

© 2015 Idawaty Ahmad, Mohamed Othman and Zuriati Ahmad Zulkarnain. This open access article is distributed under a

Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Sciences

Original Research Paper

Enhanced Preemptive Global Utility Accrual Real Time

Scheduling Algorithms in Multicore Environment

Idawaty Ahmad, Mohamed Othman and Zuriati Ahmad Zulkarnain

Department of Communication Technology and Network, Faculty of Computer Science and Information Technology,

University Putra Malaysia, 43400 UPM, Serdang, Selangor DE, Malaysia

Article history

Received: 05-11-2015
Revised: 09-02-2016
Accepted: 10-02-2016

Corresponding Author:
Idawaty Ahmad
Department of Communication
Technology and Network,
Faculty of Computer Science
and Information Technology,
University Putra Malaysia,
43400 UPM, Serdang, Selangor
DE, Malaysia
Email: idawaty@upm.edu.my

Abstract: This paper proposed an efficient real time scheduling algorithm

using global scheduling paradigm running in multicore environment known

as Global Preemptive Utility Accrual Scheduling (GPUAS) algorithm. The

existing TUF/UA multiprocessor scheduling algorithms known as Greedy-

Global Utility Accrual (G-GUA) and Non Greedy-Global Utility Accrual

(NG-GUA) algorithms is seen to overlook the efficiency on its task

scheduling algorithm. These algorithms have adapted the task migration

attribute considering the load balancing problem in multi core platform.

The existing PUAS uniprocessor scheduling algorithm is mapped into the

multicore scheduling environment that consists of the global scheduling

schemes considering the migration attribute of the executed tasks. The

main principal of global scheduling is that it allows the executed tasks to

migrate from one processor to the other processors whenever a scheduling

event occurs in the system. The proposed GPUAS algorithm inherits the

characteristics of PUAS in uniprocessor where it can preempt the highest

PUD task at any event that occurs in the system. In this research, the

proposed GPUAS algorithm enhanced the existing NG-GUA and G-GUA

algorithms. The developed simulator has derived the set of parameter,

events and performance metrics according to a detailed analysis of the

base model. The proposed GPUAS algorithm achieved the highest

accrued utility for the entire load range. The proposed GPUAS algorithm

is more efficient than the existing algorithms, producing the highest

accrued utility ratio and less abortion ratio making it more suitable and

efficient for real time application domain.

Keywords: Real Time System, Utility Accrual Scheduling, Multicore,

Discrete Event Simulation

Introduction

In the presence of extremely overloaded tasks traffic,

the RTS requires multicore environment with an

efficient load sharing capability to accommodate the

surplus load. The load sharing mechanism is required in

order to migrate the executed tasks across multiple

processors. This ensures that no processor is idle while

some tasks are waiting to be scheduled on other

processors. The load sharing problem in multiprocessor

environment can be solved by deploying the task

migration attribute in the executed tasks.

Problem Statement

The existing TUF/UA multiprocessor scheduling

algorithms known as Greedy-Global Utility Accrual

(G-GUA) and Non Greedy-Global Utility Accrual

(NG-GUA) algorithms (Garyali et al., 2010) is seen to
overlook the efficiency on its task scheduling in
multicore platform. G-GUA uses a greedy strategy
where task whose execution yields the maximum PUD is
selected to be scheduled at a particular instance. For load
sharing purpose, the requesting task is placed at the

queue that has the least remaining execution cost. This
requesting task assignment behavior in G-GUA may
affect the total utility accrued because it does not
consider the value of utility when determining the
suitable queue at that particular instance. On the other
hand, NG-GUA uses dual metric to overcome

overloaded tasks in RTS. During under load it uses
deadline and during overloaded condition, task whose
execution yields the maximum PUD is selected to be

Idawaty Ahmad et al. / Journal of Computer Sciences 2015, 11 (12): 1099.1107

DOI: 10.3844/jcssp.2015.1099.1107

1100

scheduled at a particular instance. However, NG-GUA
immediately aborts the requesting task that has potential
to produce zero utility to the system due to its
infeasibility. The abortion of a task leading to a zero

utility acquired by the requesting task to the system. This
will have an effect on the total utility accrued to the
system. If the underlying scheduling scheme can reduce
the abortion of the requesting task efficiently, then the
system will possibly attain a higher utility thus
enhancing the overall system’s performance.

