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ABSTRACT 

Bayesian Network (BN) is a classification technique widely used in Artificial Intelligence. Its structure is a 
Direct Acyclic Graph (DAG) used to model the association of categorical variables. However, in cases where 
the variables are numerical, a previous discretization is necessary. Discretization methods are usually based on 
a statistical approach using the data distribution, such as division by quartiles. In this article we present a 
discretization using a heuristic that identifies events called peak and valley. Genetic Algorithm was used to 
identify these events having the minimization of the error between the estimated average for BN and the actual 
value of the numeric variable output as the objective function. The BN has been modeled from a database of 
Bit’s Rate of Penetration of the Brazilian pre-salt layer with 5 numerical variables and one categorical variable, 
using the proposed discretization and the division of the data by the quartiles. The results show that the 
proposed heuristic discretization has higher accuracy than the quartiles discretization. 
 
Keywords: Bayesian Network, Discretization, Global Optimization, Genetic Algorithm, Heuristic 

1. INTRODUCTION  

A Bayesian Network (BN) allows modeling the 
knowledge of a domain through a set of usually categorical 
qualitative) variables and representing relationships and 
effects among them due to causality and conditional 
independence. The BN is a Directed Acyclic Graph (DAG) 
where the nodes are the variables and the arcs represent 
relation strength expressed in a table of conditional 
probabilities. Thus, knowledge in a standardized BN is 
expressed as the ratio structure and the estimation of 
probabilities. Knowledge can be built from domain experts, 
a data table, or from a hybrid form between both.  

However, there is no guarantee that all variables of an 
application domain will be categorical, since there will 
be situations where numerical variables participate 
directly in the domain context. For these situations, a 
previous discretization of the variables is recommended, 

according to some metric or specific criteria. 
Discretization approaches are usually made by 
probability distribution or using statistic parameters like 
the frequency in each class. 

The discretization can also be made by the experts 
on the field in a manual way. However, it can be a 
complex task: There are cases where the data does not 
follow any visible pattern and when it does, this pattern 
may change in different occasions. So, it is necessary to 
discretize the data based on the data itself, because 
there is no previous knowledge of its behavior. 

Although there are several algorithms for discretization 
(Mohammed  and  Shamsuddin,  2011;  Alfred, 2009; 
Ding et al., 2010), the majority of them have the ultimate 
goal of data classification and not the construction and 
knowledge discovery in a BN. To perform discretization 
for this domain, it is necessary to consider the conditional 
distributions of each variable of the process and how they 
influence the network as a whole.  
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An important aspect regarding the BNs are on their 
property inference: The probability distribution of one 
variable directly influences another. Thus, it is necessary 
to have global optimization to reduce BN error and 
increase its accuracy. 

In this study, we present a heuristic discretization for 
Bayesian Networks that seeks to find data patterns and 
divide the data set according to them. This patterns are 
identified by two events: Peak and valley which are 
optimized by a search using Genetic Algorithm. These 
two events change according to the data set making the 
proposed discretization more flexible to deal with 
different application domains. 

Although the BN is generally used to estimate the 
probability vector of the output variable, we show a case 
of a real application for finding the estimation of the 
Bit’s Rate of Penetration (ROP) on the pre-salt region 
offshore Brazil. It’s a complex domain and depends on 
different variables, which can be either controlled by the 
drilling operator or from the geology. The available data 
comes from previously perforations and maybe not fully 
represent the new perforation and, besides that, it could 
have outliers or wrong values from sensor failures. 

A Bayesian Network approach for the ROP’s 
problem is relatively recent and publications focus on 
how to determine a good topology for the network. 
Rajaieyamchee and Bratvold (2009) shows the use of 
Influence Diagrams (ID), also known as Bayesian Decision 
Networks, to have a good quality when faced with real 
situations involving drilling in the North Sea. Giese and 
Bratvold (2011) uses ID and interviews with experts in the 
field to make a topology of a Bayesian network that aim 
assist in decision making for engineers when designing the 
treatment of drilling fluids in Saudi Arabia. Al-Yami and 
Schubert (2012) presents a topology to aid the drilling 
fluids practice in Saudi Arabia and also shows the 
Bayesian network as an efficient alternative of the flow 
charts, since it’s not necessary to constantly update them. 

