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Abstract: This paper presents an algorithm, namely the private navigation 

algorithm. The aim of this algorithm is to bridge the gap between high 

quality navigation services and low quality of location information or 

imprecise data. Generally, the imprecision is due to the poor positioning 

technology and the algorithms use to protect location privacy. The benefits 

of the algorithm are at least two-fold: Firstly, it provides an efficient 

instructions for navigation under imprecision and secondly it supports 

location privacy protection while using navigation services. In common 

navigation systems, the navigation instructions generated are based on 

geometry oriented representation, e.g., shortest path which is based on the 

distance travelled and normally involves many turns. In human wayfinding, 

the navigation instruction is considered efficient if the instruction can 

reduce the cognitive load during the wayfinding activities as well as can 

guide users to a destination. The algorithm applies the simplest path 

computations for generating simple navigation instructions due to its ability 

to minimize the complexity of communicating the instructions. The 

research examines the efficiency of the algorithm based on several 

performance measurers. The research also takes into account the 

wayfinding heuristics such as the initial orientation and agent’s behavior 

(passive or active), that possibly can improve agent’s navigation 

performance. The cognitively motivated simplest cardinal direction 

weighting function is introduced which reflects the complexity of 

communicating cardinal instructions. The results show that the private 

navigation algorithm was efficient when it is incorporated with wayfinding 

heuristic for imprecise navigation. 
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Introduction 

This research presents a study of navigation under 
imprecision in the computerized agent environment. 
Wayfinding and navigation can be defined as a spatial 
problem solving. It is knowing where you are in an 
environment, where your intended destination is and 
knowing how to get there from your current location. In 
navigation systems, the imprecision refers to two 
different reasons; which are due to poor positioning 
technology and for protecting location privacy. 

Many studies of human navigation and wayfinding 

exist in the literature such as in (Hochmair and Karlsson, 

2005; 2000; Golledge, 1999) as well as the studies of the 

role of human cognition in navigation (Wiener et al., 

2009; Hochmair and Karlsson, 2005). A diversity of 

navigation models has been proposed in the literature 

dealing with different aspects of human navigation, 

comprising route descriptions (Westphal and Renz, 2011; 

Haque et al., 2007; Richter and Duckham, 2008), 

providing landmarks (Duckham et al., 2010; Michon and 

Denis, 2001; Caduff and Timpf, 2005) and also planning 

and survey knowledge (Werner et al., 1997; Goldin and 

Thorndyke, 1982). 

Some studies have indicated that, not only the total 

length of the route is important for human navigation, 

but the complexity of navigation instruction also plays 

an important role. According to Streeter et al. (1985), in 

verbal instructions, routes that are easier to describe and 

follow are in favor as compared to the overall length of a 

route. As reported in Golledge (1995), several criteria 
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used in human route selection are ranked highly by 

human subjects such as the shortest distance, least time 

as well as the number of turns. 
In cognitive wayfinding, the navigation instruction is 

considered efficient if the instructions can reduce the 
cognitive wayfinding load during the wayfinding 
activities in order to prevent navigation errors and guide 
users to a destination. Reducing cognitive wayfinding 
load is defined as reducing complexity of route 
instructions, reducing complexity of identifying decision 
points and computing efficient route for navigation. In 
short, the cognitive wayfinding refers to easy-to-follow 
routes and less complex navigation instructions. 

There are very few research on imprecise navigation 

involving computer agents have been discussed in the 

literature, especially in the evaluation of efficient 

navigation instructions. One of the works on imprecise 

navigation is an imprecise navigation algorithm as 

introduced in Duckham et al. (2003) which uses the 

shortest path for constructing navigation instructions. It 

has been reported in their work that, this algorithm is 

able to generate navigation instructions with imprecise 

location information. The factor of providing efficient 

and simple navigation instructions for imprecise 

navigation is not taken into account and investigated in 

Duckham et al. (2003). Despite, they used common 

shortest path calculations for generating the paths and 

instructions. In common shortest path algorithms, a cost 

function is applied that is related to the graph’s structure 

in its embedding geographical reference frame, such as 

the distance between nodes, speed of movement, or 

direction of travel (Brunye et al., 2015). By doing this, 

the structure of the road network is often ignored, as its 

aim is to get the shortest path to the destination. 