Objective

The objective of this research is to enhance the
efficiency of the existing TUF/UA scheduling
algorithms in multiprocessor environment i.e., NG-
GUA and G-GUA to accommodate the overloaded
tasks traffic so that the maximum total utility accrued
to the system. This paper proposed the GPUAS
algorithm that considered an efficient task request
location with migration task attribute for solving the
overloaded situation. If the underlying scheduling
scheme places the task's request among the processor's
queue efficiently and reduce the abortion problems,
then the system will gain higher utility thus enhancing
the overall system’s performance.

Materials and Methods

Approach

A discrete event simulation is used as a

methodology to verify the performances of GPUAS

and the existing algorithms. In order to precisely

remodel and further enhance the algorithms, DES

written in C language in Visual C++ environment is

the best method to achieve this objective. Figure 1

shows the deployed simulation framework.

Simulation Framework

The simulation of multicore infrastructure consists of

a source, task entities and an array of utlist queues and

resources to represent the various numbers of processors

in the system.

Task Model

Tasks have one of two types of migration

characteristics. The migration type of a task is denoted

by Migration ∈ {NON_MIGRATE, MIGRATE}. Tasks

that are not allowed to migrate among processors possess

the NON_MIGRATE attribute while those with a

MIGRATE attribute can be migrated among the

processors and are considered only in the global

scheduling paradigm.

TUF Model

The general dominant task attribute is associated to

using timing constraint which is denoted as deadline.

The timing constraint of a task is designed using the

step and arbitrary TUF model in this study (Li et al.,

2006). A TUF describes a task utility contribution to

the system as a function of its completion time. The

TUF shape of a task is denoted by Shape ∈ {STEP,

ARBITRARY}. The step TUF model used in the

simulator is shown in Fig. 2. The maximum utility

that could possibly be gained by a task is denoted as

MaxAU. The random value of MaxAU abides normal

distribution (10, 10) i.e., the mean value and variance

is set 10 to conform to the benchmark. The InitialTime

is the starting time for which the function is defined.

The TerminationTime is the last time for which the

function is defined. That is, MaxAU is defined in

within the time interval of [InitialTime,

TerminationTime]. The completion of a task at an

instance i.e., sclock within this interval will yield a

random positive utility denoted as Utility which is

equal to the MaxAU for step TUF model as shown in

Fig. 2a. The completion of a task breaching the

stipulated deadline causes the value of Utility and

MaxAU to become zero. If the TerminationTime is

reached and the task has not finished its execution, it

accrues zero utility to the system.

The arbitrary shape TUF is represented as a

continuous and derivable polynomial equation as

shown in Fig. 2b. The maximum utility that could

possibly be gained by a task is denoted as MaxAU.

The random value of MaxAU abides normal

distribution (10, 10) i.e., the mean value and variance

is set 10 to conform to the benchmark. For arbitrary

TUF, the completion of a task within the InitialTime

and TerminationTime interval will yield a random

positive utility denoted as Utility as shown in Fig. 2b.

Task Assignment Algorithm

All tasks are assigned to processors by task

assignment algorithm as shown in Fig. 3. The number

of processors is checked before the task is assigned to

a specific processor. The Tgen.cpuid parameter is

used to identify the assigned processor ID. In

uniprocessor environment the value of Tgen.cpuid is

equal to 0. This indicates that the processor ID zero is

assigned to task Tgen. In multiprocessor environment,

the generated task Tgen is assigned according to the

value of ShortestCPU parameter. This parameter

captures the processor ID that has the smallest value

of TotalExec[cpuid]] value in their respective cpuid

queue. The TotalExec[cpuid] measures the execution

time of all requests that are currently pending in the

cpuid queue. The TotalExec parameter is increased

every time a request of a task is inserted into the cpuid

queue. The TotalExec parameter is reduced every time

a request of a task is deleted from the cpuid queue.

Idawaty Ahmad et al. / Journal of Computer Sciences 2015, 11 (12): 1099.1107

DOI: 10.3844/jcssp.2015.1099.1107

1101

Fig. 1. Simulation framework (Idawaty et al., 2012)

Fig. 2. TUF model

Fig. 3. Task assignment algorithm

Idawaty Ahmad et al. / Journal of Computer Sciences 2015, 11 (12): 1099.1107

DOI: 10.3844/jcssp.2015.1099.1107

1102

Existing Algorithms

The features of the existing G-GUA algorithm are

simplified as follows:

1. G-GUA uses the PUD metric i.e., task whose

execution yields the maximum PUD over others is

scheduled in the system. Once a scheduling event is

triggered, a new schedule is created that may result in the

task executing on the other processors to be preempted.