The ROP is a quantitative variable, measured on m/s. 
So, in this problem the objective is not the simple 
classification of data but finding the knowledge behind it 
and be able to estimate the numeric value of the output. 
To accomplish that, we used the result probability 
distribution of BN to proper inform the expected mean 
value of the variable. 

This study is organized as follows: Section 2 provides 
necessary background about BN knowledge and 
terminology. Section 3 presents a brief overview of the 
optimization technique known as Genetic Algorithms 
(GA). Section 4 describes the proposed method. Section 

5 introduces the optimization problem associated with 
the method, proposing an approach by GA. Section 6 
shows the experimental results of this approach. Section 
7 shows the discussion about the results and finally, in 
Section 8 we conclude the study. 

1.1. Bayesian Networks  

A Bayesian Network (BN) (Pearl, 1988) is a model of 
representation and reasoning of uncertainty that uses the 
conditional probability between variables of a specific 
domain, expressed by Directed Acyclic Graphs (DAG). 
Its graphical structure can tackle correlations between 
variables effectively, with appropriate language and 
efficient resources to represent the joint probability 
distribution over a set of random variables (Friedman 
and Goldszmidt, 1996).  

Defining formally, a BN is a pair (G,P), where G = 
(V,E) is a DAG in which the nodes V = {v1,…,vn} represent 
the variables and edges E = {e1,…,em} represent a direct 
correlation between each node in V and P is defined as a set 
of probabilistic parameters expressed through tables: Given 
a particular variable, a conditional probability distribution is 
made for each of their classes/values X = {x1,…,xz} joining 
each classes/value of their parents. 

With that configuration, the network establishes that 
a variable is independent of all other variables except 
their descendants in the graph, given the state of its 
parents. The inference inside the network is done by the 
Bayes theorem Equation (1): 
 

( ) P(X = x V = v).P(V = v)
P V = v X = x

P(X = x)
=  (1) 

 
The joint probability is determined by the called 

chain rule and assumes the conditional independence 
between the variables Equation (2): 
  

( ) ( )
n

1 n i i
i 1

P v ,...,v P V parent (V )
=

= ∏  (2) 

 
where, parent(Vi) determines the set of parent nodes 
from Vi.  

The BN reasoning is established in two distinct 
scenarios: 

 
if input,  then output

if output,  then input
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1.2. Learning the Conditional Probability  

To represent a BN, it is necessary to establish its 
structure as well as the probability tables (strength of 
association between variables) through the learning domain 
to be worked on. There are three ways to accomplish that: 
By data only (data base), by domain experts only, or by a 
hybrid form between data and experts.  

The naive Bayes topology is therefore a set of 
mutually independent variables that works as input 
which collectively has a single parent (output node). One 
example of naive Bayes topology can be seen on Fig. 1. 
In this case, the node A is the output one and the nodes 
B, C and D are the inputs.  

In addition to BN topology, it is necessary to specify 
the Conditional Probability Table (CPT) of each node, 
which lists the probability that the node takes on each of 
its different values in combination of its parents’ values. 
An example of CPT for this BN is shown in Table 1. 

1.3. Discretization Based on Frequency  

In quantitative cases, the probability of a particular value 
xi given a variable in V can be infinitely small. 
Discretization can circumvent this problem, converting each 
original quantitative value (xi) into a qualitative value (xi

*) 
under some pre-defined criteria, but information loss may 
become an issue (Yang and Webb, 2009). 

One of the most common approach for 
discretization of the existing data of quantitative 
variables is the Equal Frequency Discretization (EFD) 
(Catlett, 1991; Kerber, 1992; Dougherty et al., 1995), 
that sorts the values on X and divides them into k 
intervals (user-defined) so that each interval contains 
approximately the same number of instances. The 
Algorithm on Fig. 2 is used for the EFD method.  