Although the former imprecise algorithm 

(Duckham et al., 2003) has been proven to be reliable in 

the past research, the private navigation algorithm is 

developed in order to improve the performance of imprecise 

navigation by considering the cognitive aspect in the route 

computation. The aim of the private navigation algorithm is 

to bridge the gap between high quality navigation services 

and low quality of location information. 

Graph Representation 

Conventional navigation systems are developed 

based on Dijkstra algorithm which is known as the 

shortest path algorithm. The algorithm uses metric 

distances in order to identify the shortest route between 

an origin and a destination (Agarwal and Gupta, 2014). 

Metric distance is a simple measure that is used to 

identify the optimum path in conventional navigation 

systems. Recent studies have shown that minimizing 

turns is also an essential factor determining the route 

choice of users despite the shortest distance (Shahrom, 

2013). Cognitively, users usually incorporate several 

criteria with the distance for path selection, such as the 

fastest route, the route with least ambiguous and the 

easiest route. However, these route computations cannot 

be developed in one simple algorithm (Shahrom, 2013). 

Numerous previous studies have worked on generating 

suitable routes for various purposes. A common 

approach is to apply graph search on a route network to 

obtain one suitable path and then to describe that path. 
 

 
 

Fig. 1. Line graph construction 
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The graph usually represents the road’s spatial 

information of locations and lengths, where intersections 

are nodes, streets are edges and streets lengths are weights. 

This representation is a conventional approach and has 

been used in several recent analyses of road networks. The 

navigation instruction that is based on geometry oriented 

representation usually generates instructions with many 

turns due to lack of topological analysis. 

The concept regarding navigation in a graph, for 

informing users when to change directions and into 

which direction to turn next can be represented by a line 

graph. The line graph is used to represent each street as 

node and the street intersections are represented as 

edges. A line graph L(G) is a graph in which each node 

of L(G) represents an edge of G and two nodes of L(G) 

are adjacent if their corresponding edges share a 

common node in G. The construction of a line graph is 

illustrated in Fig. 1: 

 

• A graph G 

• Nodes in L(G) constructed from edges in G. Each 

node of the line graph is shown labeled with a pair of 

nodes of the corresponding edge in the original graph 

• Added edges in L(G), e.g.,: The L(G) node labeled 

(a,c) corresponds to the edge between nodes a and c. 

L(G) node (a,c) is adjacent to three other nodes: 

(a,d) and (a,b) (corresponding to edges sharing the 

node a) and (d,c) (corresponding to an edge sharing 

the node c) 

• The line graph 

 

Unlike the geometry oriented graph, edges cost of the 

line graph is always set to 1. Therefore, the minimum 

number of turn can easily be determined where it refers 

to the shortest topological distance. Moreover, different 

cost can also be applied such as to represent the 

complexity of describing the navigation instructions. 

Cognitive Cost: Minimizing Navigational 

Complexity with Simplest Path 

The private navigation algorithm implements the 

simplest path computation for generating cognitively 

simple navigation instructions due to its ability to 

minimize the complexity of communicating the 

instructions. In the context of personal navigation 

systems, the assumptions are: 

 

• Users have wireless devices (e.g., mobile phones or 

PDAs) that are online via some form of wireless 

communication network 

• Users are assumed to be able to obtain their 

positions using GPS technology 

• Each mobile object store locally its position and 

only reveals its imprecise location (as a region) 

Figure 2 shows the process in the private navigation 

algorithm. The dotted line arrows and boxes show the 

cognitively applied strategies for producing and 

interpreting route instructions for imprecise navigation. 

The algorithm incorporate the cognitive cost and 

wayfinding heuristic in the navigation process. 