2. G-GUA allows the request of a task to migrate to

the idle resource in another processor in the system. It

also allows the request of a task to be inserted into a

processor’s queue with the least of total remaining

execution cost for the respective resource.

The existing NG-GUA algorithm is a TUF/UA

multiprocessor real time scheduling algorithm that

allows tasks to be subject to run-time uncertainties,

overloads and global migration (Garyali et al., 2010).

The none greediness in the name of this algorithm

describes the tendency of the algorithm to accrue as

much total utility during overload situation while in

under load situation it uses deadline as its metric and

schedule task with the earliest deadline first. The features

of the existing NG-GUA are simplified as follows:

1. NG-GUA uses two metrics for task scheduling

depending on the overload condition in the system.

During overloaded, the PUD metric i.e., task whose

execution yields the maximum PUD over others is

scheduled in the system. In under load situation, the

deadline metric i.e., task with the earliest deadline is

scheduled in the system. Once a scheduling event is

triggered, a new schedule is created that may result in the

task executing on the other processors to be preempted.

2. NG-GUA allows the request of a task to migrate to

the idle resource in another processor in the system. It

also allows the request of a task to be inserted into a

processor’s queue with the least of total remaining

execution cost for the respective resource.

Proposed Algorithm
The different approach of GPUAS is in the decision

for queuing the requesting task with the lowest PUD in

the system. GPUAS uses the lowest PUD metric as

opposed to G-GUA that used the least sum of total

remaining execution cost for the respective resource.

GPUAS uses only the PUD metric to schedule the

incoming task as opposed to the existing algorithms

that uses dual metrics i.e., PUD and deadline to

schedule tasks in the system according to the current

load in the system. Figure 4 shows the different

between these algorithms to identify the most suitable

queue to insert the requesting task i.e., Treq when it

cannot be instantaneously scheduled to use a resource

in the system. There are two parameters being used by

the scheduling algorithms on the decision to locate task

Treq as follows:

i. NG-GUA, G-GUA and GPUAS measure the least

sum of remaining execution cost for resource rid among

the utlist queues. The LeastTime parameter is used to

represent the least sum of remaining execution cost.

Additionally, the LeastUtlist parameter is used to

represent which utlist queue possess the least sum of

remaining execution cost. The remaining execution cost

for a resource i.e., rid in a queue is captured from the

remaining HoldTime parameter of each task that

requesting for resource rid in the respective utlist queue.

The sum of the remaining HoldTime of each identified

request is accumulated in the TotalCost parameter.

Therefore, before the searching procedure for a request

in any utlist queue is executed, the value of TotalCost is

initialized to 0.0000 as depicted in Fig. 4.

ii. GPUAS additionally measures the highest PUD

of task request for the resource rid in the respective

utlist queue. The HighestPUD parameter is used to

represent the highest PUD among the task request in

the respective queue. Initially, this parameter is set to

0.0000 as shown in Fig. 4.

Referring to Fig. 4, the TotalCost and HighestPUD

parameter is initialized to 0.0000. The identification of

which utlist queue for the respective rid is depicted in

the in res[rid].cpuid parameter. The scheduler search for

a request for resource rid in a queue. Two additional

pointers are needed for the searching procedure i.e., the

work and prev_utlist pointers. The work pointer moves

from one element to the next element starting from the

head_utlist to the tail_utlist searching for the

corresponding request. The prev_utlist points to the

previous element before the currently processing element

that is shown by the work pointer. Initially both of these

pointers point to the first element in the utlist queue as

depicted in Fig. 4. The work pointer then checks the

resource rid of the first element in the utlist queue. If it

does not discover the request for resource rid, it will

search for the next element. This is repeated to the

subsequent elements until the end of the utlist queue.

