-471. DOI: 10.1177/001872088202400407

Golledge, R.G., 1995. Path selection and route

preference in human navigation: A progress report.

Proceedings of the International Conference COSIT,

Sept. 21-23, Semmering, Austria, pp: 207-222.

 DOI: 10.1007/3-540-60392-1_14

Golledge, R.G., 1999. Wayfinding Behavior: Cognitive

Mapping and Other Spatial Processes. 1st Edn., JHU

Press, Baltimore, ISBN-10: 080185993X, pp: 428.

Haque, S., L. Kulik and A. Klippel, 2007. Algorithms for

reliable navigation and wayfinding. Proceedings of

the International Conference on Spatial Cognition

V: Reasoning, Action, Interaction, (RAI’ 07), ACM,

pp: 308-326.

Hochmair, H. and A.U. Frank, 2000. Influence of

estimation errors on wayfinding-decisions in

unknown street networks-analyzing the least-angle

strategy. Spatial Cognit. Comput., 2: 283-313.

 DOI: 10.1023/A:1015566423907

Hochmair, H.H. and V. Karlsson, 2005. Investigation of

Preference between the Least-Angle Strategy and

the Initial Segment Strategy for Route Selection in

Unknown Environments. In: Spatial Cognition IV,

Reasoning, Action, Interaction, Freksa, C., M.

Knauff, B. Krieg-Brückner, B. Nebel and T.

Barkowsky (Eds.), Springer, Berlin, pp: 79-97.

Mark, D.M., 1986. Automated route selection for

navigation. IEEE Aerospace Electr. Syst. Magaz., 1:

2-5. DOI: 10.1109/MAES.1986.5005198

Michon, P. and M. Denis, 2001. When and why

Referring to Visual Landmarks in Direction Giving. In:

Spatial Information Theory: Cognitive and

Computational Foundations of Geographic Information

Science, Freksa, C. and D.M. Mark, (Eds.), Springer,

Berlin, ISBN-10: 3540483845, pp: 292-305.

Richter, K.F. and M. Duckham, 2008. Simplest

Instructions: Finding Easy-To-Describe Routes for

Navigation. In: Geographic Information Science,

T.J. Cova, H.J. Miller and M.F. Goodchild (Eds.),

Springer, pp: 274-289.

Shahrom, M., 2013. Relative and cardinal directions for

privacy-aware personal navigation services: A

comparison towards navigation efficiency.

Proceedings of the 8th International Conference on

Intelligent Sensors, Sensor Networks and

Information Processing, Apr. 2-5, IEEE Xplore

Press, Melbourne, VIC, pp: 426-431.

 DOI: 10.1109/ISSNIP.2013.6529828

Melissa Shahrom and Zalilah Abd Aziz / Journal of Computer Sciences 2016, 12 (6): 276.288

DOI: 10.3844/jcssp.2016.276.288

288

Streeter, L.A., D. Vitello and S.A. Wonsiewicz, 1985.

How to tell people where to go: Comparing

navigational aids. Int. J. Man-Machine Stud., 22:

549-562. DOI: 10.1016/S0020-7373(85)80017-1

Werner, S., B. Krieg-Bruckner, H.A. Mallot, K. Schweizer

and C. Freksa, 1997. Spatial Cognition: The Role of

Landmark, Route and Survey Knowledge in Human

and Robot Navigation. In: Informatik ’97 Informatik

als Innovationsmotor: 27. Jahrestagung der

Gesellschaft für, Jarke, M., K. Pasedach and K. Pohl

(Eds.), Informatik Aachen, Springer-Verlag, Berlin,

ISBN-10: 3642608310, pp: 41-50.

Westphal, M. and J. Renz, 2011. Evaluating and

minimizing ambiguities in qualitative route

instructions. Proceedings of the 19th ACM

SIGSPATIAL International Conference on

Advances in Geographic Information Systems,

Nov. 01-04, Chicago, IL, USA, pp: 171-180.

 DOI: 10.1145/2093973.2093997

Wiener, J.M., S.J. Buchner and C. Holscher, 2009.

Taxonomy of human wayfinding tasks: A

knowledge-based approach. Spatial Cognit. Comput:

Interdisciplinary J., 9: 152-165.

 DOI: 10.1080/13875860902906496