In Descriptive Statistics, a widely used measure for 
data separation is the quartile. Quartiles separate data 

set into four equal parts where each one contains 25% 
of the data. The first quartile Q1 is called the lower 
quartile, the third quartile Q2 is called the upper 
quartile and the second quartile is the median itself. 
The interquartile range is known as the distance 
between the first and the third quartile.  

A possible way to discretize the data comes from the 
EFD method in combination with the concept of the 
interquartile range (Table 2), here called as QD. 

Other techniques, besides the EFD and the QD are 
also applied in the literature, such as Lazy Discretization 
(LD) (Hsu et al., 2003), Proportional Discretization (PD) 
(Moore and Neal, 2005) and Fixed Frequency 
Discretization (FFD) (Yang and Webb, 2009).  

1.4. Basic Refence on Genetic Algorithms  

Genetic Algorithms (GAs) are function optimizers, 
i.e., methods for seeking extreme of a given objective 
function f(x) based on principles of natural selection 
and population genetics (Goldberg, 1989; Cantu-Paz, 
1995; Weile and Michielssen, 1997). The objective 
function of the problem is typically used to express 
the fitness function in GA.  
 
Table 1. Conditional Probability Table (CPT) example 
A  P(B = state0)  P(B = state1)  P(B = state2)  
state0  0.2  0.3 0 0.50  
state1  0.1  0.5 0 0.4 0 
state2  0.1  0.05  0.85  

 

Table 2. Quartile based discretization 

Condition  Result discretization  

xi≤Q1  “low”  
Q1≤xi≤Q3  “medium”  
xi>Q3  “high”

 

 
 

Fig. 1. Algorithm for EFD method 
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Fig. 2. Algorithm for EFD method 
 

An important aspect of the fitness function is its 
responsibility to measure the performance of the solution 
(objective function) as a way to generate an allocation of 
resources to reproduction (Whitley, 1994).  

An individual is defined as a valid candidate 
solution in GA, expressed by either a binary string or 
a vector of float numbers (Janikow and Michalewicz, 
1991; Wright, 1991), where a set of individuals is 
considered a population. Three operators are commonly 
used: Selection, crossover and mutation.  

The selection operator uses the fitness of each 
individual to choose the most adapted ones of the current 
population to result in a new generation. There are 
several ways to accomplish this selection of individuals, 
but it always ensures that the better adapted individuals 
(best fitness) have a higher probability to be selected.  

The reproduction is made by operators of crossover 
and mutation. The first one is the primary exploration 
mechanism of GA: It randomly chooses a pair of 
preselected individuals and exchanges information 
(substring in a binary representation) between them to 
create new individuals. 

The mutation operator is generally considered as a 
secondary operator and is used to prevent the solution from 
becoming stagnant at some local minima. Mutation is done 
by selecting a random substring in an individual and 

changing its value. The percentage defined for this operator 
is usually much smaller than the crossover operator.  

The GA starts with a current population and then 
selection is applied to create an intermediate population. 
Recombination (mutation and crossover) is then used to 
create the next population. The process between the 
current population to the next population is called a 
generation in the execution of GA (Whitley, 1994).  

The GA convergence tends to evolve through 
successive generations until the fitness of the best 
individual and the average fitness of a population 
approach the global optimal (Beasley et al., 1993). 
Genetic Algorithms do not guarantee finding the optimal 
solution and its effectiveness is determined by the size of 
the population n. The time required for a GA to converge 
is O(nlogn) function evaluations (Goldberg, 1989).  

2. MATERIALS AND METHODS 

The proposed method for discretization in Bayesian 
Networks, Peak-Valley Discretization method (PVD), 
assumes that numeric variables V have a range where 
intermediate values are inserted and in a complementary 
way, analyzing this range of intermediate values makes it 
possible to obtain the range of extreme values and 
establish their conditional probabilities, as well as the 
relations of cause and effect: “What caused this 
behavior? What does it entail?”  

Observing the behavior of the variable, is possible to tell 
where a value �� is out of a given range, positively (high) or 
negatively (low). The delimitation of range uses two cut 
points expressed in percentile: The peak one is restricted to 
the area where values are considered “high”‘ and the second 
one, valley, covers the area where the data is considered 
“low”. The range of intermediate values is defined by the 
interval between two cuts. The use of percentile as cut 
point’s measures incorporates the frequency distribution of 
variables on the method (following the line of EFD). 