The routing algorithms and computer-based agent 

simulation environment have been developed using Java. 

The algorithm starts with determining the imprecise 

region (obfuscated) O and the desired destination d. The 

imprecision in this context is achieved by the number of 

nodes in the obfuscated region (Duckham and Kulik, 

2005). A set of nodes s′ is taken into account (as 

obfuscated region) instead of a single node from where 

the agent is located. 

A graph G comprises a set of nodes V and edges E 

connecting those nodes. A weighted graph has a function 

w:ε→R
+
 associating a weight with each edge e∈E. 

Simplest path (Duckham and Kulik, 2003) is different in 

terms of its weighting function where it associates a 

weight with each pair of connected edges rather than 

each edge in the graph, w:ε→R
+ 

where ε = {((vi,vj), 

(vj,vk)) ∈ E × E} (Fig. 4). 

The idea is that, the weight is based on the 

complexity of information required to negotiate the 

decision point represented by the edge pair such as a 

path from vi to vk through intersection vj. 

A set O is a representation of an imprecise location of 

a user such that s’∈ O and O ⊆ V. By providing a larger 

obfuscation set, the spatial resolution of a location is 

reduced, making the users location imprecise. User’s 

location in O is only imprecise and not inaccurate, such 

that in O definitely contain s’. 

For navigation services, the drawbacks of having the 

location obfuscated or imprecise are: 

 

• If the density of nodes is too high, the quality of 

service would be compromised, however 

• If the density of nodes is too low, the probability of 

being located in that location is very high, thus the 

privacy protection technique applied in the privacy-

aware algorithm is ineffective 

 

Computing the simplest path instead of the shortest 

path enables the algorithm to generate simplest 

navigation instructions, due to its ability to minimize the 

instruction complexity. The steps involve are: 

 

• An algorithm selects element of s’∈O and (s’,vi) ∈E 

• A weight of w(e) is assigned for each pair of 

connected edges e ∈ E to represent the complexity 

of information to communicate instruction 

• Path computation is based on the shortest path 

calculation by using simplest path cost given by 

the graph 
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Fig. 2. The dotted line arrows and boxes show the improved strategies for producing and interpreting route instructions 
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Fig. 3.  Private navigation algorithm 

 

The algorithm (Fig. 3) sets all edges in the obfuscated 

region with zero weight. The route generation is based 

on the shortest path calculation by using simplest path 

cost given by the graph. The algorithm uses the single-

source shortest path computation for generating simplest 

path from all nodes in obfuscated region s′ and calculate 

the minimum cost of going from s′ to other nodes in the 

graph through multiple edges to get the simplest path. To 

generate the simplest path p, the algorithm iterate 

backwards through the edges vt and choosing the edges 

(vt,td) ∈E where cs(vt,td) is minimum. Based on p, 

algorithm generates instruction q′ for all s′ ∈ O to d, 

where a is the instruction and 0,1........n-1 is the 

sequence, n is the number of instruction. 

The algorithm uses a priority queue data structure. In 

priority queue, a node with high priority is served before 

a node with low priority. If two nodes have the same 

priority, they are served according to their order in the 

queue. It removes the node that has the path with the 

lowest discovered weight to s. This lowest discovered 

path will change as the graph is explored: 
 
• Set the cost of going to s’ = 0 and the cost of going 

to every other edge to 1 
• Let (s’, vi) be equal to e 
• For each unvisited neighbor e’ of e; if the cost of 

going to e and then directly to e’ is smaller than the 
currently known minimum cost of getting to e’, 
update the cost of getting to e’ to be the cost of 
getting to e plus the cost of getting from there to e’ 

• Mark e as visited and put in S. (The distance 
associated with it is now final and minimal) 

• If there are no more unvisited nodes, stop and return 
• Let e’ be equal to the next-smallest tentative 

distance and go to step 3 
 

Figure 5 illustrates the process of selecting and 
generating the navigation instruction in the private 
navigation algorithm. Assume that there are three nodes 
in the obfuscated set O, s’ = {v1,v2,v3}. 
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Fig. 4. Simplest path weight (Duckham and Kulik, 2003) 

 

 
 

Fig. 5.  Generating instruction sequence 

 

Each of these nodes has a series of navigation 

instructions, a1, a2, ......an with q’ = {q1, q2, q3} where q’ 

is the instructions generated based on the simplest path 

computation from all s’ to d. For example, the 

instruction sequence from v1 to d is q1 which consist of 

{a1, a2, a3, ....an} where n is the number of instruction. 

