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Abstract: In this research, a numerical integration method is proposed 

to improve the computational accuracy of Legendre moments. To 

clarify the improved computation scheme, image reconstructions from 

higher order of Legendre moments, up to 240, are conducted. With the 

more accurately generated moments, the distributions of image 

information in a finite set of Legendre moments are investigated. We 

have concluded that each individual finite set of Legendre moments 

will represent the unique image features independently, while the even 

orders of Legendre moments describe most of the image characteristics. 
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Introduction 

Moment methods have been the subject of intensive 

research since the concept of image moments was 

introduced by (Hu, 1962). Different types of 

conventional continuous orthogonal moments defined 

in a rectangular region have been investigated as the 

unique image shape features for applications in fields 

of pattern recognition and image analysis. We refer to 

books written by (Mukundan and Ramakrishnan, 1998; 

Pawlak, 2006; Flusser et al., 2009) as background study 

of moment methods for this research. 

As one of the important continuous orthogonal 

moments, the Legendre moment has been well 

investigated since the earlier years of moment-based 

descriptors studies (Teague, 1980; Teh and Chin, 

1988; Liao and Pawlak, 1996). However, some 

computational issues have bottlenecked the further 

development of efficient applications driven by Legendre 

moment-based techniques. The objective of this research 

is to study the image representing characteristics of 

Legendre moments and demonstrate their potential 

usefulness in the field of image analysis. 

In this study, we have analyzed the computational 

errors and proposed an efficient method to improve the 

accuracy of Legendre moments computation, especially 

for the higher order moments. With the substantially 

improved accurate Legendre moments, the image 

reconstructions from Legendre moments, up to the 

order of 240, are performed with highly satisfied 

results. We have also conducted the image 

reconstructions from a finite set of Legendre moments. 

This leads to the clarification that the lower orders of 

Legendre moments mainly contain fundamental image 

information, while the higher orders of Legendre 

moments preserve more detailed image information; 

especially, the even orders of Legendre moments 

describe most of the image characteristics. 

The organization of this study is as follows. 

Section 2 will review the general properties of 

Legendre moments and the computational errors in 

Legendre moment computing. In section 3, to verify 

the more accurate Legendre moment computational 

results, we represent some reconstructed images from 

the higher orders of Legendre moments. The 

investigation of representing characteristics of a 

partial set of Legendre moments in image analysis is 

performed in section 4. Finally, the concluding 

remarks are reported in section 5. 

Legendre Moments 

Legendre Polynomials 

The m-th order Legendre polynomial (Sansone, 1991) 

is defined by the Rodrigues formula: 
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And its recurrent formula is: 
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The Legendre polynomials {Pm(x)} are a complete 

orthogonal basis set on the interval [-1, 1] (Courant and 

Hilbert, 1996): 
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where, δmn is the Kronecker symbol. 

 

Legendre Moments 

The (m, n)-th order of Legendre moment of an 

image function f(x, y) is defined on the square             

[-1, 1]×[-1, 1]: 
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where, m, n = 0, 1, 2,…. 

In the case of digital image processing, the double 

integration in (4) needs to be replaced by double 

summations. Assuming a digital image is sized by M × 

N, (4) becomes: 

 

1 1

( )
(2 1)(2 1)

( ), ( )
M N

i j m i jmn n
i j

x y
m n

MN
P P y x yf xλ

= =

+ +
∆ ∆= ∑∑  (5) 

 

where, ∆x and ∆y are sampling intervals in the x and y 

directions. 

According to the orthogonality property of the Legendre 

moments, we can reconstruct an original image from an 

infinite series of its Legendre moments by: 
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In practice, however, we would have to truncate the 

infinite series in (6). If only Legendre moments of order 

<Mmax are given, the original image function f(x, y) can 

be approximated by a truncated series: 
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Legendre Moments Computing 

In digital image processing, we can only observe 
an image function f (x, y) at discrete pixels, so the 
discrete version of f (x, y) becomes f (xi, yj). In 
Legendre moment computing, it has been a common 
practice to apply (5) directly. However, when the 
order of Legendre moments increases, ∆x∆y in (5) can 
no longer produce an accurate result. 

Figure 1 shows an example of the distribution of 

higher order Legendre polynomials within a pixel. It is 

obvious that the integration of P100(x)P100(y) within this 

pixel is different from ∆x∆y. 

To improve the accuracy of Legendre moment 

computation, we approximate λmn by: 
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By some well-known techniques of numerical 

integration, the integrations in (9) can be approximated with 

various accuracies. For example, the alternative extended 

Simpson’s rule was applied to compute Legendre moments 

(Flannery, 1992; Liao and Pawlak, 1996). 

