
Journal of Computer Science 10 (4): 640-646, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.640.646 Published Online 10 (4) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: N. Danapaquiame, Department of Computer Science and Engineering, Pondicherry Engineering College,
Pondicherry-605014, India Tel: 9629124512

640 Science Publications

JCS

A FRAMEWORK TO MAGNITUDE THE PERFORMANCE
AND BEHAVIOR OF WEB SERVICES USING ONTOLOGY

N. Danapaquiame, E. Ilavarasan and Neeraj Kumar

Department of Computer Science and Engineering,
Pondicherry Engineering College, Pondicherry-605014, India

Received 2013-06-26; Revised 2013-07-25; Accepted 2013-12-21

ABSTRACT

A web service is a software interface that describes a collection of operations that can be accessed over the
network through standardized XML messaging. Web services in different domains are diverse in
implementation techniques thus requiring us to meet a wide range of test requirements. Testing services and
service centric system poses new challenges to testing approaches. Several web services testing were
developed to address these new challenges. Without testing, the web service is likely to suffer from various
issues in terms of speed, scalability and stability. In this study, a generalized ontology model is used to
measure the non-functional testable parameters and find the dependencies between them. The web services are
got from the service providers and various testing is being executed over these services. Web service testing is
performed to ensure that their functionality is in accordance with the Service Level Agreement (SLA). Metrics
for each dependency will be formulated and invoked during every test and thus the test results which contain
all the results about each service will be generated using Web Application Performance Tool (WAPT).

Keywords: SLA, WAPT and Ontology

1. INTRODUCTION

Internet is a world wide web which is the main source
for the web services. A web service is a system of
communication between two electronic devices over the
web (internet). Millions of web services are published
across the internet which can be made use of, according to
the requirements of the consumers. These services might
be available as WSDL files or sometimes the services
might be available directly. The growing popularity of
web services can be ascribed to a movement towards
Service-Oriented Architecture (SOA).

In our proposed framework, the web services to be
tested are handed over to the WSTM who is a third party,
for testing. As per the SLA profile, the service consumers
provide the test requirements to the WSTM. The WSTM
has access to the service registry, WSDL Set, QOS
repository, OWL Set and Audit Log to perform the
functionality and non-functional testing of the web services.

Under functionality testing, input-output test and
dependency tests are performed using XML DOM and

ontology. Input-output testing is used to check if the output
data types and output data values of the web service are in
accordance with the XML and WSDL files of the web
service. Dependency testing under functionality testing is
performed by creating an ontology model and getting the
parsed output in C#.net. Under the non-functional testing,
each of the web services are monitored using performance
testing tools and the results are tabulated. An ontology
model is created for non-functional testing comprising of a
few testable QOS parameters. The dependencies between
these parameters are mapped onto the ontology and the
deviations of the service performance are computed. A final
test report consisting of test and analysis results will be
given back to the test requestor, based on which he can
decide to consume the service or not.

2. RELATED WORKS

Hong and Zhang (2012); Yusof et al. (2010);
Kannammal et al. (2006); Rathore and Suman (2011);
Palanikkumar and Kousalya (2012); Vasanthi and

N. Danapaquiame et al. / Journal of Computer Science 10 (4): 640-646, 2014

641 Science Publications

JCS

Wahidabanu (2012); Salva (2011) and Nabiollahi et al.
(2011) presents a archetype execution of the framework in
semantic WS and exhibits the feasibility of the framework
by running examples of building a testing tool as a test
service, embryonic a service for test executions of a WS and
composing contemporary test services for more
complicated testing chores. Experimental evaluation of the
context has also demonstrated its scalability.

But our system performs all levels of testing using
ontology based on the Protégé tool ontograf can be
generated based on the parameters using ontograf tool.

3. PROPOSED SYSTEM

The study benevolences a prototype implementation
of the framework in semantic WS and demonstrates the
feasibility of the framework by running examples of
building a testing tool as a test service, developing a
service for test executions of a WS and composing
existing test services for more complicated testing tasks.
Experimental evaluation of the framework has also
demonstrated its scalability.