Three sets of simplest path instructions are generated, q1, 

q2 and q3. The algorithm executes these instructions one 

by one from all nodes in the obfuscated set; v1,v2 and v3. 

The one with most frequently leads to destination (in this 
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illustration, q2 is the most successful instruction 

sequence with 100% success) is chosen as a navigation 

instructions and is placed in Q. 

Finally, the instruction Q is used as the navigation 

instruction from obfuscated region O to destination d. 

For one-time query (static) analysis, once the instruction 

sequence is finalized, an agent follows the instruction 

sequence and the algorithm is terminated once the 

destination is detected and stopped when the instruction 

is not executable. In a real wayfinding task, successful 

wayfinding corresponds to the agent’s ability to reach 

destination from a start by following a sequence of 

instructions given. 

Computational Complexity 

This section explains the time complexity of the 

algorithm in terms of how long the program runs. The 

efficiency of the algorithm depends on how much time it 

takes to execute and provide relevant result by analyzing 

the time with respect to increase in input elements. In the 

private navigation algorithm, the statement corresponds 

to the extract minimum operation of Dijkstra’s algorithm 

takes 2|E| steps as it has to check all the edges of the 

graph once, to get the value of minimum cost. The private 

navigation algorithm runs in O(|E| +|V |log|V |) where E is 

the number of edges, due to the implementation of priority 

queue in the Dijkstra’s operations. The private navigation 

algorithm has the time complexity issues as contributed 

by the path computation. 

The repetitive process is used for computing the 

minimum complexity of every edge connected to the 

selected edges. In order to compute the complexity of 

an intersection, the algorithm needs to know the 

orientation of all other edges connected to the selected 

edge which leads to 2|E| steps. Both operations happen 

|E| times, which leads to a total number of |E|(2|E|+2|E|) 

steps. However, since geographical networks are sparse 

graphs with a small limited number of roads at an 

intersection, the number of steps reduces to 

approximately |E|(2|E|), which leads to a time 

complexity of O(|E|
2
). The operation of the simplest 

path algorithm can be seen as a mapping from the 

original graph G to a graph G’ = (E’, ε), where E’ is the 

set of edges E [17]. In the worst case which requires a 

totally connected graph, the graph G’ could have as 

many as |E| = V (|V|-1) edges, leading to a complexity 

of O(|V|
4
) for the simplest path algorithm. Since most of 

geographical networks can be considered to be planar 

graphs, which have a maximum number of |E| = 3(|V|-

2) edges, the complexity of the simplest path algorithm 

is the same as shortest path algorithm which is O(|V|
2
). 

Finally, the algorithms iteratively simulate the 
navigation instruction in order to choose the most 
efficient navigation instruction that can bring most 
agents to destination. The private navigation algorithm 

have a time complexity of O(|V|
2
) because the time 

execution is directly proportional to the size of the 
obfuscated region. 

Experimental Setting 

A Victoria, Australia road network dataset was used 

in the simulation. The experiments aimed to improve the 

navigation performance by adding heuristics in 

wayfinding such as to perform the initial orientation, 

using cardinal direction for communicating instructions 

and agent responses when following the instructions. A 

simple instruction set was used in order to test the 

algorithm, comprising only basic directions; straight, 

right and left, for relative directions. The obfuscated 

(imprecise) regions were then chosen randomly based on 

the number of nodes (obfuscated level) in the region. 