As shown in Fig. 4, in the case the work pointer

discovers a request for rid, the information of the task

request is obtained from the tid element of the work

pointer i.e., work-tid. For the purpose of clarification,

the respective task is known as Twait in the figure. The

execution mode of task Twait in Twait.Mode is

checked. Subsequently, the execution mode for task

Twait is classified into the NORMAL or ABORT mode

as stated below:

Idawaty Ahmad et al. / Journal of Computer Sciences 2015, 11 (12): 1099.1107

DOI: 10.3844/jcssp.2015.1099.1107

1103

i. Task Twait is currently executing in the
NORMAL mode. In this case, the scheduler measures
the least sum of remaining execution cost for resource
rid in the respective utlist queue. The remaining
execution cost for resource rid in a utlist queue is
captured from the remaining HoldTime parameter
obtained from the work->HoldTime parameter. The sum
of remaining HoldTime of each identified request is
accumulated in the TotalCost parameter. Referring to
Fig. 4, the PUD of this task request is calculated as
Twait.PUD. The calculation formula of PUD is
elaborated in (Jensen et al., 1985; Li et al., 2006).
Subsequently, the PUD is then compared with the
HighestPUD parameter that contains the value that is
currently producing highest PUD among the tasks in the
respective utlist queue. Initially, the value of largest
PUD is set to 0.0000. If task Twait produces a larger
PUD than the value currently in HighestPUD, the
Twait.PUD is considered as the highest PUD so far.
Thus, the value of HighestPUD is updated to be equal to
the Twait.PUD.

ii. Task Twait is currently executing in the ABORT
mode. In this case, the request of task Twait for
resource rid in the respective utlist queue can be
delayed. Thus, the AbortTime is not accumulated in

the TotalCost parameter. The PUD of Twait is equal

to 0.0000.The scheduler then proceed searching for
the next element in the respective utlist. The above
mentioned procedure is repeated to the subsequent
elements until to the end of the utlist. The outcome of

this procedure is to obtain the value of TotalCost and
HighestPUD parameters.

The measurement in GPUAS and the existing NG-

GUA and G-GUA algorithms differ as follows:

i. NG-GUA and G-GUA algorithms use the

measured TotalCost parameter and compares to the

LeastTime parameter. Note that the LeastTime parameter

is used to represent the least sum of remaining execution

cost among the utlist queues for resource R. If the value

of LeastTime exceeds the TotalCost parameter, the

LeastTime is updated to reflect the least sum of total

remaining execution cost among the utlist queues in the

system. The LeastUtlist parameter specifies which utlist

that contained the least sum of total remaining execution

cost i.e., res[rid].cpuid.

ii. GPUAS uses two parameters i.e., the TotalCost

and HighestPUD to decide which utlist queue to

locate task Treq.

Fig. 4. Scheduling algorithms

Idawaty Ahmad et al. / Journal of Computer Sciences 2015, 11 (12): 1099.1107

DOI: 10.3844/jcssp.2015.1099.1107

1104

There are three (3) conditions to validate each utlist

as stated below:

a. GPUAS firstly identifies the LeastUtlist queue

that is identical to the above mentioned G-GUA. The

calculated TotalCost parameter is compared to the

LeastTime parameter. If the value of LeastTime exceeds

the TotalCost parameter, the LeastTime is updated to

reflect the least sum of total remaining execution cost

among the utlist queues in the system. The LeastUtlist

parameter specifies which utlist that contained the least

sum of total remaining execution cost i.e., res[rid].cpuid.

b. GPUAS compares the highest PUD in this utlist

(i.e., HighestPUD) with the PUD of the requesting task

Treq (i.e., Treq.PUD). If the value in Treq.PUD exceeds

the HighestPUD parameter, the PUDflag parameter is

tagged as TRUE to reflect the existence of a utlist with a

lower PUD compared to task Treq. The LeastPUDUtlist

parameter specifies which utlist that contained a lower

PUD compared to Treq i.e., res[rid].cpuid. Referring to

Fig. 4, in the case the value in Treq.PUD is less than or

equal to the HighestPUD parameter, the PUDflag value

remained unchanged.

c. GPUAS considers the LeastUtlist parameter in the

case none of the task in utlist queue produced a lower

PUD as compared to the PUD of task Treq. In this case,

GPUAS considers the LeastUtlist as its LeastPUDUtlist.

The rationale to select the LeastPUDUtlist queue that

has a lower PUD as compared to the requesting task i.e.,

Treq in GPUAS is to ensure that if task Treq is to be

inserted into the utlist queue, the condition in the

LeastPUDUtlist will ensure that task Treq can use the

resource rid soon after the owner task has releases it.