In our framework, there exist three major roles
namely service provider, service consumer and Web
Service Test Manager (WSTM). The service provider
gives its entire WS to the WSTM for testing. As per the
SLA Profile, the service consumers provide the test
requirements to the WSTM. The WS TM has access to
the service registry, WSDL set, QoS repository, OWL
Set and Audit Log to perform the functionality and non-
functional testing of the web services.

Under functionality testing, there is an I/O test and a
dependency test. For I/O testing, the input and output
data types and values are retrieved from the WSDL and
XML files of the respective web services and tested for
their correctness.

In dependency testing, an ontology model is created
for their entire system and the dependencies between
them are mapped using an ontology mapping engine.
The entity Level, operational level and attribute level
dependencies are tested using the OwlDotNetApi.

Under the non-functional testing, an ontology model
is created comprising of a few testable QoS parameters
which are present in the QoS repository. The various
relationships between the QoS parameters are identified.
Using Tools such as WAPT, application manager, the
QoS parameters are measured for each service and stored
for future reference. A few metrics are defined and
calculations are performed for each service which will
help in identifying the deviations in the system
performance under various conditions.

A final test report consisting of test and analysis
results will be given back to the test requestor.

3.1. Functional Testing
3.1.1. Architecture Diagram

Web services with incorrect responses can lead to
problems. Web service functional testing ensures that the
web service is functionally correct.

Automated web service functional testing involves
carrying set of tasks automatically and comparing the
result of same with the expected output and ability to
repeat same set of tasks multiple times with different
data input and same level of accuracy. Implementing
functional test for web service early in the software
development cycle speeds up development improves
quality and reduces risks towards the end of the cycle.
We propose a framework to test the functionality of the
web service. Under functional testing, there are two
phases namely: Input-Output testing and dependency
testing. The architecture diagram for the testing of web
services is shown in the Fig. 1.

Fig 1. Architecture diagram

N. Danapaquiame et al. / Journal of Computer Science 10 (4): 640-646, 2014

642 Science Publications

JCS

The services are given by the service consumer and it
is send to WS test Manager. WS Test Manager is divided
into functional and non-functional testing. Further
functional testing is divided into I/O test and
Dependency Test. I/O test performs the input, data type
and values from the services. Test report is generated
with the help of I/O test and ontology mapping, QOS
evaluation and QOS metric analyzer. WS test manager
communicates with the service provider and SLA profile.
Service provider will interact with the service registry,
WSDL set, OWL set and Audit Log. Dependency testing
performs entity, operation and attribute.

4. INPUT OUTPUT TESTING

Figure 2 shows the input output testing of the web
services is done to check whether the web service is
working properly according to its functionality. First the
WSDL file of each of the web services is taken. Then the
XML files of the corresponding web services can be
taken by running the web service and those files can be
stored in a separate XML repository. Now to perform the
input output testing the service name and the service
location is retrieved from the WSDL files of each of
services. Since the WSDL files are in tree format the
contents can’t be retrieved in an ordinary manner. They
can retrieve using XML DOM and the retrieved
contents are now stored in the database. Then using the
service name the XML files of the corresponding
service is opened from the XML repository. Form this
file the data type of the output and the output value is
been retrieved using XML DOM and stored in the
database. Now we can check whether the service is
working properly by checking whether the output data
type is correct and whether the output value is the exact
expected output value. We can also check whether the
value lies between the threshold of the service or not.
This can be shown in the Fig. 2.

4.1. Dependency Testing

For checking the dependencies, we create respective
ontology for our domain using Protégé 4.1. Using
OwlDotNetApi, we retrieve the sub-classes,
relationships, entities, instances, disjoint classes and
sibling classes present in the particular owl file. Parsing
of the OWL file is performed to identify the various
dependencies between the entities, operations and the
attributes. The main idea behind finding the
dependencies of the web service is to explore the
dependencies between each of the services and giving a
clear idea about the usage of those services in the

domain. For example in the airline domain if a person
books a ticket and if he wants to book a hotel then he can
book the hotel only if he has a valid ticket number. Now
while booking the hotel the ticket number of this service
is dependent with the ticket number of the airline service
is shown in the Fig. 4. So such kinds of dependencies
can be explored using the ontology model. It creates an
OWL file and for retrieving contents form the OWL file
the OWL parser is used.