The level of obfuscation starts with a single node to 6 

nodes in a set, then, extended to a larger size of 10, 15, 

20 and 25 nodes in order to see the difference in the 

performance. Each algorithm performed 100 iterations 

per experiment (10 start regions and 10 destination ×10 

obfuscation level) and their success rates and stopping 

distances were recorded. 

Improving Imprecise Navigation 

Performance with Initial Orientation  

Spatial orientation is the ability to establish a position 

in space relative to a particular destination. The initial 

orientation of a user from the start node to the 

destination is important for successful navigation 

especially for imprecise navigation, in which perhaps the 

user can make correct navigation decisions when 

following the navigation instructions. In this research, 

the initial orientation information is given to users by 

computing a direction from a start node to a destination 

node. The basic entity of the initial orientation is a 

position of a destination given by a coordinates. An 

initial orientation is computed, given (s′,d) where the 

origin is at s′ (a node in obfuscated set) and heading to d. 

The initial orientation is the heading of an agent 

from the origin, which refers to which edge should the 

agent, has to start with. Routing algorithms provide 

initial orientation information and the agent chooses 

which edge to start based on the minimum bearing from 

the origin to the destination. In Fig. 6, e2 is chosen due 

to a1 has the smallest angle from the origin to the 

destination. Without initial orientation knowledge, 

agents choose the starting edge randomly. 

The result from the analysis shows that, agents with 

the initial orientation (SimpRelOP) perceived higher 

success rate as compared to agents without initial 

orientation knowledge (SimpNP). With initial 

orientation,   SimpRelOP  achieved  100%  success rate 

as   compared   to   SimpNP  (0%)  at  level  1  (Fig. 10). 
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Fig. 6. Initial orientation with least-angle strategy (Hochmair and 

Karlsson, 2005) 
 

 

 
 
Fig. 7. Simplest cardinal direction weighting function 

(Shahrom, 2013) 

An increase of 26.5% of an average mean of success 

rates when the agent was given the initial orientation at 

the beginning of its navigation. The results from the 

statistical test also indicate that there was a significant 

difference in success rate between SimpRelOP and 

SimpNP (p = 0.001 < 0.05). 

There was also an improvement in the percentage of 

frequency of normalized Euclidean stopping distance, 

when initial orientation was given. Without initial 

orientation, 36.67% of the agents stopped at a 

normalized Euclidean stopping distance > = 1. The 

increase in navigation performance can be seen where 

the frequency of normalized stopping distance at range > 

= 1 reduced to 3.33% for SimpRelOP and thus the 

frequency moved to a higher level, which is in the range 

of 0.4-0.6 of normalized Euclidean stopping distance. 

These mean differences were significant based on the 

statistical tests. Thus, it can be concluded that there is a 

significant difference in normalized Euclidean stopping 

distance between SimpRelOP and SimpNP (p = 0.01 < 

0.05) where SimpNP stopped farther than SimpRelOP. 

However, the analysis on the normalized network 

stopping distance showed although SimpRelOP 

performed better than SimpNP, with an average 

difference of 200 meters in stopping distance, however, 

no significant difference between SimpRelOP and 

SimpNP when the statistical test was conducted. The 

tremendous performance of the agents when initial 

orientation was given shows that, giving efficient 

direction is important for navigation under imprecision. 

Cognitive Cost Heuristic: Simplest Cardinal 

Direction Weighting Function 

Brunye et al. (2015) reported that real navigation is 

faster and more accurate when following cardinal 

direction. In this experiment, comparisons were made 

based on which navigation instruction can efficiently 

lead agents to the destination, by using either cardinal 

direction (SimpCardOP) or relative direction 

(SimpRelOP). For this purpose, an agent was assumed 

to have knowledge about compass direction to execute 

the instructions. 

Figure 7, presents a new model for the simplest 

cardinal direction-weighting function (Shahrom, 2013), 

which is constructed based on the complexity of 

communicating cardinal instructions. This model 

implements the simplest path strategy for computing 

cardinal direction travelling costs. The weight is chosen 

to reflect the amount of complexity of information 

required to describe the decision points. 