However, the behavior of a numeric variable is 
unknown and it is not possible to assume that it has 
higher values as well as lower ones. Considering this 
prerogative, it is possible to characterize data in two or 
three behaviors-defined as classes in a BN. In other 
words, a variable can have a negligible valley or peak cut 
value, or these points can be so close to each other that 
an intermediate range is irrelevant.  

2.1. PVD Properties  

To elucidate the properties of PVD, the following 
concepts are defined in the context of a variable vi: 
 
•  p(x) as a function that takes a value x as input and 

returns the percentile in which it is located  
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• p−1(y) as the inverse function of p(x): Takes a percentile 
y as input and returns the value x that it represents  

• valley as the percentile expressed by the valley cut point  
• peak as the percentile expressed by the peak cut point  
• p(xmin) as the percentile that represent the lowest 

value xmin in vi 
• p(xmax) as the percentile that represent the highest 

value xmax in vi 
• X* = {x1

*,…,xn
*} as the discretized vector of classes 

from node v (X = {x1… xz}) 
 

It is possible to merge or despise cut points if they are 
not relevant to the solution. The relevance of the cut points 
and its proximity to the boundary values are expressed by 
the coefficient of relevance α (0<α<1) defined by user, 
that determines how close these values are. 

It is necessary, however, to apply a correction in α to 
ensure that the cuts always have a range of values to be 
considered relevant independent of the proximity of xmin 
to xmax. The adjusted coefficient α’ goes by Equation (3): 
 

( )( )' 1α = − δ ⋅ α + δ   (3) 
 
where, δ is the boundary coefficient between xmin and 
xmax defined by:  
 

min

max

x

x
δ =   (4) 

 
Which implies that the limit of Equation (4) when 

�→0 is as follow Equation (5): 
 

( )( )lim
0 1δ→ − δ ⋅ α + δ = α   (5) 

 
The relevance of cuts through the proximity of each 

with xmin and xmax is determined by α’. The lowest 
relevant value of valley is given by: 
 

( )1 min
min

x
p valley

'
− =

α
  (6) 

 
And the highest relevant value of peak is: 

 

( )1
max maxp peak x '− = ⋅ α  (7) 

 
Through the Equation (6 and 7) and considering that 

both cuts have different definitions, it is possible to 
define the following hierarchy Equation (8): 
 

x x maxmin
p valley peak p≤ ≤ γ ≤ ≤   (8) 

where Equation (9):  
 

min maxvalley + peak
γ =

2
  (9) 

 
Represents the limit between peak and valley. The 

following criteria are used to despise or merge cuts: 
 

1

1

1

max

min
1

p (valley) valley peak
if ', then merge by

p (peak) 2

p (peak)
if ' then ignor the peak cut

x

x
if ' then ignor the peak cut

p (valley)

if ignor both the peak and the valley cuts, then merge

valley peak
by

2

−

−

−

−

 +> α



> α


 > α




+




  (10) 

 
The BN feature of explicitly representing knowledge 

creates a concern regarding class names in X*, which should  
be intuitive and express their features. To supply for such 
requirement, class names were chosen based on Equation 
10 and expressed by the Algorithm expressed on Fig. 3. 
 

 
 
Fig. 3. Algorithm for PVD method 
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2.2. The Optimization Problem for Quantitative 
Output  

The following concepts are defined as: 
 
• ���� as the output variable in V 
• V* = {v1

*,…,vn
*} as the vector of all discretized 

variables in V: Pre-discretized or by PVD 
• vout* as the output variable in V* 
• 1 nX x ,...., x=ɶ ɶ ɶ  as the predicted values of *

outv by BN  

 
When the output variable is quantitative the algorithm 

goal goes beyond the classification: It is necessary that the 
mean estimated by the probability vector reflects the 
behavior of the variable. The follow function returns the 
expected quantitative value of the *

outv  node in BN, based 

on current beliefs and a list of real numbers that represent 
each class in *outv  Equation (11): 

 

 ( )
n

i i
i 1

ev x belief midpoint
=

= ⋅∑   (11) 

where the list of real numbers is handled as the respective 
midpoints of each class in *outv  in relation to vout.  