Experimental Setting

The performances of real time scheduling algorithms

are measured by the metrics which rely on the respective

application specifications. The Accrued Utility Ratio

(AUR) metric defined in (Jensen et al., 1985) has been

extensively utilized in the existing TUF/UA scheduling

algorithms and is considered as the standard metric in this

domain (Wu et al., 2004; Li et al., 2006).

AUR is defined as the ratio of accrued aggregate utility

to the maximum possibly attained utility. Equation 1

shows that each task i has its maximum value of utility

which is denoted as MaxAU(i). After a task i has

completed its execution, it will yield a value denoted as

Util(i). These values are then accumulated for all tasks i.e.,

MAX_TASKS. The AUR is calculated as:

1

1

()

()

MAX _TASKS

i

MAX _TASKS

i

Utill i
AUR

MaxAU i

=

=

=

∑

∑
 (1)

Results

Based upon the results acquired from the simulation,
the interpretations of the results are performed. The
numbers of processors considered in the system are two,
four and eight (Garyali et al., 2010). The scheduling
algorithm that is proposed in the multiprocessor
scheduling environment is known GPUAS. The NG-
GUA and G-GUA algorithms are used to compare the
performance of GPUAS algorithm. The plots from all
the results cover an average load in the range of [1-10] in
the multiprocessor environment with two, four and eight-
core platform (Garyali et al., 2010) for step and arbitrary
TUF task model.

Figure 5 depicts the AUR result under an increasing

load for step TUF. From the overall results, as the

number of processors increase, a higher utility is

recorded for all scheduling algorithms. Overall, the

nature of the curves indicates that the proposed GPUAS

algorithm has achieved better performance by producing

a higher accrued utility as compared to the existing NG-

GUA and G-GUA algorithms.

Figure 6 depicts the AUR results for execution of the
arbitrary TUF tasks in the system. Overall, the patterns
of the curves from the results in the arbitrary TUF tasks
set are similar to the step TUF tasks set. In the case of
arbitrary TUF, a task may not be able to accrue its
maximal possible utility even though the execution is
completed before its termination time. Although these
algorithms guarantee that the highest PUD task to be
selected, it does not necessarily represent that the
maximum possible utility gained by the executed tasks.

Fig. 5. Results for step TUF

Idawaty Ahmad et al. / Journal of Computer Sciences 2015, 11 (12): 1099.1107

DOI: 10.3844/jcssp.2015.1099.1107

1105

Fig. 6. Results for arbitrary TUF

From the overall results, as the number of processors

increase, a higher utility is recorded for all scheduling

algorithms. From the overall results, GPUAS shows

significant improvement compared to NG-GUA

algorithm in all multicore platforms. GPUAS also

shows a significant improvement compared to the G-GUA

algorithm in the dual core platform. From the results, it is

observed that the GPUAS8 and G-GUA8 algorithms that

are executed in the eight core platform have produced

the highest utility to the system as compared to the dual

and quad core platforms.

Discussion

From the overall results shown in Fig. 5, GPUAS

shows significant improvement compared to NG-GUA

algorithm in all multicore platforms for the entire load

range. However, GPUAS shows a significant

improvement compared to the G-GUA algorithm only in

the dual core platform. In dual core platform, the average

load of 2 is estimated as the starting point of an

overloaded situation in the system. At this load, GPUAS2

achieved 96.58% and G-GUA2 algorithm achieved

96.05% and NG-GUA2 with 93.14% of the accumulated

utilities. At this load, GPUAS2 has improved the NG-

GUA2 algorithm for 3.44% and improved G-GUA2 for

0.53% of the accumulated utilities.