 

 
 

Fig. 1. The distribution of P100(x)P100(y) in a corner pixel of an image size 
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In this research, referring to a recent work (Wang and 

Liao, 2013), a straightforward k×k numerical scheme is 

utilized to calculate the double integrations in (9). By 

dividing a pixel into k×k sub regions with the same 

weights, we can reduce the computational errors of 

Legendre polynomials substantially. 

Image Reconstruction from Legendre 

Moments 

To verify our proposed solutions for more accurate 

Legendre moment computation, we would examine the 

image reconstruction determined by: 
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which is a newer version of (7) with the Legendre 

moments λm-n,n replaced by their approximations given 

by (8). It is important to note that when the given highest 

Legendre moment order Mmax is increased, the previously 

determined ɵ ,m n nλ −   do not change. 

Figure 2 shows two testing images utilized in this 

research. Each of the testing images is sized by 256×256 

with 256 different gray levels. 

To compare the reconstructed images with the 

original image, we have adopted the Peak Signal to 

Noise Ratio (PSNR) as the measurement, which is image 

independent and can be used to evaluate the 

reconstruction performance generally. PSNR is the ratio 

between the maximum power of the signal and the 

affecting noise and is defined as: 

2
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where, GMax is the maximum gray level of the image, 

which is 255 in our case and MSE is the Mean Square 

Error given by: 
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We have conducted the image reconstructions from 

different maximum Legendre moment orders with 

various k×k numerical schemes. Figure 3 shows the 

plotting of PSNR values from the Legendre moment 

reconstruction performances on testing image Fig. 2a 

with different maximum orders and k×k numerical 

schemes, while Table 1 displays some PSNR values 

presented in Fig. 3. 

Table 2 has shown some selected PSNR values from 

image reconstruction performances on testing image Fig. 

2b with the 11×11 numerical scheme and different 

maximum Legendre moment orders. 

Figure 4 demonstrates some images reconstructed 

from Fig. 2a with various k×k numerical schemes and 

different maximum Legendre moment orders. It can 

be observed that the images reconstructed from higher 

orders of Legendre moments with 7×7 and 11×11 

numerical schemes are very close to the original Fig. 

2a visually. 

Figure 5 presents some reconstructed images from 

Fig. 2b with the 11×11 numerical scheme and different 

maximum Legendre moment orders.

 

 
 (a) (b) 

 

Fig. 2. Two testing images sized by 256×256 with 256 different gray levels 
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Fig. 3. PSNRs of the reconstructed Fig. 2a with different Legendre moment orders and k×k numerical schemes 

 

 

 
 

Fig. 4. Some reconstructed images from different Legendre moments orders with various k×k numerical schemes on Fig. 2a 
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Fig. 5. Some reconstructed images from different Legendre moments orders with the 11×11 numerical scheme on Fig. 2b 

 

Image Reconstruction from a Partial Set of 

Legendre Moments 

According to the general moment theory, for a 

digital image, the lower order moments represent its 

fundamental features while the higher order moments 

characterize its details. Based on the previously 

presented improved moment computation techniques and 

precisely reconstructed images, we are able to 

investigate the individual contributions by a partial set 

of Legendre moments. 
To examine the image reconstruction determined 

by a limited band of Legendre moments, we adopt the 

formula: 
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To perform the image reconstructions. In (13), 

Mmax and Mmin denote the highest and lowest Legendre 

moments involved in image reconstructions. The same 

two testing images shown in Fig. 2 are utilized here. 

The sub-figures (a) to (d) of Fig. 6 show the 

images of the reconstructed Fig. 2a from partial sets 

of Legendre moments of orders 0 to 40, 41 to 80, 81 

to 120 and 121 to 200, respectively. The numerical 

scheme k = 11 is adopted to compute Legendre 
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moments in this experiment. Figure 6e presents the 

reconstructed image of orders 0 to 200 and Fig. 6f 

displays the result of direct addition operation of 

images Fig. 6a-d. All sub-figures illustrated in Fig. 6 

are the direct reconstructed results without any image 

enhancement for displaying. As expected, the images 

presented in Fig. 6e and 6f are identical. 

The results shown in Fig. 6 have clarified the 

general moment theory that the lower order Legendre 

moments represent fundamental features of an image, 

while the higher order Legendre moments describe its 

details. 

To address the issue of image reconstruction from 

a partial set of Legendre moments further, we have 

conducted additional investigation on the testing 

image Fig. 2b. 

Figure 7 displays some reconstructed images from 

using lower orders of individual Legendre moments, 

51, 52, 53, 54, 55 and the set of 51 to 55, respectively. 