4.2. Ontology Creation Using Protégé

Protégé is software used to create ontologies for various
domains. The main class is thing for the entire domain.
Under the main class the sub classes can be included. Two
ontologies are created one for the main domain to perform
dependency testing and the other is for the non functional
testing which contains the testable parameters and also their
dependencies are shown. Once the ontology has been
created an ontograf is generated which is the pictorial
representation of the corresponding ontologies.

4.3. Non Functional Testing

For non-functional testing, generalized ontology
model for all the testable quality of service parameters
and measure parameters such as average response time,
bandwidth, processing time, throughput, successful hits
and failed hits has been used. So far there exist models
which only measure each parameter individually. Here
the parameters are measured individually and also find
the inter-dependencies between them. Various tools
like WAPT, Application Manager and Soap Sonar has
been used to measure the parameters at several
instances using which the deviations in the performance
of the system can be determined.

More web services have been created accordingly to
our domain and functionality testing (input and output
testing) has been performed accordingly for each of the
web services created. An ontology model has been
created for the whole system specifying the various
relationships between the entities, attributes and
operations using Protégé. The dependencies between the
various entities, attributes and operations have been
identified and have been mapped onto the ontology
model. For Example, ticket booking operation under
airline entity and hotel booking operation under hotel
entity have a ticket number as a joint attribute. Using .net
string builder class, the dependency relationships has
been extracted present in the ontology model as specified
above and displayed them, which constitutes the
dependency testing through Fig. 5.

N. Danapaquiame et al. / Journal of Computer Science 10 (4): 640-646, 2014

643 Science Publications

JCS

Fig. 2. Input output testing

Fig. 3. Graph for response time

Fig. 4. Ontograf for dependency testing

N. Danapaquiame et al. / Journal of Computer Science 10 (4): 640-646, 2014

644 Science Publications

JCS

Fig. 5. Parsed output of the dependency testing of non-functional parameters

Under non-functional testing has been performed for
all the web services created using WAPT testing tool.
Each of the web services has been tested under various
instances by varying the monitoring period and several
instance values of the tests performed are stored in a
database and the test results are displayed using a grid
view. Based on the test results obtained the relationships
between the non functional parameters specified under the
ontology have been identified. These relationships have
been mapped into the ontology model created for non-
functional testing. The Response time of the web services
is shown if Fig. 3 is specified under SLA agreement is
taken into consideration and is compared with response
times of several instances for each web service. The
Deviation in the response time for each instance of the
web services is calculated and projected to the service
consumer based on which he can decide whether to
purchase the corresponding web service or not. The
Latency, Bandwidth and Throughput of the web services
are also calculated in the same manner and all these results
are projected to the service consumers for reference.

5. EXPERIMENTAL RESULTS FOR
CASE STUDY

The work is to provide the results of functional and non-
functional testing of the requested web services to the client.
This can be brought about by creating a website. We make
use of Visual Studio 2008 for this purpose. This study need
to have a database comprising of the values of tested
functional and non functional parameters such as service
name service location, output data type and output value,
response time, processing time, amount of data sent, total
bytes received, successful hits and failed hits for several
instances of different web services invoked by different
users. For this purpose we again make use of visual studio

for web service creation and also XML DOM for parsing
WSDL and XML files. For monitoring these web services,
WAPT and Application Manager Tools have been used.

5.1. Web Service Creation

The first module of our framework is to create web
services and test their functionality. The various web
services were created using visual studio. Some of the
web services created is:

• User Registration service, Adding Flight service,
Ticket Booking service, Fare Calculation service

• Hotel Booking service, Bank service, Cancel Ticket
service, Update Flight Schedule service

5.2. Input-Output Testing

5.2.1. Response Time Graph Using WAPT

5.2.1.1. Ontograf for Dependency Testing

The above Fig. 5 projects the parsed output comprising
of the various dependencies existing between the various
non-functional parameters considered for our domain.