However, as the load increases, more significance of

GPUAS2 is observed in the system as compared to the

G-GUA and NG-GUA algorithms. When load is equal to

6, in the dual core platform, GPUAS2 accrued 75.03%,

G-GUA2 accrued 70.05% and NG-GUA2 accrued

66.76% of utilities. GPUAS2 algorithm has improved G-

GUA2 for 4.98% and outperformed NG-GUA2

algorithm for 8.27% of the accumulated utilities. At the

highest load (i.e., load = 10), GPUAS2 has achieved

58.89%, G-GUA2 with 56.61% and NG-GUA2 gained

53.24% of the accumulated utilities. Thus, GPUAS2 has

improved G-GUA2 for 2.28% and outperformed NG-

GUA2 algorithm for 5.65%. GPUAS2 outperformed the

G-GUA2 algorithm because GPUAS2 ensure that the

newly request is inserted into the utlist queue that has the

highest possibility to be executed as soon as the owner

task releases the respective resource. Therefore, the

requesting tasks may produce positive utility to the

system. On the other hand, G-GUA2 locates the

requesting task into the utlist that has the least remaining

execution cost. Therefore, G-GUA2 does not guarantee

that the requesting task will be scheduled to use the

respective resource as soon as the task being scheduled

in GPUAS. Therefore, more requesting tasks are ending

up waiting in the utlist without being scheduled in G-

GUA2. This reflects the lower utility accrued in G-

GUA2 as compared to GPUAS2 in dual core platform.

The improvement of GPUAS2 is small i.e., at most only

4.98% because in the dual core platform, although more

number of tasks inserted into the selected queues in

GPUAS2 but more tasks are overdue and therefore

ending up being aborted. This is why the task placement

in GPUAS2 is less over the G-GUA2.

It is observed that GPUAS2 outperformed NG-GUA2
for the entire load range. The excellent performance of
GPUAS2 is also observed over the NG-GUA2 for the
entire load range. This is because GPUAS2 is a
greedy scheduling algorithm and uses PUD as a
metric to achieve the highest accrued utility at any
instance while NG-GUA2 uses the deadline metric
during under load and PUD during overloaded
conditions. On the other hand, during overloads NG-
GUA aborts any requesting task that produced lowest
PUD to overcome the overloaded situation. The
abortions reduced the value of utility accrued to the
system in NG-GUA2. GPUAS omits the abortion and
inserts the lowest PUD task into a queue.

From Fig. 5, it is observed that a sharper degradation

as the load increases in dual core platform. Although

algorithms allows tasks to migrate to the available

resources or move to the resources with the least PUD in

the utlist queue, in dual core platform the number of

available resources is limited. Due to the limited

resources, many backlogged tasks are ending up not been

migrated anywhere although these algorithms allows

them to do so. Due to the limited resources, more tasks

are overdue and therefore ending up being aborted. More

aborted tasks are produced as the load increases and

consequently produced more zero utility tasks to the

Idawaty Ahmad et al. / Journal of Computer Sciences 2015, 11 (12): 1099.1107

DOI: 10.3844/jcssp.2015.1099.1107

1106

system. This is why a sharper degradation is observed as

the load increases in the dual core platform.

Referring to Fig. 5, in four core platform,
approximately the system is considered to be
overloaded when the average load is equal to 4. At this
load, GPUAS4 has successfully gained 99.63% of
utility and G-GUA4 moderately accrued 99.33% while
NG-GUA4 accrued 93.84% of the utilities. Thus, the
GPUAS4 algorithm outperforms G-GUA4 for 0.30%
and NG-GUA for 5.79% at this load. It is observed that
G-GUA and GPUAS accrued the same utility in the
quad and eight core platforms. At the highest load (i.e.,
load = 10), GPUAS4 has achieved 94.96%, G-GUA4
with 94.71% and NG-GUA4 gained 82.42% of the
accumulated utilities. Thus, GPUAS4 has improved G-
GUA4 for 0.25% and outperformed NG-GUA4
algorithm for 12.54%.

From the results in Fig. 5, it is observed that the

GPUAS8 and G-GUA8 algorithms that are executed in

the eight core platform have produced the highest

utility to the system as compared to the dual and quad

core platforms. In eight core platform, approximately

the system is considered to be overloaded when the

average load is equal to 8. At this load, GPUAS8 and

G-GUA8 have successfully gained 100% of utility and

NG-GUA moderately accrued 88.45% of the utilities.

Thus, the GPUAS8 and G-GUA8 algorithms

outperformed NG-GUA8 for 11.55% at this load. From

the figure, at the highest load (i.e., load = 10),

GPUAS8 and NG-GUA8 have achieved 100% and NG-

GUA8 with 87.56% of the accumulated utilities. Thus,

GPUAS8 and G-GUA8 have improved NG-GUA8 for

12.44%. As the number of processors increase, the

higher utility accrued to the system by the GPUAS

algorithm as compared to the existing G-GUA and NG-

GUA algorithms. The enhancement of GPUAS has

tremendously improved the utility accrued to the

system in multiprocessor environment.