Discretization of a variable vi in PVD depends on 
two cut points: Peak and valley and a pre-defined 
coefficient of relevance α. However, probability 
distribution of vi influences the inference process of 
the entire BN Equation (1).  

Thus, it is required to discretize all variables 
simultaneously, which generates a Global Optimization 
problem (Horst et al., 2002), that is, finding the best set 
of acceptable conditions to achieve an objective 
formulated in mathematical terms.  

The objective of such optimization problem 
consists in choosing an output variable in BN and 
discretizing all the other quantitative variables so that 
the Bayesian classification of the output values is as 
close to the actual value as possible. Assuming that 
vout is quantitative, the objective function is given by 
the minimization of the Normalized Root Mean 
Square Error (NRMSE) between the estimated mean 
value and the actual value of the variable: 
 

( )*
outfind V min NRMSE v=   (12) 

 

 
 

Fig. 4. GA Approach Algorithm for PVD method
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Where: 
 

( )
( )n

i li 1

out
max min

1
100 x ev(x )

nNRMSE v
x x

=
⋅ −

=
−

∑
⌣

  (13) 

 
The algorithm expressed on Fig. 4 shows the workflow 

that satisfies the objective function (Equation 12), by 
utilizing the technique of Genetic Algorithm (GA). 

3. RESULTS 

The proposed method was tested in a data set of Bit’s 
Rate of Penetration Problem (Section 6.1), which was 
randomly separated so that (0.7n) of the data belongs to the 
training set and (0.3n) to the test set. The output variable is 
the “ROP” and α (coefficient of relevance) adopted is 0.8. 

3.1. Bit’s Rate of Penetration Problem  

Environments of high complexity and risk, such as the 
pre-salt region of Brazil, aim to optimize the cost of drilling 
wells. The minimization of these costs is directly related to 
the maximization of Rate of Penetration (ROP).  

However, each operation has unique properties that 
make this task highly difficult. Many properties vary, 
such as rock type, rock porosity, gas presence, pressure, 
drill bit wear rate, among others. All these properties 
affect the ROP, as well as many other parameters which 
are controlled by a drilling operator.  

There are 277 data points listed in the data set used 
about a specific type of drilling bit, using the value of 
ROP in a quantitative way (m/s). The input parameters 
have quantitative values, named: Revolutions Per Minute 
(RPM), Weight on Bit (WOB), HSI (bit hydraulic 
horsepower per square inch) and accumulated meters.  

The first three variables are intrinsic to the drilling 
process, the last one (accumulated meters) has a linear 
and accumulative behavior bringing information about 
the bit wear.  

There is also a qualitative parameter, discretized by 
domain experts: Unconfined Compressive Strength 
(UCS) related to soil geology.  

3.2. Generated Bayesian Networks  

The training set were discretized according to each 
one of the methods (PVD and QD) and then created the 
Bayesian networks (Fig. 5 and 6).  

 

 
 

Fig. 5. Trained BN by PVD for Bit’s ROP 
 

 
 

Fig. 6. Trained BN by QD for Bit’s ROP 
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Fig. 7. Actual and estimated values of the Bit’s ROP (training set) 
 

 
 

Fig. 8. Actual and estimated values of the Bit’s ROP (test set) 
 
Table 3. Classification matrix for Bit’s ROP Problem (training set) 
 Predicted 
 ------------------------------------------------------------------- 
Approach Actual Low Medium High Total Accuracy 
QD  Low  20  27  2  49  51.03%  
 Medium 19  53  24  126 
 High  5  18  26  49 
 Low  100  5  4  109  63.91%  
PVD Medium 24  14  5  43  
 High  27  5  10  42  

 
Table 4. Classification matrix for Bit’s ROP Problem (test set) 
 Predicted 
 ------------------------------------------------------------------ 
Approach Actual Low Medium High Total Accuracy 
QD  Low  0  34  15  49 
 Medium  0  17  17  34 20.48%  
 High  0  0  0  0 
 Low  38  2  3  43 
PVD Medium  18  6  1  25  59.03% 
 High  8  2  5  15 

Table 5. Obtained NRMSE of Bit’s ROP Problem 
 NRMSE 
 ------------------------------------------------- 
Approach Training (%) Test (%) 
QD  15.46  29.69  
PVD  10.66  18.44  
 
Each class of the ROP output node had its midpoint 
value calculated in this process (Equation 11).  