The above figure shows the final output which shows
the overall performance of the web service which is
projected to the client:

Latency = Response Time-Processing Time
LT = RT-PT
Bandwidth = Amount of data sent/Number of users
BW = ADT/Ui
Throughput = Number of users/(Average Response

time+Processing Time)
Tpt = No.Ui / (AvRT+PT)
Robustness = Number of error messages/Total

number request messages
RB = No.ErrMsgs/Tot. ReqMsg

N. Danapaquiame et al. / Journal of Computer Science 10 (4): 640-646, 2014

645 Science Publications

JCS

Fig. 6. Performance measure of the requested web service

Successibility = Number of response messages/number

of request messages
Su = No.Resmsg/no.reqmsg
Availability = 1-(Downtime/Measurement Time)
Av = 1-(Dt-Mt)

Figure 6 shows the calculation of the Latency,
Bandwidth, Throughout, Robustness, Successibility
and Availability

6. CONCLUSION

The internet is a vast area where millions of web
services are available according to the consumers’
requirements. The shift towards Service-Oriented
Architecture (SOA) can be held responsible for the ever-
increasing popularity of these web services. There are a lot
of challenges while testing web services especially while
integrating web services which are owned by different
vendors. Several strategies have proposed to test the web
services. But each of them has drawbacks of their own.

Thus we have proposed a testing framework which
acts as an intermediary or a third party tester between the
service provider and the service consumer. Functional
testing comprising of input output testing and
dependency testing using ontology has been performed
which shows the behavior of the web services. Under
non-functional testing, the values of QOS parameters are

measured for each web service and the deviations of the
system’s performance under various conditions have
been found. An Ontology model is also created for non-
functional testing which helps us to identify the
dependencies between the evaluated parameters. Finally
the test and analysis results are given to the consumer,
based on which they can decide to purchase that web
service or try out any other web service.

Our work makes use of ontology based testing
framework for functional and non-functional testing of
web services. We have taken into consideration only the
testable QoS parameters such as response time, error
rate, amount of data sent per second, amount of data
received per second, average processing time, latency
bandwidth, successful hits and the like. Few other testing
types have not been explored much. As a future
enhancement to our work testing types such as regression
testing, stress testing and recovery testing might be
performed over the web services which could produce a
better analysis of their performance thus making it
preponderant for the consumer’s perusal.

7. REFERENCES

Hong, Z. and Y. Zhang, 2012. Collaborative testing of
web services. IEEE Tran. Services Comput., 5: 116-
130. DOI: 10.1109/TSC.2010.54

N. Danapaquiame et al. / Journal of Computer Science 10 (4): 640-646, 2014

646 Science Publications

JCS

Kannammal, A., V. Ramachandran and N.Ch.S.N.
Iyengar, 2006. An enhanced secure and scalable
model for enterprise applications using automated
monitoring. J. Comput. Sci., 2: 589-594. DOI:
10.3844/jcssp.2006.589.594

Nabiollahi, A., R.A. Alias and S. Sahibuddin, 2011.
Involvement of service knowledge management
system in integration of ITIL v3 and enterprise
architecture. Am. J. Econ. Bus. Admin., 3: 165-
170. DOI: 10.3844/ajebasp.2011.165.170

Palanikkumar, D. and G. Kousalya, 2012. An
evolutionary algorithmic approach based optimal
web service selection for composition with quality
of service. J. Comput. Sci., 8: 573-578.
DOI: 10.3844/jcssp.2012.573.578

Rathore, M. and U. Suman, 2011. A quality of service
broker based process model for dynamic web
service composition. J. Comput. Sci., 7: 1267-1274.
DOI: 10.3844/jcssp.2011.1267.1274

Salva, S., 2011. An approach for testing web service
compositions when internal messages are
unobservable. Int. J. Elect. Bus. Manage., 9: 334-345.

Vasanthi, R. and R.S.D. Wahidabanu, 2012. Adaptable
service component interface framework in pervasive
computing. J. Comput. Sci., 8: 859-863.
DOI: 10.3844/jcssp.2012.859.863

Yusof, M.M., M. Omar and Z. Shukur, 2010. A
disruption-tolerant model for building a mobile
application using web service. J. Comput. Sci., 6:
1430-1437. DOI: 10.3844/jcssp.2010.1430.1437