Overall, the improvement of GPUAS over the G-

GUA algorithm is observed only in the dual core

platform. In the quad and eight core platforms, the

performances of these algorithms are similar. Note that,

GPUAS ensures that a task is inserted into a selected

queue that has the highest possibility to be executed. In

dual core platform, due to limited resources more

number of tasks inserted into the selected queues. In dual

core platform, only two queues are available for the

insertion of tasks in the queues. Therefore, the insertion

always occurs between these queues and more number of

tasks inserted into the queues. Hence, the PUD metric

used in GPUAS for selection of queues for task insertion

has an impact to the system. On the other hand, in the

quad and eight core platforms, more resources are

available. Therefore, less number of tasks inserted into

the queues. Therefore, the metric used for task insertion

in GPUAS has a minor impact to the system.

Conclusion

This paper has discussed the design and evaluation

of GPUAS in the multiprocessor environment. The

proposed GPUAS algorithm is compared with the

existing NG-GUA and G-GUA algorithms. Simulation

results revealed that GPUAS2 has improved for less

than 4.98% on G-GUA in dual core platform and

remain the same performances in quad and eight core

platforms. Since GPUAS has improved G-GUA in the

metric used for insertion of task in a queue, GPUAS

only has impact on the system with less number of

queue i.e., in the dual core platform with only two

queues available. In the quad and eight core platforms,

more resources are available and therefore less number

of tasks is inserted into a queue. Therefore insertion

procedure is less significant in this environment.

Simulation results also revealed that GPUAS has

improved the NG-GUA at most 12.44% for the entire

load range in all platforms. This is because GPUAS

omits the unnecessary abortions that occur in NG-

GUA. Overall, the GPUAS algorithm outperforms the

existing algorithms by accruing the highest utility to

the system due to the highest resource consumption by

exploiting the migration and task insertion attributes of

the executed tasks. This chapter also has confirmed the

advantage of GPUAS as compared to the existing NG-

GUA algorithm in all platforms for at most 12.44% and

has improved the G-GUA algorithm at most 4.98% in

the dual core platform. The contribution of GPUAS

algorithm in the dual, quad and eight core platforms

that achieved the highest accrued utility and success

ratio making it suitable and efficient scheduling

algorithm for real time application.

Acknowledgement

The authors wish to thank anonymous reviewers for

their valuable, detailed comments that improve both the

content and representation of this study.

Funding Information

This research was funded by the Ministry of Higher

Education Malaysia and Universiti Putra Malaysia under

Fundamental Research Grant FRGS 08-01-15-1722FR

Author’s Contributions

All authors equally contributed in this work.

Ethics

The corresponding author confirms that the other
authors have read and approved the manuscript and there
is no ethical issue involved. This paper is original and
contains unpublished material.

Idawaty Ahmad et al. / Journal of Computer Sciences 2015, 11 (12): 1099.1107

DOI: 10.3844/jcssp.2015.1099.1107

1107

References

Garyali, P., M. Dellinger and B. Ravindran, 2010. On

best-effort utility accrual real-time scheduling on

multiprocessors. Proceedings of the 14th

International Conference on Principles of

Distributed Systems, Dec. 14-17, Springer-Verlag

Berlin, Heidelberg, pp: 270-285.

 DOI: 10.1007/978-3-642-17653-1_21

Idawaty, A., S. Shamala, M. Othman and Z. Zuriati,

2012. Performance of partition utility accrual real

time scheduling algorithm. J. Comput. Sci., 8:

1225-1234.

Jensen, E.D., C.D. Locke and H. Tokuda, 1985. A time-

driven scheduling model for real-time operating

systems. Proceeding of the IEEE Symposium on

Real-Time System, (SRS’ 85), IEEE Computer

Society, pp: 112-122.

Li, P., H. Wu, B. Ravindran and E.D. Jensen, 2006. A

utility accrual scheduling algorithm for real-time

activities with mutual exclusion resource

constraints. IEEE Trans. Computer., 55: 454-469.

DOI: 10.1109/TC.2006.47

Wu, H., B. Ravindran, E.D. Jensen and P. Li, 2004. CPU

scheduling for statistically-assured real-time

performance and improved energy efficiency.

Proceeding of the 2nd IEEE/ACM/IFIP International

Conference on Hardware/Software Codesign and

System Synthesis, Sept. 8-10, IEEE Xplore Press,

USA, pp: 110-115.

 DOI: 10.1109/CODESS.2004.240827