The test set were then discretized using the same cut 
points found in the training set. Classification matrices of 
the training and test set are shown on Table 3 and 4.  

3.3. Estimated Mean Values  

The probability distribution of the output node was 
used to estimate the values of the variable. With the 
estimated mean values and the actual value the NRMSE 
was calculated for each one of the methods (Table 5). 

The actual and estimated values of the methods are 
shown in Fig. 6 (training set) and Fig. 7 (test set).  
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4. DISCUSSION 

The PVD method uses a heuristic that aims to 
minimize the NRMSE of the training set through the 
search for two cut points (peak and valley) by Genetic 
Algorithm. An experiment was conducted using a real 
data set of Bit’s ROP in order to estimate the mean 
values of the output variable in two different methods: 
The PVD proposed method and the QD method. 

The data set is derived from a drilling process under 
the influence of various factors, such as equipment 
operators, geology and sensors measure. Therefore, the 
data is not always reliable and the application domain is 
considered a complex domain. 

In the training set there is a greater accuracy when the 
PVD method is used (Table 3). The division between the 
classes of the output variable is not the same in PVD and 
QD methods, since the QD divides the data in a 
proportional way and PVD shows an asymmetric 
division in this experiment. 

The proportional behavior of the frequency distribution 
is kept for the entire training set when using the QD method 
(Fig. 6), however in the PVD method each variable get a 
particular distribution (Fig. 5). 

In relation to the NRMSE on the Bit’s ROP 
problem, the PVD method shows a lower error in both 
training and test sets which reinforces its 
generalization capacity (Table 5). When looking at 
the training set the PVD has an error approximately 
31% lower than the QD. In the test set this difference 
is even more evident, the PVD has an error 
approximately 38% lower than the QD method. 

In relation to the NRMSE on the Bit’s ROP problem, 
the PVD method shows a lower error in both training and 
test sets which reinforces its generalization capacity 
(Table 5). When looking at the training set the PVD has 
an error approximately 31% lower than the QD. In the 
test set this difference is even more evident, the PVD has 
an error approximately 38% lower than the QD method. 

The PVD’s generalization capability is also 
demonstrated by the graph expressed in Fig. 7 showing a 
greater adherence to the actual data curve from the PVD 
over the QD method in the training set. In the test set, the 
PVD shows a significantly greater adherence to the 
actual data than the QD (Fig. 8). The QD method also 
tends to overestimate the estimated values in the test set. 

5. CONCLUSION 

The proposed method performs discretization using 
two cut points which identify valley events (“low”), peak 

events (“high”) and intermediate events (“medium”) and 
was applied in a real domain of Bit’s Rate of Penetration. 

The PVD method makes discretization independent 
from the frequency distribution of each variable. By 
observing the generated BN, it is possible to infer that 
the class probability distribution (“low”, “medium” 
and “high”) can either tend towards symmetry or 
asymmetry. The frequency distribution of the classes 
variables found by the PVD reinforces the idea that a 
symmetrical distribution of the classes on 
discretization does not necessarily lead to a better 
performance of the network.  

The estimated mean from probability distribution of 
the BN generated by PVD reflected the data behavior 
well, although it was not able to accurately reproduce the 
actual extreme values of the variable, but does not tends 
to overestimate like the QD method. The PVD also had a 
better accuracy in classification, lower NRMSE on the 
estimated values and a better generalization of the 
problem when compared with the QD. 

With the presented results, we conclude that the 
proposed discretization method is more effective and 
has a better knowledge representation of the problem 
than a conventional approach for discretization like 
the QD that uses a proportional division of the data 
based on the quartiles. 
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