The histograms of those reconstructed images show 

that all of the image pixels have gray level values of 

25 or less. For a better displaying of image details, we 

have re-scaled these images by a multiplier of 10. 

Figure 8 shows some images reconstructed by using 

higher orders of individual Legendre moments, 196, 197, 

198, 199, 200 and the set of 196 to 200, respectively. 

Since the highest gray level of all images is 9, a 

multiplier of 25 is applied for displaying. 

From the experimental results shown in Fig. 7 and 

8, we have some observations about the characteristics 

of individual orders of Legendre moments in image 

representing. Firstly, each individual order of 

moments represent the unique image details 

independently. Secondly, the even orders of Legendre 

moments describe more image details than the odd 

orders of Legendre moments. To emphasize this 

discovery, we have conducted the images reconstructions 

from all even order, odd orders and all orders of 

Legendre moments between 0 and 240 and displayed the 

results in Fig. 9a-c, respectively. 

We can observe that Fig. 9b has presented very 

limited information from the original testing image 

Fig. 2b. On the other hand, the PSNR value between Fig. 

9a and 9c is 39.219, which indicates that the similarity of 

an image reconstructed from even orders and that of all 

orders of Legendre moments is very high. 

To address this interesting characteristic of Legendre 

moments further, we have conducted the image 

reconstructions from the even orders of Legendre 

moments only. Figure 10 presents some reconstructed 

Fig. 2b from the even orders of Legendre moments. 

Compared with each of the sub-figures displayed in Fig. 

5, the two sets of reconstructed images appear very 

similar visually. Figure 11 shows the PSNR values 

calculated from the image reconstructions displayed in 

both Fig. 5 and 10, respectively.

 

 
 
Fig. 6. Sub-figures (a) to (f) are the reconstructed images of Fig. 2a from Legendre moments of orders 0 to 40, 41 to 80, 81 to 

120, 121 to 200, 0 to 200 and the direct addition operation of images (a) to (d), respectively 
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Fig. 7. Sub-figures (a) to (f) are the reconstructed images of Fig. 2b, applying the 11×11 numerical scheme, from Legendre 

moments of orders 51, 52, 53, 54, 55 and 51 to 55, respectively. The gray levels of all image pixels are multiplied by 10 

 

 
 
Fig. 8. Sub-figures (a) to (f) are the reconstructed images of Fig. 2b, applying the 11×11 numerical scheme, from Legendre moments of 

orders 196, 197, 198, 199, 200 and 196 to 200, respectively. The gray levels of all image pixels are multiplied by 25 

 

 
 
Fig. 9. Images reconstructed from all even number orders 0 to 240, all odd number orders from 1 to 239 and all orders from 0 to 

240, respectively 
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Fig. 10. Image reconstructed from different even orders of Legendre moments with the 11×11 numerical scheme on Fig. 2b 
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Fig. 11. PSNRs of the reconstructed Fig. 2b displayed in Fig. 5 and 10, respectively 

 
Table 1. PSNR values of different k×k numerical schemes for reconstruction performances on Fig. 2a 

Order (Mmax) 10 40 80 120 150 180 210 240 

1×1 16.987 21.460 20.681 13.676 13.184 9.994 8.455 6.331 

3×3 16.987 21.591 24.098 25.798 26.575 25.748 22.438 21.042 

5×5 16.987 21.593 24.144 25.902 26.961 27.743 27.845 28.055 

7×7 16.987 21.593 24.154 25.922 27.006 27.934 28.609 28.833 

9×9 16.987 21.593 24.156 25.942 27.008 27.927 28.839 29.283 

11×11 16.987 21.593 24.157 25.952 27.013 27.931 28.822 29.637 

 
Table 2. PSNR values of the 11×11 numerical scheme for reconstruction performances on Fig. 2b 

Order (Mmax) 10 40 80 120 150 180 210 240 

11×11 19.641 25.384 28.759 31.095 32.555 34.037 35.651 37.530 

 

Concluding Remarks 

In this research, an innovate attempt to improve the 

computational accuracy of Legendre moments is 

proposed. To examine the more accurately computed 

Legendre moments, we have performed image 

reconstructions from higher orders of Legendre moments 

with satisfactory results. 

By conducting image reconstructions from a 

partial set of Legendre moments, we have clarified 

that the lower orders of moments mainly contain the 

fundamental information of the original image, while 

the higher orders moments preserve the detailed 

image information. We have concluded that each 

individual finite set of Legendre moments will 

represent the unique image details independently. We 

have also discovered that the even orders of Legendre 

moments describe most of image characteristics, 

while the odd orders of Legendre moments would 

only present very limited information from the 

original image. 
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