Based on work by Mark (1986), the instructions are 

classified into frames that have several slots for different 

properties of an instruction. The numbers of the slots are 

used as the weighting function to measure the 
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information content of the instruction. In Fig. 7, each 

weight holds information about whether the direction is 

moving straight from the cardinal direction (1 slot), 

moving not from the cardinal direction (3 slots), turn at a 

cardinal direction (3 slots), turn not from cardinal 

direction, or if the direction involves junction or 

intersection >2 (2 slots). For example, the instruction 

“turn west/east/north/south at T-junction” is weighted 

“3” because the junction is easy to recognize and not 

possible to overshoot at T-junction, whereas, “turn 

west/east/north/south at other junctions” is weighted “5” 

because it involves two information; turn at cardinal 

direction (3 slots) and involves junction or intersection 

>2 (2 slots). The weight is given high when the cardinal 

instruction complexity is high, in which the instruction 

involves the intersection. 

There was an improvement on the performance 

when cardinal direction was used in communicating the 

navigation instruction by using SimpCardOP 

algorithm. At most levels, the difference in success 

rates can be seen between the two directions. The result 

shows, an increase of 13.1% for SimpCardOP in the 

success rate. From the statistical test, SimpCardOP 

scored more than 50% success rate with 13% higher 

than SimpRelOP. The result shows that, there is a 

significant change in the average mean value, 

especially between SimpCardOP and SimpRelOP (p = 

0.00 < 0.05). The results on success rate also concluded 

that cardinal direction is an efficient direction to be 

used in the private navigation algorithm. 

The improvement in the navigation performance can 

also be seen in the frequency distribution of normalized 

Euclidean stopping distance. The maximum frequency 

distribution of normalized Euclidean stopping distance 

increased to an average range 0.1-0.3 of normalized 

Euclidean stopping distance for SimCardOP. The results 

from analysis test shows that there was a significant 

difference in the normalized Euclidean stopping distance 

for all algorithms. Thus, there is a significant change in 

the average mean value for both tests for SimpCardOP 

and SimpRelOP (p = 0.00 < 0.05). Since the average 

mean of SimpCardOP was lesser than the mean 

SimpRelOP, it can be concluded that cardinal direction is 

more efficient for navigation under imprecision in terms 

of normalized Euclidean stopping distance as compared 

to relative direction. 

The normalized network distance also showed a 

significant difference between SimpCardOP and 

SimpRelOP, (p = 0.00 < 0.05). SimpCardOP has brought 

agents closer 200 m more than SimpRelOP to the 

destination. These results indicated that, with cardinal 

direction, most agents stopped closer to destinations as 

compared to the relative direction for imprecise navigation 

in terms of normalized network stopping distance. 

Agent’s Behavior in Wayfinding Affects 

Navigation Performance 

This experiment was conducted in order to test 
whether an active agent can perform better than a passive 
agent for imprecise navigation. For the comparison 
purposes, the algorithm with relative and cardinal 
directions were used in the experiments and the agents’ 
performances were recorded and compared. 

Navigation agent algorithm in Fig. 8 can be used by 
an agent to navigate from a starting node s ∈ V to a 
destination node d ∈ V. The algorithms generate the 
instruction sequence Seq from s to d where s is the start 
node. The algorithms execute the sequence of 
instructions by making the agent follow each instruction. 

For every executable instruction i → t, the location s 

is updated to t where t is a stop node. However, if the 

instruction is not executable and the agent is active, the 

agent would hold any instruction that cannot be 

completed at that time and keep moving on until the 

instruction can be executed. If the agent is passive, it 

stops immediately s = null and the algorithm terminates. 

When the instruction sequence has been executed, the 

algorithm checks to see whether the agent has reached its 

destination d. If so, the agent has arrived at a location d 

and the algorithm terminates. 

Figure 9 illustrates the agent’s wayfinding environment. 

It is modeled through 7 nodes with a static simulated 

environment. The agent’s task is to find the way from an 

obfuscated region (contains two nodes, a and b) to node e. 
Example, Seq = [S, L], where S = Straight, L = Left. 

For the passive agent that start from a, the path is (a, b, 
c, stop) whereas from b, the path is (b, c, d, e). The agent 
from a fails to reach destination when following the 
instruction in a passive mode because the agent could 
not complete the instruction sequence. However, if the 
agent is active, it can successfully reach destination e, 
where it continues straight on at node c and then 
performs the next instruction L when it reaches d. The 
behavior of an agent, either passive or active, determines 
the result of the wayfinding activities. 

The results from the experiments show that the private 
navigation algorithm works well in both relative 
(SimpRelOA) and cardinal directions (SimpCardOA) 
especially when an agent was active. Caduff and Timpf 
(2005) discussed different models of agents, namely strict 
and weak, to interpret a robust route instruction. In their 

model, strict agent stops when the instruction is not 
executable, whereas a weak agent moves straight on and 
executes the instruction at the next possibility. They 
reported that, their weak agent produces a more robust 
route and performs better in navigation, which is similar to 
the active agent in this research. Based on the analyses, 

SimpCardOA was the most efficient algorithm, which is 
not only it can achieve a high percentage of success, but it 
can also bring agent closer to the destination (Fig. 10). 
When the agent was moving “straight on” if the 
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instruction was not executable and then try to execute the 
instruction whenever possible, it was expected to see 
improvement in the navigation performance. The 
algorithms that run with active agents, increased in 

success rate performance. The consistency can be seen in 

the navigation’s performance where the success rates for 
all tests increased with active agents and the result shows 
positive significant difference (p = 0.00 < 0.05). Both 
SimpCardOA and SimpRelOA scored above 51% of 

success rates with this condition.  
 

 
 

Fig. 8.  Navigation agent 
 

 
 

Fig. 9.  Following navigation instructions 
 

 
 

Fig. 10.  Percentage of success 
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Fig. 11. Normalized euclidean stopping distance 

 

 
 

Fig. 12. Normalized network stopping distance 

 

However, the increase in the performance of 

normalized Euclidean stopping distance failed to be 

proven statistically for SimpCardOA and SimpRelOA (Fig. 

11). Thus, there was no significant difference in the 

stopping distance when the agent was active; 

SimpCardOA (p = 0.1 > 0.05) and SimpRelOA (p = 0.5 > 

0.05). Active agents in SimpCardOA (p = 0.2 > 0.05) and 

SimpRelOA (p = 0.9 > 0.05), did not affect the difference 

in normalized network stopping distance. The results 

showed that there were no significant differences in the 

normalized network stopping distance when the agent was 

active (Fig. 12). 

Conclusion 

The work described in this research has been 

concerned with the development of a cognitively 

motivated private navigation algorithm for imprecise 

navigation. The research aims at bridging the gap between 

providing high quality personal navigation services and 

low quality location information. The private navigation 

algorithm relies on the topological representation and 

takes into account the simplicity for communicating 

navigation instruction in human wayfinding. 

The algorithm was further improved by applying a 

new cost function called a simplest cardinal direction 

weighting function. This weighting function has been 

introduced for reducing cognitive load and decreasing 

wayfinding errors for imprecise navigation. Reducing 

cognitive load means providing a user with the minimum 

amount of information required to find their way. 

Technically, this research should enable computing 

routes that are more aligned with human cognition for 

wayfinding and generating route instructions by using 

imprecise location information. The algorithm proposed 

can also be applied for privacy-aware navigation services 

which not only can protect user’s location privacy but 

also receive efficient navigation instructions. With agent 

simulation, it is possible to determine where people face 

wayfinding difficulties, why they face them and how 

wayfinding information and design have to be changed 

to avoid such difficulties. Moreover, the testing of 

different navigation ideas and theories before 
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implementation in the real world can result in major 

economic benefits. 
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